
(2,9-Dimethyl-1,10-phenanthroline-κ2N,N′)(pyridine-2,6-dicarboxylato-κ3O2,N,O6)copper(II) trihydrate
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010503146X/fa1158sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S010827010503146X/fa1158Isup2.hkl |
CCDC reference: 290560
To an EtOH/H2O solution (30 ml, ca 1:1 v/v) containing CuCl2·4H2O (1 mmol) and disodium dipicolinate (1 mmol), 2,9-dimethyl-1,10-phenanthroline (1 mmol) was added slowly with continuous stirring. The resulting solution was refluxed for 1 h and then filtered. The blue filtrate was allowed to stand for 21 d at room temperature, after which time blue crystals of (I) suitable for X-ray difraction analysis were harvested.
H atoms attached to C atoms were placed at calculated positions (C—H = 0.93 and 0.96 Å) and were allowed to ride on their parent atoms [Uiso(H) = 1.2eq(C) and 1.5eq(Cmethyl)]. The water H atoms were located in a difference map and refined with O—H and Hwater···Hwater distances restrained to 0.85 (3) and 1.35 (3) Å, and with Uiso(H)=1.5Ueq(O).
Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
[Cu(C7H3NO4)(C14H12N2)]·3H2O | F(000) = 1012 |
Mr = 490.96 | Dx = 1.595 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4580 reflections |
a = 14.6634 (12) Å | θ = 1.8–24.9° |
b = 10.8960 (6) Å | µ = 1.12 mm−1 |
c = 13.6985 (11) Å | T = 297 K |
β = 110.866 (6)° | Prism, blue |
V = 2045.1 (3) Å3 | 0.3 × 0.2 × 0.1 mm |
Z = 4 |
STOE IPDS-II diffractometer | 4848 independent reflections |
Radiation source: fine-focus sealed tube | 3555 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.092 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.9°, θmin = 2.4° |
ω scans | h = −19→19 |
Absorption correction: integration (X-RED32, Stoe & Cie, 2002) | k = −14→14 |
Tmin = 0.95, Tmax = 0.98 | l = −17→17 |
17419 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0533P)2] where P = (Fo2 + 2Fc2)/3 |
4848 reflections | (Δ/σ)max = 0.041 |
309 parameters | Δρmax = 0.40 e Å−3 |
9 restraints | Δρmin = −0.74 e Å−3 |
[Cu(C7H3NO4)(C14H12N2)]·3H2O | V = 2045.1 (3) Å3 |
Mr = 490.96 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.6634 (12) Å | µ = 1.12 mm−1 |
b = 10.8960 (6) Å | T = 297 K |
c = 13.6985 (11) Å | 0.3 × 0.2 × 0.1 mm |
β = 110.866 (6)° |
STOE IPDS-II diffractometer | 4848 independent reflections |
Absorption correction: integration (X-RED32, Stoe & Cie, 2002) | 3555 reflections with I > 2σ(I) |
Tmin = 0.95, Tmax = 0.98 | Rint = 0.092 |
17419 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 9 restraints |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.40 e Å−3 |
4848 reflections | Δρmin = −0.74 e Å−3 |
309 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.27607 (2) | −0.01166 (3) | 0.09910 (2) | 0.03404 (10) | |
C1 | 0.3511 (2) | −0.2549 (2) | 0.0686 (2) | 0.0392 (6) | |
C2 | 0.4248 (2) | −0.3380 (2) | 0.0715 (2) | 0.0477 (7) | |
H2 | 0.4093 | −0.4203 | 0.0564 | 0.057* | |
C3 | 0.5183 (2) | −0.3001 (3) | 0.0961 (2) | 0.0490 (7) | |
H3 | 0.5670 | −0.3566 | 0.0996 | 0.059* | |
C4 | 0.5416 (2) | −0.1751 (3) | 0.1163 (2) | 0.0414 (6) | |
C5 | 0.6372 (2) | −0.1258 (3) | 0.1399 (2) | 0.0517 (7) | |
H5 | 0.6881 | −0.1779 | 0.1422 | 0.062* | |
C6 | 0.6549 (2) | −0.0050 (3) | 0.1590 (2) | 0.0534 (8) | |
H6 | 0.7182 | 0.0246 | 0.1763 | 0.064* | |
C7 | 0.5780 (2) | 0.0777 (3) | 0.1529 (2) | 0.0450 (6) | |
C8 | 0.5912 (3) | 0.2058 (3) | 0.1682 (2) | 0.0537 (8) | |
H8 | 0.6533 | 0.2400 | 0.1874 | 0.064* | |
C9 | 0.5124 (3) | 0.2784 (3) | 0.1546 (2) | 0.0500 (7) | |
H9 | 0.5206 | 0.3628 | 0.1636 | 0.060* | |
C10 | 0.4189 (2) | 0.2278 (2) | 0.1272 (2) | 0.0416 (6) | |
C11 | 0.48273 (19) | 0.0337 (2) | 0.12848 (18) | 0.0349 (5) | |
C12 | 0.46411 (19) | −0.0961 (2) | 0.11107 (19) | 0.0341 (5) | |
C13 | 0.2476 (3) | −0.2945 (3) | 0.0418 (3) | 0.0587 (8) | |
H13A | 0.2203 | −0.2545 | 0.0875 | 0.088* | |
H13B | 0.2452 | −0.3818 | 0.0500 | 0.088* | |
H13C | 0.2108 | −0.2726 | −0.0292 | 0.088* | |
C14 | 0.3310 (3) | 0.3059 (3) | 0.1060 (2) | 0.0539 (8) | |
H14A | 0.2930 | 0.3041 | 0.0326 | 0.081* | |
H14B | 0.3506 | 0.3887 | 0.1270 | 0.081* | |
H14C | 0.2925 | 0.2753 | 0.1445 | 0.081* | |
C15 | 0.16382 (19) | 0.0903 (2) | 0.20701 (19) | 0.0337 (5) | |
C16 | 0.0902 (2) | 0.1587 (2) | 0.2187 (2) | 0.0430 (6) | |
H16 | 0.0889 | 0.1750 | 0.2848 | 0.052* | |
C17 | 0.0177 (2) | 0.2031 (3) | 0.1305 (2) | 0.0463 (7) | |
H17 | −0.0329 | 0.2495 | 0.1373 | 0.056* | |
C18 | 0.0198 (2) | 0.1790 (2) | 0.0321 (2) | 0.0425 (6) | |
H18 | −0.0289 | 0.2084 | −0.0276 | 0.051* | |
C19 | 0.09610 (19) | 0.1102 (2) | 0.02527 (19) | 0.0333 (5) | |
C20 | 0.2518 (2) | 0.0333 (2) | 0.2907 (2) | 0.0363 (5) | |
C21 | 0.1148 (2) | 0.0702 (2) | −0.0717 (2) | 0.0365 (5) | |
N1 | 0.37136 (16) | −0.13601 (17) | 0.08878 (16) | 0.0327 (4) | |
N2 | 0.40487 (16) | 0.10646 (18) | 0.11619 (16) | 0.0346 (4) | |
N3 | 0.16602 (15) | 0.07023 (17) | 0.11152 (16) | 0.0320 (4) | |
O1 | 0.31235 (14) | −0.01866 (16) | 0.25682 (14) | 0.0403 (4) | |
O2 | 0.19180 (15) | 0.00595 (18) | −0.05317 (15) | 0.0453 (4) | |
O3 | 0.26026 (16) | 0.04276 (19) | 0.38309 (15) | 0.0492 (5) | |
