Download citation
Download citation
link to html
The title compound, C13H16O2Si, was synthesized as a precursor for ethynylarene derivatives and crystallized from hexane. In the crystal structure, mol­ecules are linked by weak C—H...O hydrogen bonds to form chains that pack in layers in a herringbone fashion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808008192/ez2120sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808008192/ez2120Isup2.hkl
Contains datablock I

CCDC reference: 690886

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.059
  • wR factor = 0.115
  • Data-to-parameter ratio = 20.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for Si1 - C10 .. 5.70 su PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C4 - C9 ... 1.44 Ang.
Alert level G REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 28.25 From the CIF: _reflns_number_total 3050 From the CIF: _diffrn_reflns_limit_ max hkl 8. 9. 32. From the CIF: _diffrn_reflns_limit_ min hkl -7. -8. -37. TEST1: Expected hkl limits for theta max Calculated maximum hkl 8. 9. 39. Calculated minimum hkl -8. -9. -39. REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.25 From the CIF: _reflns_number_total 3050 Count of symmetry unique reflns 1914 Completeness (_total/calc) 159.35% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1136 Fraction of Friedel pairs measured 0.594 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound was isolated as a precursor in the synthesis of a series of ethynylarene-based ligands with terminal carboxylate groups. Interest in these kinds of ligands can be attributed to their ability to incorporate metal ions into M—O—C clusters, leading to novel metal-organic frameworks (MOFs), a category of compounds gaining increasing interest due to their potential applications for gas storage and separation and catalysis (Eddaoudi et al., 2001; Dybtsev et al., 2004; Kesanli et al., 2005; Zhao et al., 2004). The structure of the title compound (I) is shown in Fig. 1. Molecules of (I) pack in layers parallel to the (010) plane forming herring-bone motifs (Fig. 2). Analysis of the crystal packing shows that the molecules are arranged in alternating directions in the layer, due to the bulky trimethylsilyl groups facilitating the close packing of the molecules with the adjacent layer along the c axis. The methyl hydrogen atoms of the trimethysilyl group form C—H···O hydrogen bonds with the carbonyl oxygen atom on the adjacent molecule (Fig. 3).

The acetylenic bond distance [C9—C10 1.200 (3) Å] corresponds with the average value detailed in Allen et al. (1987) for Csp Csp–Csp2 (Ar).

Related literature top

For related literature, see: Eddaoudi et al. (2001); Dybtsev et al. (2004); Kesanli et al. (2005); Zhao et al. (2004); Allen et al. (1987); Fasina et al. (2005).

Experimental top

The title compound (I), was synthesized from trimethylsilylacetylene and 4-iodo(methylbenzoate) using a Sonogashira cross-coupling-type reaction as detailed in (Fasina et al., 2005). Recrystallization from hexane afforded crystals of the title compound.

1H and 13C NMR spectra were recorded as an additional method of characterization, 1H NMR (CDCl3, 400 MHz): δ = 0.22 (9H, s, SiCH3), 3.89 (3H, s, CO2CH3), 7.49–7.53 (2H, m, ArH), 7.95–7.99 (2H, m, ArH); 13C-NMR (CDCl3, 75.5 MHz): δ = -0.44 (SiCH3), 52.063 (OCH3), 97.738 (CC), 104.16 (CC), 127.952 (ArH), 129.53 (ArH), 129.896 (ArH), 132.029 (ArH), 166.761 (CO)

Refinement top

Hydrogen atoms were refined in calculated positions, using a riding model (C–H = 0.98–0.99 Å, Uiso(H) = 1.5Ueq(C) for methyl C or 1.2Ueq(C) or the remaining C atoms).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Herring-bone arrangement of the molecules, viewed down the c axis.
[Figure 3] Fig. 3. C—H···O hydrogen bonds formed between a methyl hydrogen of the trimethylsilyl group and a neighbouring carbonyl oxygen atom. Hydrogen bonds are shown as dashed lines.
Methyl 4-(trimethylsilylethynyl)benzoate top
Crystal data top
C13H16O2SiF(000) = 496
Mr = 232.35Dx = 1.184 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ac2abCell parameters from 1456 reflections
a = 6.1983 (11) Åθ = 2.8–23.3°
b = 7.1194 (12) ŵ = 0.16 mm1
c = 29.530 (5) ÅT = 100 K
V = 1303.1 (4) Å3Plate, colourless
Z = 40.25 × 0.24 × 0.08 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3050 independent reflections
Radiation source: fine-focus sealed tube2643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
/w scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 78
Tmin = 0.960, Tmax = 0.987k = 89
8160 measured reflectionsl = 3732
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.2577P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3050 reflectionsΔρmax = 0.37 e Å3
149 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 1136 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (19)
Crystal data top
C13H16O2SiV = 1303.1 (4) Å3
Mr = 232.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1983 (11) ŵ = 0.16 mm1
b = 7.1194 (12) ÅT = 100 K
c = 29.530 (5) Å0.25 × 0.24 × 0.08 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3050 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2643 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.987Rint = 0.054
8160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.37 e Å3
S = 1.10Δρmin = 0.30 e Å3
3050 reflectionsAbsolute structure: Flack (1983), 1136 Friedel pairs
149 parametersAbsolute structure parameter: 0.01 (19)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.68188 (11)0.55394 (11)0.42983 (2)0.01481 (17)
O10.1541 (3)0.5852 (3)0.12946 (6)0.0236 (5)
O20.1514 (3)0.4974 (3)0.16417 (6)0.0182 (4)
C10.1563 (4)0.5421 (4)0.20957 (8)0.0138 (5)
C20.3623 (4)0.6175 (4)0.21449 (9)0.0138 (5)
H20.43680.66460.18880.017*
C30.4582 (4)0.6241 (4)0.25659 (9)0.0146 (5)
H30.59810.67700.25980.017*
C40.3507 (4)0.5533 (4)0.29466 (8)0.0133 (5)
C50.1428 (4)0.4787 (4)0.28942 (8)0.0137 (5)
H50.06730.43220.31510.016*
C60.0467 (4)0.4724 (3)0.24702 (8)0.0138 (5)
H60.09360.42060.24360.017*
C70.0588 (4)0.5439 (4)0.16347 (8)0.0145 (5)
C80.2620 (4)0.5084 (4)0.12112 (9)0.0220 (7)
H8A0.26960.63970.11130.033*
H8B0.40840.45810.12440.033*
H8C0.18310.43470.09850.033*
C90.4551 (4)0.5535 (4)0.33826 (8)0.0149 (5)
C100.5448 (4)0.5509 (4)0.37428 (8)0.0169 (5)
C110.9744 (4)0.5113 (5)0.42078 (10)0.0299 (8)
H11A0.99530.38560.40800.045*
H11B1.05050.52020.44980.045*
H11C1.03180.60550.39980.045*
C120.6371 (5)0.7888 (4)0.45560 (9)0.0219 (6)
H12A0.69890.88580.43600.033*
H12B0.70680.79370.48540.033*
H12C0.48190.81080.45910.033*
C130.5661 (5)0.3652 (4)0.46578 (10)0.0272 (7)
H13A0.40920.38060.46760.041*
H13B0.62810.37280.49620.041*
H13C0.59990.24260.45250.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0106 (3)0.0178 (4)0.0160 (3)0.0025 (3)0.0022 (3)0.0019 (3)
O10.0155 (9)0.0366 (12)0.0188 (10)0.0016 (10)0.0001 (8)0.0049 (9)
O20.0108 (9)0.0249 (11)0.0189 (9)0.0047 (8)0.0051 (7)0.0009 (7)
C10.0119 (11)0.0130 (13)0.0166 (12)0.0010 (12)0.0024 (9)0.0018 (11)
C20.0115 (12)0.0129 (13)0.0171 (14)0.0011 (10)0.0019 (10)0.0008 (10)
C30.0085 (12)0.0145 (13)0.0208 (14)0.0016 (10)0.0010 (10)0.0032 (11)
C40.0119 (11)0.0115 (12)0.0164 (12)0.0039 (12)0.0024 (9)0.0016 (11)
C50.0127 (12)0.0123 (13)0.0162 (12)0.0025 (11)0.0024 (9)0.0015 (10)
C60.0115 (12)0.0086 (13)0.0213 (13)0.0009 (10)0.0001 (10)0.0019 (11)
C70.0124 (11)0.0110 (12)0.0199 (13)0.0007 (11)0.0024 (10)0.0001 (12)
C80.0181 (14)0.0266 (17)0.0212 (14)0.0029 (11)0.0079 (11)0.0028 (12)
C90.0134 (11)0.0112 (12)0.0202 (13)0.0005 (12)0.0010 (10)0.0013 (12)
C100.0122 (12)0.0167 (14)0.0218 (14)0.0009 (12)0.0016 (10)0.0021 (12)
C110.0186 (14)0.0392 (19)0.0320 (18)0.0086 (13)0.0050 (12)0.0188 (14)
C120.0231 (16)0.0255 (16)0.0171 (15)0.0053 (12)0.0037 (12)0.0011 (12)
C130.0223 (16)0.0280 (17)0.0313 (18)0.0039 (13)0.0063 (13)0.0061 (14)
Geometric parameters (Å, º) top
Si1—C101.848 (3)C5—H50.9500
Si1—C131.857 (3)C6—H60.9500
Si1—C111.858 (3)C8—H8A0.9800
Si1—C121.858 (3)C8—H8B0.9800
O1—C71.202 (3)C8—H8C0.9800
O2—C71.344 (3)C9—C101.200 (3)
O2—C81.447 (3)C9—C41.441 (3)
C1—C61.390 (3)C11—H11A0.9800
C1—C21.392 (3)C11—H11B0.9800
C1—C71.490 (3)C11—H11C0.9800
C2—H20.9500C12—H12A0.9800
C3—C21.379 (4)C12—H12B0.9800
C3—H30.9500C12—H12C0.9800
C4—C31.401 (3)C13—H13A0.9800
C4—C51.403 (3)C13—H13B0.9800
C5—C61.387 (3)C13—H13C0.9800
C10—Si1—C13108.75 (14)O1—C7—O2123.3 (2)
C10—Si1—C11108.62 (12)O1—C7—C1124.5 (2)
C13—Si1—C11109.95 (15)O2—C7—C1112.2 (2)
C10—Si1—C12107.78 (13)Si1—C11—H11A109.5
C13—Si1—C12111.06 (14)Si1—C11—H11B109.5
C11—Si1—C12110.61 (14)H11A—C11—H11B109.5
C7—O2—C8115.63 (19)Si1—C11—H11C109.5
C10—C9—C4178.7 (3)H11A—C11—H11C109.5
C3—C4—C5119.0 (2)H11B—C11—H11C109.5
C3—C4—C9120.2 (2)O2—C8—H8A109.5
C5—C4—C9120.8 (2)O2—C8—H8B109.5
C6—C1—C2120.2 (2)H8A—C8—H8B109.5
C6—C1—C7122.1 (2)O2—C8—H8C109.5
C2—C1—C7117.7 (2)H8A—C8—H8C109.5
C2—C3—C4120.4 (2)H8B—C8—H8C109.5
C2—C3—H3119.8Si1—C12—H12A109.5
C4—C3—H3119.8Si1—C12—H12B109.5
C3—C2—C1120.2 (2)H12A—C12—H12B109.5
C3—C2—H2119.9Si1—C12—H12C109.5
C1—C2—H2119.9H12A—C12—H12C109.5
C9—C10—Si1178.4 (3)H12B—C12—H12C109.5
C6—C5—C4120.4 (2)Si1—C13—H13A109.5
C6—C5—H5119.8Si1—C13—H13B109.5
C4—C5—H5119.8H13A—C13—H13B109.5
C5—C6—C1119.8 (2)Si1—C13—H13C109.5
C5—C6—H6120.1H13A—C13—H13C109.5
C1—C6—H6120.1H13B—C13—H13C109.5
C5—C4—C3—C21.1 (4)C2—C1—C6—C50.2 (4)
C9—C4—C3—C2177.5 (2)C7—C1—C6—C5178.3 (2)
C4—C3—C2—C10.7 (4)C8—O2—C7—O12.8 (4)
C6—C1—C2—C30.2 (4)C8—O2—C7—C1175.9 (2)
C7—C1—C2—C3178.3 (2)C6—C1—C7—O1172.3 (3)
C3—C4—C5—C61.1 (4)C2—C1—C7—O19.2 (4)
C9—C4—C5—C6177.5 (2)C6—C1—C7—O29.0 (4)
C4—C5—C6—C10.6 (4)C2—C1—C7—O2169.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.982.583.470 (4)151
C12—H12A···O1ii0.982.573.527 (3)167
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16O2Si
Mr232.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.1983 (11), 7.1194 (12), 29.530 (5)
V3)1303.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.25 × 0.24 × 0.08
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.960, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8160, 3050, 2643
Rint0.054
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.114, 1.10
No. of reflections3050
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.30
Absolute structureFlack (1983), 1136 Friedel pairs
Absolute structure parameter0.01 (19)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.982.583.470 (4)151
C12—H12A···O1ii0.982.573.527 (3)167
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds