The title compound, C
13H
19NO
3, is an important synthetic intermediate. Weak O—H
O and N—H
O hydrogen bonds enhance the stability of the crystal structure.
Supporting information
CCDC reference: 690944
Key indicators
- Single-crystal X-ray study
- T = 291 K
- Mean (C-C) = 0.006 Å
- R factor = 0.046
- wR factor = 0.136
- Data-to-parameter ratio = 8.5
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98
PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 400 Ang.
PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6
PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 1
Alert level G
REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is
correct. If it is not, please give the correct count in the
_publ_section_exptl_refinement section of the submitted CIF.
From the CIF: _diffrn_reflns_theta_max 25.53
From the CIF: _reflns_number_total 1397
Count of symmetry unique reflns 1425
Completeness (_total/calc) 98.04%
TEST3: Check Friedels for noncentro structure
Estimate of Friedel pairs measured 0
Fraction of Friedel pairs measured 0.000
Are heavy atom types Z>Si present no
PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 ... S
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
5 ALERT level C = Check and explain
2 ALERT level G = General alerts; check
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
NaH (8.7 g, 60%, 0.216 mol) was added portionwise to a stirred solution of
L-valinol (22.1 g, 0.215 mol) in dry THF (120 ml). The mixture was
stirred at ambient temperature for 1 h. To this solution was added
2-Methoxy-benzoic acid methyl ester (17.8 g, 0.107 mol) dissolved in THF (50 ml). The mixture was refluxed for 12 h under nitrogen, quenched with H2O (10 ml) and concentrated by evaporation of the solvent. The residue was dissolved
in CH2Cl2 (100 ml), washed with H2O, brine, and dried over MgSO4. And
then removal of the solvent in vacuo gave a white solid, which was
recrystallized from ethyl acetate and petroleum ether to afford the title
compound as white crystals (22.8 g, 90%).
H atoms were positioned geometrically and refined in the riding model
approximation with O—H = 0.82 Å, N—H = 0.86 Å, and C—H = 0.93, 0.96,
0.97 or 0.98 Å. The Uiso(H) = 1.5 Ueq(C) for the CH3
while it was set to 1.2 Ueq(C,N,O) for all other H
atoms. Due to abscence of significant anomalous dispersion effects,
the reflection data were merged.
Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
(
S)-
N-(1-Hydroxymethyl-2-methylpropyl)-2-methoxybenzamide
top
Crystal data top
C13H19NO3 | F(000) = 512 |
Mr = 237.29 | Dx = 1.202 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
a = 9.015 (4) Å | θ = 4.5–6.7° |
b = 10.386 (4) Å | µ = 0.09 mm−1 |
c = 14.005 (4) Å | T = 291 K |
V = 1311.3 (9) Å3 | Block, colourless |
Z = 4 | 0.50 × 0.44 × 0.40 mm |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.010 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 2.4° |
Graphite monochromator | h = −3→10 |
ω/2θ scans | k = −3→12 |
1457 measured reflections | l = −5→16 |
1397 independent reflections | 3 standard reflections every 120 reflections |
848 reflections with I > 2σ(I) | intensity decay: 0.4% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0778P)2 + 0.0096P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
1397 reflections | Δρmax = 0.21 e Å−3 |
164 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.069 (8) |
Crystal data top
C13H19NO3 | V = 1311.3 (9) Å3 |
Mr = 237.29 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.015 (4) Å | µ = 0.09 mm−1 |
b = 10.386 (4) Å | T = 291 K |
c = 14.005 (4) Å | 0.50 × 0.44 × 0.40 mm |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.010 |
1457 measured reflections | 3 standard reflections every 120 reflections |
1397 independent reflections | intensity decay: 0.4% |
848 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.21 e Å−3 |
1397 reflections | Δρmin = −0.14 e Å−3 |
164 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.1432 (3) | 0.3872 (3) | 0.16126 (19) | 0.0666 (8) | |
O2 | 0.5192 (3) | 0.3286 (3) | −0.00264 (18) | 0.0703 (8) | |
O3 | 0.2632 (4) | 0.0046 (3) | −0.0111 (2) | 0.0810 (10) | |
H3 | 0.1945 | 0.0562 | −0.0140 | 0.097* | |
N1 | 0.3536 (3) | 0.2340 (2) | 0.0926 (2) | 0.0487 (8) | |
H1N1 | 0.2711 | 0.2433 | 0.1227 | 0.058* | |
C1 | 0.1842 (4) | 0.4786 (3) | 0.0963 (3) | 0.0514 (9) | |
C2 | 0.1074 (5) | 0.5935 (4) | 0.0851 (3) | 0.0709 (12) | |
H2 | 0.0240 | 0.6099 | 0.1223 | 0.085* | |
C3 | 0.1535 (6) | 0.6826 (4) | 0.0201 (4) | 0.0878 (16) | |
H3A | 0.1009 | 0.7591 | 0.0133 | 0.105* | |
C4 | 0.2760 (6) | 0.6610 (4) | −0.0355 (4) | 0.0929 (18) | |
H4 | 0.3078 | 0.7226 | −0.0791 | 0.112* | |
C5 | 0.3519 (5) | 0.5457 (4) | −0.0255 (3) | 0.0745 (13) | |
H5 | 0.4337 | 0.5300 | −0.0642 | 0.089* | |
C6 | 0.3096 (4) | 0.4533 (3) | 0.0402 (3) | 0.0489 (9) | |
C7 | 0.0018 (6) | 0.3961 (7) | 0.2048 (3) | 0.109 (2) | |
H7A | −0.0038 | 0.4739 | 0.2416 | 0.163* | |
H7B | −0.0130 | 0.3233 | 0.2460 | 0.163* | |
H7C | −0.0735 | 0.3970 | 0.1564 | 0.163* | |
C8 | 0.4020 (4) | 0.3328 (3) | 0.0425 (2) | 0.0459 (9) | |
C9 | 0.4288 (4) | 0.1097 (3) | 0.1012 (2) | 0.0456 (8) | |
H9 | 0.5050 | 0.1060 | 0.0514 | 0.055* | |
C10 | 0.3202 (5) | 0.0025 (3) | 0.0824 (3) | 0.0609 (10) | |
H10A | 0.3691 | −0.0794 | 0.0932 | 0.073* | |
H10B | 0.2387 | 0.0091 | 0.1273 | 0.073* | |
C11 | 0.5075 (5) | 0.0978 (4) | 0.1981 (3) | 0.0632 (11) | |
H11 | 0.5515 | 0.0115 | 0.2002 | 0.076* | |
C12 | 0.6339 (6) | 0.1925 (5) | 0.2074 (4) | 0.0939 (16) | |
H12A | 0.5957 | 0.2787 | 0.2045 | 0.141* | |
H12B | 0.7031 | 0.1794 | 0.1562 | 0.141* | |
H12C | 0.6832 | 0.1796 | 0.2674 | 0.141* | |
C13 | 0.4068 (6) | 0.1084 (6) | 0.2833 (3) | 0.107 (2) | |
H13A | 0.4630 | 0.0946 | 0.3406 | 0.160* | |
H13B | 0.3299 | 0.0447 | 0.2788 | 0.160* | |
H13C | 0.3631 | 0.1926 | 0.2849 | 0.160* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0560 (16) | 0.0735 (18) | 0.0704 (16) | 0.0177 (16) | 0.0102 (13) | 0.0020 (15) |
O2 | 0.0553 (16) | 0.0652 (18) | 0.0903 (18) | −0.0022 (15) | 0.0249 (16) | 0.0137 (16) |
O3 | 0.072 (2) | 0.071 (2) | 0.099 (2) | 0.0007 (16) | −0.0180 (18) | −0.0113 (17) |
N1 | 0.0369 (15) | 0.0481 (16) | 0.0610 (17) | 0.0057 (15) | 0.0078 (14) | 0.0039 (14) |
C1 | 0.050 (2) | 0.046 (2) | 0.058 (2) | −0.0001 (18) | −0.0117 (19) | −0.0054 (18) |
C2 | 0.064 (3) | 0.060 (3) | 0.089 (3) | 0.015 (2) | −0.016 (2) | −0.019 (2) |
C3 | 0.070 (3) | 0.048 (2) | 0.146 (4) | 0.002 (2) | −0.043 (3) | 0.008 (3) |
C4 | 0.067 (3) | 0.059 (3) | 0.152 (5) | −0.011 (3) | −0.030 (3) | 0.047 (3) |
C5 | 0.053 (2) | 0.066 (2) | 0.104 (3) | −0.010 (2) | −0.011 (2) | 0.031 (3) |
C6 | 0.044 (2) | 0.0442 (18) | 0.059 (2) | −0.0051 (17) | −0.0149 (17) | 0.0013 (17) |
C7 | 0.077 (3) | 0.156 (6) | 0.094 (3) | 0.036 (4) | 0.030 (3) | 0.020 (4) |
C8 | 0.037 (2) | 0.046 (2) | 0.054 (2) | −0.0041 (17) | −0.0023 (16) | 0.0044 (18) |
C9 | 0.0387 (18) | 0.0447 (19) | 0.0534 (19) | 0.0069 (17) | 0.0040 (15) | −0.0004 (17) |
C10 | 0.053 (2) | 0.050 (2) | 0.080 (3) | 0.0044 (19) | 0.000 (2) | 0.004 (2) |
C11 | 0.062 (3) | 0.061 (3) | 0.067 (2) | 0.016 (2) | −0.009 (2) | 0.011 (2) |
C12 | 0.096 (3) | 0.093 (3) | 0.093 (3) | 0.000 (3) | −0.037 (3) | −0.011 (3) |
C13 | 0.120 (4) | 0.146 (5) | 0.054 (2) | 0.031 (5) | 0.004 (3) | 0.016 (3) |
Geometric parameters (Å, º) top
O1—C1 | 1.365 (4) | C6—C8 | 1.504 (5) |
O1—C7 | 1.416 (5) | C7—H7A | 0.9600 |
O2—C8 | 1.232 (4) | C7—H7B | 0.9600 |
O3—C10 | 1.406 (5) | C7—H7C | 0.9600 |
O3—H3 | 0.8200 | C9—C10 | 1.506 (5) |
N1—C8 | 1.318 (4) | C9—C11 | 1.537 (5) |
N1—C9 | 1.463 (4) | C9—H9 | 0.9800 |
N1—H1N1 | 0.8600 | C10—H10A | 0.9700 |
C1—C2 | 1.389 (5) | C10—H10B | 0.9700 |
C1—C6 | 1.402 (5) | C11—C13 | 1.503 (6) |
C2—C3 | 1.363 (6) | C11—C12 | 1.511 (6) |
C2—H2 | 0.9300 | C11—H11 | 0.9800 |
C3—C4 | 1.369 (7) | C12—H12A | 0.9600 |
C3—H3A | 0.9300 | C12—H12B | 0.9600 |
C4—C5 | 1.386 (6) | C12—H12C | 0.9600 |
C4—H4 | 0.9300 | C13—H13A | 0.9600 |
C5—C6 | 1.383 (5) | C13—H13B | 0.9600 |
C5—H5 | 0.9300 | C13—H13C | 0.9600 |
| | | |
C1—O1—C7 | 119.1 (4) | N1—C8—C6 | 118.4 (3) |
C10—O3—H3 | 109.5 | N1—C9—C10 | 109.7 (3) |
C8—N1—C9 | 125.3 (3) | N1—C9—C11 | 111.0 (3) |
C8—N1—H1N1 | 117.4 | C10—C9—C11 | 113.3 (3) |
C9—N1—H1N1 | 117.4 | N1—C9—H9 | 107.5 |
O1—C1—C2 | 122.5 (4) | C10—C9—H9 | 107.5 |
O1—C1—C6 | 117.5 (3) | C11—C9—H9 | 107.5 |
C2—C1—C6 | 120.0 (4) | O3—C10—C9 | 112.9 (3) |
C3—C2—C1 | 120.4 (4) | O3—C10—H10A | 109.0 |
C3—C2—H2 | 119.8 | C9—C10—H10A | 109.0 |
C1—C2—H2 | 119.8 | O3—C10—H10B | 109.0 |
C2—C3—C4 | 121.0 (4) | C9—C10—H10B | 109.0 |
C2—C3—H3A | 119.5 | H10A—C10—H10B | 107.8 |
C4—C3—H3A | 119.5 | C13—C11—C12 | 109.8 (4) |
C3—C4—C5 | 118.8 (4) | C13—C11—C9 | 114.6 (3) |
C3—C4—H4 | 120.6 | C12—C11—C9 | 111.8 (3) |
C5—C4—H4 | 120.6 | C13—C11—H11 | 106.7 |
C6—C5—C4 | 122.0 (5) | C12—C11—H11 | 106.7 |
C6—C5—H5 | 119.0 | C9—C11—H11 | 106.7 |
C4—C5—H5 | 119.0 | C11—C12—H12A | 109.5 |
C5—C6—C1 | 117.7 (4) | C11—C12—H12B | 109.5 |
C5—C6—C8 | 116.0 (3) | H12A—C12—H12B | 109.5 |
C1—C6—C8 | 126.2 (3) | C11—C12—H12C | 109.5 |
O1—C7—H7A | 109.5 | H12A—C12—H12C | 109.5 |
O1—C7—H7B | 109.5 | H12B—C12—H12C | 109.5 |
H7A—C7—H7B | 109.5 | C11—C13—H13A | 109.5 |
O1—C7—H7C | 109.5 | C11—C13—H13B | 109.5 |
H7A—C7—H7C | 109.5 | H13A—C13—H13B | 109.5 |
H7B—C7—H7C | 109.5 | C11—C13—H13C | 109.5 |
O2—C8—N1 | 122.0 (3) | H13A—C13—H13C | 109.5 |
O2—C8—C6 | 119.6 (3) | H13B—C13—H13C | 109.5 |
| | | |
C7—O1—C1—C2 | 13.4 (5) | C9—N1—C8—C6 | 179.2 (3) |
C7—O1—C1—C6 | −167.0 (4) | C5—C6—C8—O2 | 9.9 (5) |
O1—C1—C2—C3 | 179.3 (3) | C1—C6—C8—O2 | −171.7 (3) |
C6—C1—C2—C3 | −0.3 (6) | C5—C6—C8—N1 | −169.6 (3) |
C1—C2—C3—C4 | −0.0 (6) | C1—C6—C8—N1 | 8.8 (5) |
C2—C3—C4—C5 | 0.9 (7) | C8—N1—C9—C10 | −130.9 (4) |
C3—C4—C5—C6 | −1.5 (7) | C8—N1—C9—C11 | 103.2 (4) |
C4—C5—C6—C1 | 1.2 (6) | N1—C9—C10—O3 | 63.2 (4) |
C4—C5—C6—C8 | 179.7 (4) | C11—C9—C10—O3 | −172.2 (3) |
O1—C1—C6—C5 | −179.8 (3) | N1—C9—C11—C13 | 59.7 (4) |
C2—C1—C6—C5 | −0.2 (5) | C10—C9—C11—C13 | −64.2 (5) |
O1—C1—C6—C8 | 1.8 (5) | N1—C9—C11—C12 | −66.1 (4) |
C2—C1—C6—C8 | −178.6 (3) | C10—C9—C11—C12 | 170.0 (3) |
C9—N1—C8—O2 | −0.3 (5) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.82 | 2.00 | 2.806 (4) | 170 |
N1—H1N1···O1 | 0.86 | 1.96 | 2.656 (4) | 137 |
Symmetry code: (i) x−1/2, −y+1/2, −z. |
Experimental details
Crystal data |
Chemical formula | C13H19NO3 |
Mr | 237.29 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 291 |
a, b, c (Å) | 9.015 (4), 10.386 (4), 14.005 (4) |
V (Å3) | 1311.3 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.50 × 0.44 × 0.40 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1457, 1397, 848 |
Rint | 0.010 |
(sin θ/λ)max (Å−1) | 0.606 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.136, 1.02 |
No. of reflections | 1397 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.14 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.82 | 2.00 | 2.806 (4) | 169.7 |
N1—H1N1···O1 | 0.86 | 1.96 | 2.656 (4) | 136.7 |
Symmetry code: (i) x−1/2, −y+1/2, −z. |
Oxazoline ligands have been proved to be a class of chiral ligands, being capable of forming a broad variety of metal complexes that are capable of catalyzing a great number of reactions with excellent enantioselectivity (Rechavi & Lemaire, 2002). It is believed that the oxazoline ring can be modified structurally by replacing the O atom with a substituted N atom, leading to new types of imidazoline ligands (Ma & You, 2007). However, all those ligands can prepared by this compound as an intermediate. Herein, we report the synthesis and structure of the title compound (I).
As shown in Fig. 1, there is a chiral center at C9 derived from L-valinol. The C—N bond lengths are 1.318 (4) Å and 1.463 (4) Å, and the C8—N1—C9 angle is 125.3 (3) °. A combination of O—H···O and N—H···O hydrogen bonds interactions provide packing forces in the crystal structure of the title compound.