O4 | 0.05724 (16) | 0.09917 (18) | −0.15889 (15) | 0.0480 (5) | |
O5 | 0.1347 (2) | 0.7793 (3) | 0.2328 (3) | 0.0855 (8) | |
H5A | 0.117 (4) | 0.700 (2) | 0.217 (4) | 0.128* | |
H5B | 0.079 (3) | 0.817 (4) | 0.203 (4) | 0.128* | |
O6 | 0.1103 (2) | 0.0615 (3) | 0.4778 (2) | 0.0787 (8) | |
H6A | 0.058 (2) | 0.041 (5) | 0.440 (4) | 0.118* | |
H6B | 0.154 (3) | 0.049 (5) | 0.454 (4) | 0.118* | |
O7 | 0.0826 (2) | 0.5276 (2) | 0.1669 (2) | 0.0702 (7) | |
H7A | 0.098 (4) | 0.489 (4) | 0.127 (3) | 0.105* | |
H7B | 0.072 (4) | 0.487 (4) | 0.212 (3) | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02848 (16) | 0.04103 (17) | 0.03474 (16) | 0.00414 (13) | 0.01386 (12) | −0.00220 (12) |
C1 | 0.0437 (15) | 0.0369 (12) | 0.0413 (14) | 0.0019 (11) | 0.0204 (12) | −0.0042 (10) |
C2 | 0.0586 (19) | 0.0404 (13) | 0.0484 (16) | 0.0108 (13) | 0.0243 (14) | 0.0009 (11) |
C3 | 0.0513 (18) | 0.0555 (16) | 0.0439 (16) | 0.0242 (14) | 0.0213 (14) | 0.0066 (12) |
C4 | 0.0332 (14) | 0.0629 (16) | 0.0299 (12) | 0.0133 (12) | 0.0134 (11) | 0.0025 (11) |
C5 | 0.0313 (14) | 0.087 (2) | 0.0393 (14) | 0.0143 (14) | 0.0151 (12) | 0.0027 (14) |
C6 | 0.0290 (13) | 0.094 (2) | 0.0380 (14) | −0.0046 (15) | 0.0127 (11) | 0.0020 (15) |
C7 | 0.0371 (14) | 0.0693 (17) | 0.0294 (13) | −0.0122 (13) | 0.0129 (11) | −0.0007 (11) |
C8 | 0.0554 (19) | 0.0713 (19) | 0.0367 (15) | −0.0310 (16) | 0.0193 (14) | −0.0045 (13) |
C9 | 0.066 (2) | 0.0495 (14) | 0.0355 (14) | −0.0205 (15) | 0.0201 (14) | −0.0037 (11) |
C10 | 0.0552 (18) | 0.0403 (12) | 0.0308 (12) | −0.0092 (12) | 0.0172 (12) | −0.0005 (10) |
C11 | 0.0321 (12) | 0.0471 (13) | 0.0266 (11) | −0.0046 (10) | 0.0118 (10) | −0.0014 (9) |
C12 | 0.0302 (12) | 0.0452 (12) | 0.0294 (11) | 0.0031 (10) | 0.0137 (10) | 0.0003 (9) |
C13 | 0.0504 (19) | 0.0460 (15) | 0.085 (2) | −0.0077 (13) | 0.0298 (18) | −0.0155 (15) |
C14 | 0.071 (2) | 0.0399 (14) | 0.0494 (17) | 0.0040 (14) | 0.0190 (16) | 0.0012 (12) |
C15 | 0.0358 (13) | 0.0324 (11) | 0.0353 (12) | −0.0036 (10) | 0.0159 (11) | −0.0035 (9) |
C16 | 0.0444 (16) | 0.0461 (13) | 0.0436 (14) | 0.0055 (12) | 0.0221 (13) | −0.0032 (11) |
C17 | 0.0408 (15) | 0.0496 (14) | 0.0524 (17) | 0.0146 (12) | 0.0215 (14) | −0.0010 (12) |
C18 | 0.0370 (15) | 0.0465 (13) | 0.0431 (14) | 0.0080 (12) | 0.0133 (12) | 0.0051 (11) |
C19 | 0.0312 (12) | 0.0345 (11) | 0.0360 (12) | −0.0023 (9) | 0.0140 (10) | 0.0005 (9) |
C20 | 0.0363 (13) | 0.0384 (12) | 0.0350 (12) | −0.0003 (10) | 0.0136 (11) | 0.0002 (9) |
C21 | 0.0357 (13) | 0.0412 (12) | 0.0344 (12) | −0.0027 (11) | 0.0147 (11) | 0.0004 (10) |
N1 | 0.0315 (11) | 0.0362 (9) | 0.0327 (10) | 0.0016 (8) | 0.0143 (9) | −0.0017 (8) |
N2 | 0.0368 (12) | 0.0379 (10) | 0.0301 (10) | −0.0023 (8) | 0.0133 (9) | −0.0012 (8) |
N3 | 0.0307 (10) | 0.0335 (9) | 0.0337 (10) | −0.0001 (8) | 0.0137 (8) | −0.0010 (8) |
O1 | 0.0367 (10) | 0.0494 (9) | 0.0358 (9) | 0.0091 (8) | 0.0141 (8) | 0.0026 (7) |
O2 | 0.0383 (10) | 0.0643 (11) | 0.0369 (9) | 0.0104 (9) | 0.0178 (8) | −0.0021 (8) |
O3 | 0.0496 (12) | 0.0664 (12) | 0.0334 (10) | 0.0041 (10) | 0.0169 (9) | −0.0005 (8) |
O4 | 0.0501 (12) | 0.0562 (11) | 0.0352 (10) | 0.0059 (9) | 0.0123 (9) | 0.0043 (8) |
O5 | 0.0615 (18) | 0.0929 (19) | 0.098 (2) | −0.0085 (16) | 0.0237 (17) | 0.0039 (18) |
O6 | 0.0603 (17) | 0.107 (2) | 0.0774 (19) | 0.0086 (17) | 0.0352 (15) | 0.0035 (16) |
O7 | 0.0786 (19) | 0.0784 (16) | 0.0571 (15) | −0.0038 (14) | 0.0286 (14) | 0.0036 (12) |
Cu1—N2 | 2.228 (2) | C12—N1 | 1.355 (3) |
Cu1—N3 | 1.904 (2) | C13—H13A | 0.9600 |
Cu1—N1 | 1.987 (2) | C13—H13B | 0.9600 |
Cu1—O1 | 2.0343 (18) | C13—H13C | 0.9600 |
Cu1—O2 | 2.019 (2) | C14—H14A | 0.9600 |
C1—N1 | 1.336 (3) | C14—H14B | 0.9600 |
C1—C2 | 1.398 (4) | C14—H14C | 0.9600 |
C1—C13 | 1.493 (4) | C15—N3 | 1.338 (3) |
C2—C3 | 1.355 (5) | C15—C16 | 1.368 (4) |
C2—H2 | 0.9300 | C15—C20 | 1.520 (4) |
C3—C4 | 1.407 (4) | C16—C17 | 1.381 (4) |
C3—H3 | 0.9300 | C16—H16 | 0.9300 |
C4—C12 | 1.407 (4) | C17—C18 | 1.384 (4) |
C4—C5 | 1.426 (4) | C17—H17 | 0.9300 |
C5—C6 | 1.350 (5) | C18—C19 | 1.378 (4) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C6—C7 | 1.423 (4) | C19—N3 | 1.332 (3) |
C6—H6 | 0.9300 | C19—C21 | 1.513 (3) |
C7—C11 | 1.400 (4) | C20—O3 | 1.231 (3) |
C7—C8 | 1.415 (4) | C20—O1 | 1.272 (3) |
C8—C9 | 1.357 (5) | C21—O4 | 1.233 (3) |
C8—H8 | 0.9300 | C21—O2 | 1.275 (3) |
C9—C10 | 1.399 (4) | O5—H5A | 0.91 (3) |
C9—H9 | 0.9300 | O5—H5B | 0.88 (3) |
C10—N2 | 1.338 (3) | O6—H6A | 0.79 (3) |
C10—C14 | 1.485 (4) | O6—H6B | 0.82 (3) |
C11—N2 | 1.350 (3) | O7—H7A | 0.78 (2) |
C11—C12 | 1.444 (3) | O7—H7B | 0.83 (2) |
N3—Cu1—N1 | 164.96 (8) | C1—C13—H13B | 109.5 |
N3—Cu1—O2 | 79.71 (8) | H13A—C13—H13B | 109.5 |
N1—Cu1—O2 | 100.28 (8) | C1—C13—H13C | 109.5 |
N3—Cu1—O1 | 80.33 (8) | H13A—C13—H13C | 109.5 |
N1—Cu1—O1 | 97.21 (8) | H13B—C13—H13C | 109.5 |
O2—Cu1—O1 | 158.89 (8) | C10—C14—H14A | 109.5 |
N3—Cu1—N2 | 115.70 (8) | C10—C14—H14B | 109.5 |
N1—Cu1—N2 | 79.06 (8) | H14A—C14—H14B | 109.5 |
O2—Cu1—N2 | 103.75 (8) | C10—C14—H14C | 109.5 |
O1—Cu1—N2 | 91.08 (8) | H14A—C14—H14C | 109.5 |
N1—C1—C2 | 120.6 (3) | H14B—C14—H14C | 109.5 |
N1—C1—C13 | 117.5 (2) | N3—C15—C16 | 119.9 (2) |
C2—C1—C13 | 121.8 (2) | N3—C15—C20 | 111.2 (2) |
C3—C2—C1 | 120.9 (3) | C16—C15—C20 | 128.9 (2) |
C3—C2—H2 | 119.6 | C15—C16—C17 | 118.8 (3) |
C1—C2—H2 | 119.6 | C15—C16—H16 | 120.6 |
C2—C3—C4 | 119.7 (3) | C17—C16—H16 | 120.6 |
C2—C3—H3 | 120.1 | C16—C17—C18 | 120.6 (3) |
C4—C3—H3 | 120.1 | C16—C17—H17 | 119.7 |
C12—C4—C3 | 116.6 (3) | C18—C17—H17 | 119.7 |
C12—C4—C5 | 119.4 (3) | C19—C18—C17 | 118.0 (3) |
C3—C4—C5 | 124.0 (3) | C19—C18—H18 | 121.0 |
C6—C5—C4 | 121.2 (3) | C17—C18—H18 | 121.0 |
C6—C5—H5 | 119.4 | N3—C19—C18 | 120.3 (2) |
C4—C5—H5 | 119.4 | N3—C19—C21 | 111.2 (2) |
C5—C6—C7 | 120.8 (3) | C18—C19—C21 | 128.4 (2) |
C5—C6—H6 | 119.6 | O3—C20—O1 | 125.8 (2) |
C7—C6—H6 | 119.6 | O3—C20—C15 | 119.3 (2) |
C11—C7—C8 | 116.4 (3) | O1—C20—C15 | 115.0 (2) |
C11—C7—C6 | 120.0 (3) | O4—C21—O2 | 125.8 (2) |
C8—C7—C6 | 123.5 (3) | O4—C21—C19 | 120.1 (2) |
C9—C8—C7 | 119.3 (3) | O2—C21—C19 | 114.1 (2) |
C9—C8—H8 | 120.3 | C1—N1—C12 | 119.3 (2) |
C7—C8—H8 | 120.3 | C1—N1—Cu1 | 124.49 (19) |
C8—C9—C10 | 120.8 (3) | C12—N1—Cu1 | 116.08 (15) |
C8—C9—H9 | 119.6 | C10—N2—C11 | 118.4 (2) |
C10—C9—H9 | 119.6 | C10—N2—Cu1 | 132.33 (19) |
N2—C10—C9 | 121.1 (3) | C11—N2—Cu1 | 108.77 (15) |
N2—C10—C14 | 117.1 (3) | C19—N3—C15 | 122.3 (2) |
C9—C10—C14 | 121.7 (3) | C19—N3—Cu1 | 118.89 (16) |
N2—C11—C7 | 123.8 (2) | C15—N3—Cu1 | 118.70 (18) |
N2—C11—C12 | 116.9 (2) | C20—O1—Cu1 | 114.73 (16) |
C7—C11—C12 | 119.2 (2) | C21—O2—Cu1 | 115.49 (16) |
N1—C12—C4 | 122.8 (2) | H5A—O5—H5B | 102 (3) |
N1—C12—C11 | 117.9 (2) | H6A—O6—H6B | 114 (4) |
C4—C12—C11 | 119.3 (2) | H7A—O7—H7B | 114 (4) |
C1—C13—H13A | 109.5 | ||
N1—C1—C2—C3 | 0.8 (4) | O1—Cu1—N1—C1 | 94.7 (2) |
C13—C1—C2—C3 | −179.9 (3) | N2—Cu1—N1—C1 | −175.6 (2) |
C1—C2—C3—C4 | −1.7 (4) | N3—Cu1—N1—C12 | −160.2 (3) |
C2—C3—C4—C12 | 1.0 (4) | O2—Cu1—N1—C12 | 111.20 (18) |
C2—C3—C4—C5 | −178.2 (3) | O1—Cu1—N1—C12 | −80.69 (18) |
C12—C4—C5—C6 | 1.1 (4) | N2—Cu1—N1—C12 | 9.02 (17) |
C3—C4—C5—C6 | −179.8 (3) | C9—C10—N2—C11 | −2.3 (4) |
C4—C5—C6—C7 | −2.0 (4) | C14—C10—N2—C11 | 175.8 (2) |
C5—C6—C7—C11 | 1.0 (4) | C9—C10—N2—Cu1 | 168.81 (19) |
C5—C6—C7—C8 | −177.6 (3) | C14—C10—N2—Cu1 | −13.1 (4) |
C11—C7—C8—C9 | −2.7 (4) | C7—C11—N2—C10 | 0.4 (4) |
C6—C7—C8—C9 | 176.0 (3) | C12—C11—N2—C10 | −177.1 (2) |
C7—C8—C9—C10 | 1.0 (4) | C7—C11—N2—Cu1 | −172.6 (2) |
C8—C9—C10—N2 | 1.6 (4) | C12—C11—N2—Cu1 | 9.8 (3) |
C8—C9—C10—C14 | −176.4 (3) | N3—Cu1—N2—C10 | −5.0 (3) |
C8—C7—C11—N2 | 2.0 (4) | N1—Cu1—N2—C10 | 178.1 (2) |
C6—C7—C11—N2 | −176.7 (2) | O2—Cu1—N2—C10 | 80.0 (2) |
C8—C7—C11—C12 | 179.5 (2) | O1—Cu1—N2—C10 | −84.8 (2) |
C6—C7—C11—C12 | 0.8 (4) | N3—Cu1—N2—C11 | 166.74 (15) |
C3—C4—C12—N1 | 0.6 (4) | N1—Cu1—N2—C11 | −10.17 (15) |
C5—C4—C12—N1 | 179.8 (2) | O2—Cu1—N2—C11 | −108.20 (16) |
C3—C4—C12—C11 | −178.5 (2) | O1—Cu1—N2—C11 | 86.96 (16) |
C5—C4—C12—C11 | 0.7 (4) | C18—C19—N3—C15 | 2.7 (4) |
N2—C11—C12—N1 | −3.1 (3) | C21—C19—N3—C15 | −177.6 (2) |
C7—C11—C12—N1 | 179.2 (2) | C18—C19—N3—Cu1 | −174.35 (19) |
N2—C11—C12—C4 | 176.0 (2) | C21—C19—N3—Cu1 | 5.4 (3) |
C7—C11—C12—C4 | −1.6 (3) | C16—C15—N3—C19 | −3.0 (4) |
N3—C15—C16—C17 | 1.7 (4) | C20—C15—N3—C19 | 179.2 (2) |
C20—C15—C16—C17 | 179.0 (3) | C16—C15—N3—Cu1 | 173.99 (19) |
C15—C16—C17—C18 | −0.2 (4) | C20—C15—N3—Cu1 | −3.8 (3) |
C16—C17—C18—C19 | −0.2 (4) | N1—Cu1—N3—C19 | −98.1 (4) |
C17—C18—C19—N3 | −1.0 (4) | O2—Cu1—N3—C19 | −6.71 (18) |
C17—C18—C19—C21 | 179.3 (3) | O1—Cu1—N3—C19 | −179.78 (19) |
N3—C15—C20—O3 | −179.5 (2) | N2—Cu1—N3—C19 | 93.70 (18) |
C16—C15—C20—O3 | 3.0 (4) | N1—Cu1—N3—C15 | 84.8 (4) |
N3—C15—C20—O1 | 2.2 (3) | O2—Cu1—N3—C15 | 176.17 (19) |
C16—C15—C20—O1 | −175.3 (3) | O1—Cu1—N3—C15 | 3.09 (17) |
N3—C19—C21—O4 | 180.0 (2) | N2—Cu1—N3—C15 | −83.42 (18) |
C18—C19—C21—O4 | −0.3 (4) | O3—C20—O1—Cu1 | −178.0 (2) |
N3—C19—C21—O2 | 0.7 (3) | C15—C20—O1—Cu1 | 0.1 (3) |
C18—C19—C21—O2 | −179.5 (3) | N3—Cu1—O1—C20 | −1.66 (17) |
C2—C1—N1—C12 | 0.8 (4) | N1—Cu1—O1—C20 | −166.65 (18) |
C13—C1—N1—C12 | −178.5 (3) | O2—Cu1—O1—C20 | −20.9 (3) |
C2—C1—N1—Cu1 | −174.50 (19) | N2—Cu1—O1—C20 | 114.24 (18) |
C13—C1—N1—Cu1 | 6.2 (4) | O4—C21—O2—Cu1 | 174.8 (2) |
C4—C12—N1—C1 | −1.5 (4) | C19—C21—O2—Cu1 | −6.0 (3) |
C11—C12—N1—C1 | 177.6 (2) | N3—Cu1—O2—C21 | 7.00 (18) |
C4—C12—N1—Cu1 | 174.20 (18) | N1—Cu1—O2—C21 | 171.71 (19) |
C11—C12—N1—Cu1 | −6.7 (3) | O1—Cu1—O2—C21 | 26.3 (3) |
N3—Cu1—N1—C1 | 15.2 (5) | N2—Cu1—O2—C21 | −107.16 (19) |
O2—Cu1—N1—C1 | −73.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O7 | 0.91 (3) | 2.00 (3) | 2.902 (4) | 173 (5) |
O5—H5B···O4i | 0.88 (3) | 2.08 (3) | 2.945 (4) | 169 (6) |
O6—H6A···O7ii | 0.79 (3) | 2.06 (3) | 2.841 (5) | 168 (6) |
O6—H6B···O3 | 0.82 (3) | 2.12 (3) | 2.932 (4) | 172 (6) |
O7—H7A···O6iii | 0.78 (2) | 2.19 (3) | 2.927 (4) | 158 (5) |
O7—H7B···O4iv | 0.83 (2) | 2.07 (3) | 2.894 (3) | 172 (5) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H3NO4)(C14H12N2)]·3H2O |
Mr | 490.96 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 14.6634 (12), 10.8960 (6), 13.6985 (11) |
β (°) | 110.866 (6) |
V (Å3) | 2045.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.12 |
Crystal size (mm) | 0.3 × 0.2 × 0.1 |
Data collection | |
Diffractometer | STOE IPDS-II diffractometer |
Absorption correction | Integration (X-RED32, Stoe & Cie, 2002) |
Tmin, Tmax | 0.95, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17419, 4848, 3555 |
Rint | 0.092 |
(sin θ/λ)max (Å−1) | 0.659 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.107, 0.99 |
No. of reflections | 4848 |
No. of parameters | 309 |
No. of restraints | 9 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.40, −0.74 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cu1—N2 | 2.228 (2) | Cu1—O1 | 2.0343 (18) |
Cu1—N3 | 1.904 (2) | Cu1—O2 | 2.019 (2) |
Cu1—N1 | 1.987 (2) | ||
N3—Cu1—N1 | 164.96 (8) | O2—Cu1—O1 | 158.89 (8) |
N3—Cu1—O2 | 79.71 (8) | N3—Cu1—N2 | 115.70 (8) |
N1—Cu1—O2 | 100.28 (8) | N1—Cu1—N2 | 79.06 (8) |
N3—Cu1—O1 | 80.33 (8) | O2—Cu1—N2 | 103.75 (8) |
N1—Cu1—O1 | 97.21 (8) | O1—Cu1—N2 | 91.08 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O7 | 0.91 (3) | 2.00 (3) | 2.902 (4) | 173 (5) |
O5—H5B···O4i | 0.88 (3) | 2.08 (3) | 2.945 (4) | 169 (6) |
O6—H6A···O7ii | 0.79 (3) | 2.06 (3) | 2.841 (5) | 168 (6) |
O6—H6B···O3 | 0.82 (3) | 2.12 (3) | 2.932 (4) | 172 (6) |
O7—H7A···O6iii | 0.78 (2) | 2.19 (3) | 2.927 (4) | 158 (5) |
O7—H7B···O4iv | 0.83 (2) | 2.07 (3) | 2.894 (3) | 172 (5) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) x, −y+1/2, z+1/2. |
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is regarded as the key component for the high heat resistance of bacterial spores, owing to its ability to build stabilizing structures with divalent metals (Chung et al., 1971). Metal complexes of this ligand have been studied extensively because of its ability to form stable chelates (Ducommun et al., 1989) with different coordination modes, such as bidentate (Zhou & Kostic, 1988) or bridging (Sengupta et al., 1983). Since rare-earth metals are known to have antitumor activity (Zhou et al., 2001), a series of isomorphous dipicolinate complexes with these metals were synthesized and the structures were reported (Chen et al., 2002; Okabe et al., 2002). To clarify further the coordination modes of chelates of pyridine-2,6-dicarboxylic acid with biologically important transition metal ions, we report here the synthesis and crystal structure of a mononuclear copper dipicolinate (dpc) compound with 2,9-dimethyl-1,10-phenanthroline (dmphen).
The structure of the title compound, (I) (Fig. 1), consists of a neutral [Cu(dpc)(dmphen)] unit and three solvent water molecules. The dpc anion with its two carboxylate groups in ortho-positions with respect to the pyridine N atom is potentially tridentate. The copper ion is bonded to the pyridine N atom [Cu1—N3 = 1.904 (2) Å] as well as to one O atom of each carboxylate group [Cu1—O1 = 2.0343 (18) Å and Cu1—O2 = 2.019 (2) Å]. The dmphen ligand chelates the copper center [Cu1—N1 = 1.987 (2) and Cu1—N2 = 2.228 (2) Å]. These bond distances are comparable to those found in other copper–dipicolinate complexes (Okabe & Oya, 2000; Altin et al., 2004; Chaigneau et al., 2004). The degree of trigonality τ = 0.1 indicates that the CuII ion lies in a distorted square-pyramidal environment. [As defined by Addison et al. (1984), τ is 0 for the regular square-pyramidal (SQP) structure and increases to 1 for the trigonal-bipyramidal (TBP) structure.] The dmphen atom N2 occupies the axial position, while the base is formed by the two carboxylate O atoms, one pyridine N atom from the dpc anion and one N atom from the dmphen ligand. The Cu atom lies 0.1681 (18) Å out of the basal plane, which is distorted from a square by the double chelate formed by dpc and which, furthermore, is not completly planar [maximum atomic deviation 0.0512 (12) Å].
The fact that the Cu1—N3 distance is significantly shorter than the two Cu—N(dmphen) distances indicates that atom N3 is the strongest donor site, since the two carboxylate groups in ortho positions enhance the basicity of atom N3. The dpc chelate angles are 79.71 (8) and 80.33 (8)°, which are comparable to those found in other Cu–dipicolinate complexes (Okabe & Oya, 2000; Chaigneau et al., 2004). The internal geometry of the dmphen ligand is similar to that established in previous studies (Kon et al., 1987; Kovalevsky et al., 2003). All atoms in the dpc anion are also nearly coplanar, with a maximum deviation of 0.0648 (17) Å for atom O1. The dihedral angle between the dmphen and dpc planes is 80.29 (4)°.
Both intermolecular hydrogen-bonding and π–π interactions combine to stabilize the extended structure (Fig. 2). The uncoordinated water molecules link molecules of the complex, acting as hydrogen-bond donors to the unligated carboxylate O atoms (Table 2). These interactions mediate the formation of ladder-type chains in the bc plane (Fig. 2). Adjacent chains are linked by π–π interactions, which are either face-to-face interactions [CgA···CgAv = 3.6307 (15) Å; CgA is the center of the C4–C7/C11/C12 ring; symmetry code: (v) 1 − x, −y, −z] or slipped interactions [CgB···CgCvi = 3.7184 (15) Å; CgB is the center of the C1–C4/C12/N1 ring and CgC is the center of the C7–C10/N2/C11; symmetry code: (vi) 1 − x, −1/2 + y, 1/2 − z]. Ring A is oriented in such a way that the perpendicular distance from A to Av is 3.428 Å, the closest interatomic distance being C12···C7v [3.451 (4) Å]. The perpendicular distance from ring B to ring Cvi is 3.281 Å, the closest interatomic distance being C12···C9vi [3.392 (4) Å]; the dihedral angle between these rings is 14.99 (6)°.