Download citation
Download citation
link to html
Studies on α-nickel sulfate hexahydrate (NSH) crystals grown under different conditions are undertaken to investigate how changes in growth conditions affect crystal properties and whether or not there is any modification of the average crystal structure due to changes in crystallization conditions. Thermogravimetric and microhardness studies were carried out on the crystals grown from two different aqueous solutions, one of them containing an excess of sulfuric acid. Raman spectra were recorded and a single-crystal neutron diffraction investigation was conducted on both crystals. A detailed comparison between the two crystal structures and their Raman spectra showed that, although the two crystal structures are very similar, there are slight differences, such as the change in unit-cell volume, differences in the ionic structure, particularly of the sulfate ions, and changes in the hydrogen-bonding network. During solution crystal growth of a salt like NSH, varying the ionic environment around the solute ions influences the interionic interactions between them. Hence it is suggested that the above-mentioned structural differences result from a fine-tuning of the interionic interaction between the cations and anions of NSH in the solution phase. This difference is finally carried over to the crystalline phase. The resulting small crystal structure differences are enough to produce measurable changes in the thermal stability and fragility of the crystals. These differences in crystal properties can be explained on the basis of the observed structural differences between the two crystals grown under different conditions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576719013797/ei5046sup1.cif
Contains datablocks I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576719013797/ei5046Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576719013797/ei5046IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576719013797/ei5046sup4.pdf
Details of microhardness studies

CCDC references: 1958605; 1963870

Computing details top

For both structures, data collection: SCAD; cell refinement: REFINE; data reduction: DATRED; program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: ORTEP; software used to prepare material for publication: SHELX.

(I) top
Crystal data top
H12NiO6·O4SDx = 2.083 Mg m3
Mr = 263.09Neutron radiation, λ = 0.995 Å
Tetragonal, P41212Cell parameters from 50 reflections
a = 6.775 (2) Åθ = 4–40°
c = 18.275 (4) ŵ = 0.23 mm1
V = 838.8 (5) Å3T = 300 K
Z = 4Cubic, blue
F(000) = 1053 × 3 × 3 mm
Data collection top
Four circle
diffractometer
Rint = 0.000
Radiation source: Dhruva reactorθmax = 43.3°, θmin = 4.5°
τ–\2t scansh = 09
Absorption correction: integration
datred
k = 90
l = 025
743 measured reflections2 standard reflections every 20 reflections
743 independent reflections intensity decay: <3
467 reflections with I > 2σ(I)
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1313P)2 + 27.9835P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.082(Δ/σ)max < 0.001
wR(F2) = 0.295Δρmax = 1.33 e Å3
S = 1.18Δρmin = 1.72 e Å3
743 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
111 parametersExtinction coefficient: 0.13 (2)
0 restraintsAbsolute structure: All f" are zero, so absolute structure could not be determined
Hydrogen site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.2111 (5)0.2111 (5)0.00000.0119 (11)
O10.1716 (12)0.0478 (12)0.0530 (4)0.0253 (18)
O20.4717 (11)0.2438 (11)0.0563 (3)0.0197 (16)
O30.0641 (11)0.3564 (11)0.0848 (3)0.0195 (15)
H110.080 (2)0.142 (2)0.0405 (8)0.036 (3)
H120.249 (3)0.081 (2)0.0941 (7)0.038 (3)
H210.565 (2)0.146 (3)0.0469 (10)0.044 (3)
H220.533 (3)0.375 (2)0.0592 (9)0.039 (3)
H310.013 (2)0.463 (2)0.0660 (8)0.038 (3)
H320.0171 (19)0.274 (2)0.1176 (7)0.029 (3)
S0.707 (2)0.707 (2)0.00000.015 (3)
O40.6208 (15)0.6209 (13)0.0659 (4)0.0312 (18)
O50.9216 (11)0.6727 (11)0.0003 (5)0.0266 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0131 (13)0.0131 (13)0.0096 (16)0.0008 (16)0.0005 (10)0.0005 (10)
O10.034 (4)0.020 (3)0.022 (3)0.008 (3)0.011 (3)0.008 (3)
O20.015 (3)0.020 (3)0.023 (3)0.002 (3)0.003 (2)0.003 (3)
O30.023 (3)0.022 (3)0.014 (2)0.003 (3)0.002 (2)0.003 (3)
H110.040 (7)0.024 (6)0.043 (6)0.006 (6)0.005 (6)0.001 (5)
H120.045 (8)0.039 (8)0.032 (6)0.000 (6)0.010 (6)0.012 (5)
H210.022 (6)0.047 (8)0.061 (9)0.005 (7)0.003 (6)0.002 (8)
H220.045 (8)0.026 (6)0.045 (7)0.006 (6)0.000 (6)0.005 (6)
H310.042 (8)0.031 (7)0.041 (6)0.014 (6)0.002 (6)0.002 (6)
H320.025 (5)0.034 (7)0.028 (5)0.002 (5)0.002 (4)0.005 (5)
S0.013 (4)0.013 (4)0.018 (6)0.001 (6)0.002 (4)0.002 (4)
O40.047 (5)0.025 (4)0.021 (3)0.010 (3)0.006 (3)0.002 (3)
O50.019 (3)0.020 (3)0.041 (4)0.005 (2)0.007 (3)0.004 (3)
Geometric parameters (Å, º) top
Ni—O12.021 (8)O2—H210.93 (2)
Ni—O1i2.021 (8)O2—H220.981 (16)
Ni—O22.055 (7)O3—H310.955 (15)
Ni—O2i2.055 (7)O3—H320.988 (16)
Ni—O3i2.088 (6)S—O41.460 (12)
Ni—O32.088 (6)S—O4i1.460 (12)
O1—H110.917 (17)S—O5i1.473 (13)
O1—H120.944 (14)S—O51.473 (13)
O1—Ni—O1i90.0 (5)Ni—O1—H11124.9 (11)
O1—Ni—O288.1 (3)Ni—O1—H12121.0 (12)
O1i—Ni—O2178.1 (4)H11—O1—H12114.1 (15)
O1—Ni—O2i178.1 (4)Ni—O2—H21114.4 (11)
O1i—Ni—O2i88.1 (3)Ni—O2—H22119.3 (12)
O2—Ni—O2i93.8 (4)H21—O2—H22111.6 (16)
O1—Ni—O3i90.2 (3)Ni—O3—H31110.6 (10)
O1i—Ni—O3i89.4 (3)Ni—O3—H32116.6 (9)
O2—Ni—O3i91.0 (3)H31—O3—H32110.1 (14)
O2i—Ni—O3i89.3 (3)O4—S—O4i111.2 (14)
O1—Ni—O389.4 (3)O4—S—O5i109.5 (5)
O1i—Ni—O390.3 (3)O4i—S—O5i109.2 (5)
O2—Ni—O389.3 (3)O4—S—O5109.2 (5)
O2i—Ni—O391.0 (3)O4i—S—O5109.5 (5)
O3i—Ni—O3179.6 (5)O5i—S—O5108.1 (13)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O5ii0.917 (17)1.810 (16)2.717 (11)169.8 (16)
O1—H11···Sii0.917 (17)2.83 (2)3.690 (19)157.1 (13)
O1—H12···O3iii0.944 (14)1.862 (15)2.799 (10)171.1 (17)
O2—H21···O5iv0.93 (2)1.892 (19)2.773 (11)156.5 (15)
O2—H22···O40.981 (16)1.775 (17)2.753 (11)174.4 (18)
O2—H22···S0.981 (16)2.76 (2)3.666 (19)153.7 (12)
O3—H31···O5v0.955 (15)1.912 (16)2.812 (10)156.1 (14)
O3—H31···Sv0.955 (15)2.791 (15)3.728 (7)167.0 (15)
O3—H32···O4iii0.988 (16)1.744 (16)2.722 (12)169.6 (13)
O3—H32···Siii0.988 (16)2.777 (13)3.676 (8)151.5 (10)
Symmetry codes: (ii) x1, y1, z; (iii) x+1/2, y1/2, z+1/4; (iv) y, x1, z; (v) x1, y, z.
(II) top
Crystal data top
H12NiO6·O4SDx = 2.077 Mg m3
Mr = 263.09Neutron radiation, λ = 0.995 Å
Tetragonal, P41212Cell parameters from 50 reflections
a = 6.785 (2) Åθ = 4–40°
c = 18.279 (5) ŵ = 0.23 mm1
V = 841.5 (5) Å3T = 300 K
Z = 4Cubic, blue
F(000) = 1053 × 3 × 3 mm
Data collection top
Four circle
diffractometer
Rint = 0.007
Radiation source: Dhruva reactorθmax = 43.3°, θmin = 4.5°
τ–\2t scansh = 09
Absorption correction: integration
datred
k = 80
l = 025
745 measured reflections2 standard reflections every 20 reflections
744 independent reflections intensity decay: <3
471 reflections with I > 2σ(I)
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1174P)2 + 4.1936P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.070(Δ/σ)max < 0.001
wR(F2) = 0.245Δρmax = 1.22 e Å3
S = 1.25Δρmin = 1.30 e Å3
744 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
111 parametersExtinction coefficient: 0.19 (3)
0 restraintsAbsolute structure: All f" are zero, so absolute structure could not be determined
Hydrogen site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.2103 (4)0.2103 (4)0.00000.0137 (9)
O10.1734 (11)0.0480 (11)0.0529 (3)0.0276 (15)
O20.4722 (9)0.2447 (9)0.0561 (3)0.0197 (13)
O30.0650 (9)0.3556 (9)0.0849 (3)0.0197 (13)
H110.0799 (19)0.1428 (18)0.0412 (8)0.038 (3)
H120.248 (2)0.081 (2)0.0953 (6)0.042 (3)
H210.5681 (19)0.145 (2)0.0476 (8)0.041 (3)
H220.535 (2)0.3732 (18)0.0593 (7)0.035 (3)
H310.0139 (19)0.4650 (18)0.0659 (7)0.038 (3)
H320.0139 (19)0.2711 (18)0.1168 (6)0.032 (2)
S0.7083 (17)0.7083 (17)0.00000.016 (2)
O40.6208 (13)0.6204 (11)0.0659 (3)0.0309 (15)
O50.9227 (9)0.6731 (10)0.0005 (4)0.0268 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0139 (12)0.0139 (12)0.0134 (15)0.0014 (14)0.0009 (9)0.0009 (9)
O10.033 (3)0.027 (3)0.023 (3)0.007 (3)0.008 (3)0.006 (2)
O20.018 (3)0.018 (3)0.023 (2)0.003 (3)0.0027 (19)0.002 (2)
O30.025 (3)0.020 (3)0.0142 (19)0.004 (2)0.002 (2)0.002 (2)
H110.035 (6)0.028 (5)0.052 (6)0.003 (5)0.002 (5)0.001 (5)
H120.053 (7)0.041 (7)0.033 (5)0.002 (5)0.011 (5)0.008 (5)
H210.027 (5)0.040 (6)0.058 (7)0.005 (5)0.006 (5)0.002 (6)
H220.039 (6)0.022 (5)0.045 (6)0.007 (5)0.003 (5)0.004 (4)
H310.039 (6)0.034 (6)0.043 (5)0.013 (5)0.002 (5)0.002 (5)
H320.033 (5)0.033 (6)0.029 (5)0.003 (5)0.001 (4)0.001 (4)
S0.016 (4)0.016 (4)0.017 (5)0.003 (5)0.002 (3)0.002 (3)
O40.048 (4)0.020 (3)0.024 (2)0.010 (3)0.006 (3)0.001 (2)
O50.017 (3)0.022 (3)0.041 (3)0.0042 (17)0.001 (3)0.004 (3)
Geometric parameters (Å, º) top
Ni—O1i2.017 (7)O2—H210.953 (15)
Ni—O12.017 (7)O2—H220.973 (12)
Ni—O22.065 (6)O3—H310.979 (13)
Ni—O2i2.065 (6)O3—H320.978 (14)
Ni—O3i2.085 (5)S—O41.469 (11)
Ni—O32.085 (5)S—O4i1.469 (11)
O1—H110.928 (16)S—O5i1.474 (11)
O1—H120.954 (13)S—O51.474 (11)
O1i—Ni—O190.8 (4)Ni—O1—H11125.2 (10)
O1i—Ni—O2178.7 (3)Ni—O1—H12121.9 (10)
O1—Ni—O288.1 (2)H11—O1—H12112.8 (13)
O1i—Ni—O2i88.1 (2)Ni—O2—H21115.2 (9)
O1—Ni—O2i178.7 (3)Ni—O2—H22120.6 (9)
O2—Ni—O2i93.0 (4)H21—O2—H22110.4 (13)
O1i—Ni—O3i89.7 (3)Ni—O3—H31110.7 (8)
O1—Ni—O3i90.3 (3)Ni—O3—H32115.2 (8)
O2—Ni—O3i90.9 (2)H31—O3—H32110.9 (12)
O2i—Ni—O3i89.1 (2)O4—S—O4i110.2 (12)
O1i—Ni—O390.3 (3)O4—S—O5i109.9 (4)
O1—Ni—O389.7 (3)O4i—S—O5i109.2 (4)
O2—Ni—O389.1 (2)O4—S—O5109.2 (4)
O2i—Ni—O390.9 (2)O4i—S—O5109.9 (4)
O3i—Ni—O3180.0 (5)O5i—S—O5108.6 (12)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O5ii0.928 (16)1.804 (15)2.719 (10)168.2 (14)
O1—H11···Sii0.928 (16)2.82 (2)3.691 (17)157.1 (11)
O1—H12···O3iii0.954 (13)1.848 (14)2.791 (8)168.9 (15)
O2—H21···O5iv0.953 (15)1.884 (15)2.775 (9)154.6 (12)
O2—H22···O40.973 (12)1.779 (13)2.747 (9)173.0 (14)
O2—H22···S0.973 (12)2.779 (19)3.676 (16)153.6 (10)
O3—H31···O5v0.979 (13)1.899 (13)2.820 (9)155.6 (12)
O3—H31···Sv0.979 (13)2.780 (12)3.741 (5)167.1 (12)
O3—H32···O4iii0.978 (14)1.757 (14)2.725 (10)170.3 (11)
O3—H32···Siii0.978 (14)2.802 (12)3.681 (7)150.0 (9)
Symmetry codes: (ii) x1, y1, z; (iii) x+1/2, y1/2, z+1/4; (iv) y, x1, z; (v) x1, y, z.
 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds