Download citation
Download citation
link to html
The title compound, C13H19NO3, is an important synthetic inter­mediate. Weak O—H...O and N—H...O hydrogen bonds enhance the stability of the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680801009X/er2052sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680801009X/er2052Isup2.hkl
Contains datablock I

CCDC reference: 690944

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.046
  • wR factor = 0.136
  • Data-to-parameter ratio = 8.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 400 Ang. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 1
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.53 From the CIF: _reflns_number_total 1397 Count of symmetry unique reflns 1425 Completeness (_total/calc) 98.04% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Oxazoline ligands have been proved to be a class of chiral ligands, being capable of forming a broad variety of metal complexes that are capable of catalyzing a great number of reactions with excellent enantioselectivity (Rechavi & Lemaire, 2002). It is believed that the oxazoline ring can be modified structurally by replacing the O atom with a substituted N atom, leading to new types of imidazoline ligands (Ma & You, 2007). However, all those ligands can prepared by this compound as an intermediate. Herein, we report the synthesis and structure of the title compound (I).

As shown in Fig. 1, there is a chiral center at C9 derived from L-valinol. The C—N bond lengths are 1.318 (4) Å and 1.463 (4) Å, and the C8—N1—C9 angle is 125.3 (3) °. A combination of O—H···O and N—H···O hydrogen bonds interactions provide packing forces in the crystal structure of the title compound.

Related literature top

For related literature, see: Ma & You (2007); Rechavi & Lemaire (2002).

Experimental top

NaH (8.7 g, 60%, 0.216 mol) was added portionwise to a stirred solution of L-valinol (22.1 g, 0.215 mol) in dry THF (120 ml). The mixture was stirred at ambient temperature for 1 h. To this solution was added 2-Methoxy-benzoic acid methyl ester (17.8 g, 0.107 mol) dissolved in THF (50 ml). The mixture was refluxed for 12 h under nitrogen, quenched with H2O (10 ml) and concentrated by evaporation of the solvent. The residue was dissolved in CH2Cl2 (100 ml), washed with H2O, brine, and dried over MgSO4. And then removal of the solvent in vacuo gave a white solid, which was recrystallized from ethyl acetate and petroleum ether to afford the title compound as white crystals (22.8 g, 90%).

Refinement top

H atoms were positioned geometrically and refined in the riding model approximation with O—H = 0.82 Å, N—H = 0.86 Å, and C—H = 0.93, 0.96, 0.97 or 0.98 Å. The Uiso(H) = 1.5 Ueq(C) for the CH3 while it was set to 1.2 Ueq(C,N,O) for all other H atoms. Due to abscence of significant anomalous dispersion effects, the reflection data were merged.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.
(S)-N-(1-Hydroxymethyl-2-methylpropyl)-2-methoxybenzamide top
Crystal data top
C13H19NO3F(000) = 512
Mr = 237.29Dx = 1.202 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.015 (4) Åθ = 4.5–6.7°
b = 10.386 (4) ŵ = 0.09 mm1
c = 14.005 (4) ÅT = 291 K
V = 1311.3 (9) Å3Block, colourless
Z = 40.50 × 0.44 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.010
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.4°
Graphite monochromatorh = 310
ω/2θ scansk = 312
1457 measured reflectionsl = 516
1397 independent reflections3 standard reflections every 120 reflections
848 reflections with I > 2σ(I) intensity decay: 0.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.0096P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1397 reflectionsΔρmax = 0.21 e Å3
164 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.069 (8)
Crystal data top
C13H19NO3V = 1311.3 (9) Å3
Mr = 237.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.015 (4) ŵ = 0.09 mm1
b = 10.386 (4) ÅT = 291 K
c = 14.005 (4) Å0.50 × 0.44 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.010
1457 measured reflections3 standard reflections every 120 reflections
1397 independent reflections intensity decay: 0.4%
848 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
1397 reflectionsΔρmin = 0.14 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1432 (3)0.3872 (3)0.16126 (19)0.0666 (8)
O20.5192 (3)0.3286 (3)0.00264 (18)0.0703 (8)
O30.2632 (4)0.0046 (3)0.0111 (2)0.0810 (10)
H30.19450.05620.01400.097*
N10.3536 (3)0.2340 (2)0.0926 (2)0.0487 (8)
H1N10.27110.24330.12270.058*
C10.1842 (4)0.4786 (3)0.0963 (3)0.0514 (9)
C20.1074 (5)0.5935 (4)0.0851 (3)0.0709 (12)
H20.02400.60990.12230.085*
C30.1535 (6)0.6826 (4)0.0201 (4)0.0878 (16)
H3A0.10090.75910.01330.105*
C40.2760 (6)0.6610 (4)0.0355 (4)0.0929 (18)
H40.30780.72260.07910.112*
C50.3519 (5)0.5457 (4)0.0255 (3)0.0745 (13)
H50.43370.53000.06420.089*
C60.3096 (4)0.4533 (3)0.0402 (3)0.0489 (9)
C70.0018 (6)0.3961 (7)0.2048 (3)0.109 (2)
H7A0.00380.47390.24160.163*
H7B0.01300.32330.24600.163*
H7C0.07350.39700.15640.163*
C80.4020 (4)0.3328 (3)0.0425 (2)0.0459 (9)
C90.4288 (4)0.1097 (3)0.1012 (2)0.0456 (8)
H90.50500.10600.05140.055*
C100.3202 (5)0.0025 (3)0.0824 (3)0.0609 (10)
H10A0.36910.07940.09320.073*
H10B0.23870.00910.12730.073*
C110.5075 (5)0.0978 (4)0.1981 (3)0.0632 (11)
H110.55150.01150.20020.076*
C120.6339 (6)0.1925 (5)0.2074 (4)0.0939 (16)
H12A0.59570.27870.20450.141*
H12B0.70310.17940.15620.141*
H12C0.68320.17960.26740.141*
C130.4068 (6)0.1084 (6)0.2833 (3)0.107 (2)
H13A0.46300.09460.34060.160*
H13B0.32990.04470.27880.160*
H13C0.36310.19260.28490.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0560 (16)0.0735 (18)0.0704 (16)0.0177 (16)0.0102 (13)0.0020 (15)
O20.0553 (16)0.0652 (18)0.0903 (18)0.0022 (15)0.0249 (16)0.0137 (16)
O30.072 (2)0.071 (2)0.099 (2)0.0007 (16)0.0180 (18)0.0113 (17)
N10.0369 (15)0.0481 (16)0.0610 (17)0.0057 (15)0.0078 (14)0.0039 (14)
C10.050 (2)0.046 (2)0.058 (2)0.0001 (18)0.0117 (19)0.0054 (18)
C20.064 (3)0.060 (3)0.089 (3)0.015 (2)0.016 (2)0.019 (2)
C30.070 (3)0.048 (2)0.146 (4)0.002 (2)0.043 (3)0.008 (3)
C40.067 (3)0.059 (3)0.152 (5)0.011 (3)0.030 (3)0.047 (3)
C50.053 (2)0.066 (2)0.104 (3)0.010 (2)0.011 (2)0.031 (3)
C60.044 (2)0.0442 (18)0.059 (2)0.0051 (17)0.0149 (17)0.0013 (17)
C70.077 (3)0.156 (6)0.094 (3)0.036 (4)0.030 (3)0.020 (4)
C80.037 (2)0.046 (2)0.054 (2)0.0041 (17)0.0023 (16)0.0044 (18)
C90.0387 (18)0.0447 (19)0.0534 (19)0.0069 (17)0.0040 (15)0.0004 (17)
C100.053 (2)0.050 (2)0.080 (3)0.0044 (19)0.000 (2)0.004 (2)
C110.062 (3)0.061 (3)0.067 (2)0.016 (2)0.009 (2)0.011 (2)
C120.096 (3)0.093 (3)0.093 (3)0.000 (3)0.037 (3)0.011 (3)
C130.120 (4)0.146 (5)0.054 (2)0.031 (5)0.004 (3)0.016 (3)
Geometric parameters (Å, º) top
O1—C11.365 (4)C6—C81.504 (5)
O1—C71.416 (5)C7—H7A0.9600
O2—C81.232 (4)C7—H7B0.9600
O3—C101.406 (5)C7—H7C0.9600
O3—H30.8200C9—C101.506 (5)
N1—C81.318 (4)C9—C111.537 (5)
N1—C91.463 (4)C9—H90.9800
N1—H1N10.8600C10—H10A0.9700
C1—C21.389 (5)C10—H10B0.9700
C1—C61.402 (5)C11—C131.503 (6)
C2—C31.363 (6)C11—C121.511 (6)
C2—H20.9300C11—H110.9800
C3—C41.369 (7)C12—H12A0.9600
C3—H3A0.9300C12—H12B0.9600
C4—C51.386 (6)C12—H12C0.9600
C4—H40.9300C13—H13A0.9600
C5—C61.383 (5)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C1—O1—C7119.1 (4)N1—C8—C6118.4 (3)
C10—O3—H3109.5N1—C9—C10109.7 (3)
C8—N1—C9125.3 (3)N1—C9—C11111.0 (3)
C8—N1—H1N1117.4C10—C9—C11113.3 (3)
C9—N1—H1N1117.4N1—C9—H9107.5
O1—C1—C2122.5 (4)C10—C9—H9107.5
O1—C1—C6117.5 (3)C11—C9—H9107.5
C2—C1—C6120.0 (4)O3—C10—C9112.9 (3)
C3—C2—C1120.4 (4)O3—C10—H10A109.0
C3—C2—H2119.8C9—C10—H10A109.0
C1—C2—H2119.8O3—C10—H10B109.0
C2—C3—C4121.0 (4)C9—C10—H10B109.0
C2—C3—H3A119.5H10A—C10—H10B107.8
C4—C3—H3A119.5C13—C11—C12109.8 (4)
C3—C4—C5118.8 (4)C13—C11—C9114.6 (3)
C3—C4—H4120.6C12—C11—C9111.8 (3)
C5—C4—H4120.6C13—C11—H11106.7
C6—C5—C4122.0 (5)C12—C11—H11106.7
C6—C5—H5119.0C9—C11—H11106.7
C4—C5—H5119.0C11—C12—H12A109.5
C5—C6—C1117.7 (4)C11—C12—H12B109.5
C5—C6—C8116.0 (3)H12A—C12—H12B109.5
C1—C6—C8126.2 (3)C11—C12—H12C109.5
O1—C7—H7A109.5H12A—C12—H12C109.5
O1—C7—H7B109.5H12B—C12—H12C109.5
H7A—C7—H7B109.5C11—C13—H13A109.5
O1—C7—H7C109.5C11—C13—H13B109.5
H7A—C7—H7C109.5H13A—C13—H13B109.5
H7B—C7—H7C109.5C11—C13—H13C109.5
O2—C8—N1122.0 (3)H13A—C13—H13C109.5
O2—C8—C6119.6 (3)H13B—C13—H13C109.5
C7—O1—C1—C213.4 (5)C9—N1—C8—C6179.2 (3)
C7—O1—C1—C6167.0 (4)C5—C6—C8—O29.9 (5)
O1—C1—C2—C3179.3 (3)C1—C6—C8—O2171.7 (3)
C6—C1—C2—C30.3 (6)C5—C6—C8—N1169.6 (3)
C1—C2—C3—C40.0 (6)C1—C6—C8—N18.8 (5)
C2—C3—C4—C50.9 (7)C8—N1—C9—C10130.9 (4)
C3—C4—C5—C61.5 (7)C8—N1—C9—C11103.2 (4)
C4—C5—C6—C11.2 (6)N1—C9—C10—O363.2 (4)
C4—C5—C6—C8179.7 (4)C11—C9—C10—O3172.2 (3)
O1—C1—C6—C5179.8 (3)N1—C9—C11—C1359.7 (4)
C2—C1—C6—C50.2 (5)C10—C9—C11—C1364.2 (5)
O1—C1—C6—C81.8 (5)N1—C9—C11—C1266.1 (4)
C2—C1—C6—C8178.6 (3)C10—C9—C11—C12170.0 (3)
C9—N1—C8—O20.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.002.806 (4)170
N1—H1N1···O10.861.962.656 (4)137
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H19NO3
Mr237.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)9.015 (4), 10.386 (4), 14.005 (4)
V3)1311.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.44 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1457, 1397, 848
Rint0.010
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.02
No. of reflections1397
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.002.806 (4)169.7
N1—H1N1···O10.861.962.656 (4)136.7
Symmetry code: (i) x1/2, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds