Download citation
Download citation
link to html
Two isomeric pairs of Schiff bases, N,N′-bis­(2-methoxy­benzyl­idene)-p-phenyl­enediamine, C22H20N2O2, (I), and 2,2′-dimeth­oxy-N,N-(p-phenyl­enedimethyl­ene)dianiline, C22H20N2O2, (II), and (E,E)-1,4-bis­(3-iodo­phen­yl)-2,3-diaza­buta-1,3-diene (alternative name: 3-iodo­benzaldehyde azine), C14H10I2N2, (III), and N,N′-bis­(3-iodo­phen­yl)ethylenedi­imine, C14H10I2N2 [JAYFEV; Cho, Moore & Wilson (2005). Acta Cryst. E61, o3773–o3774], differ pairwise only in the orientation of their imino linkages and in all four individual cases occupy inversion centers in the crystal, yet all four compounds are found to assume unique packing arrangements. Compounds (I) and (II) differ substantially in mol­ecular conformation, possessing angles between their ring planes of 12.10 (15) and 46.29 (9)°, respectively. Compound (III) and JAYFEV are similar to each other in conformation, with angles between their imino linkages and benzene rings of 11.57 (15) and 7.4 (3)°, respectively. The crystal structures are distinguished from each other by different packing motifs involving the functional groups. Inter­molecular contacts between meth­oxy groups define an R22(6) motif in (I) but a C(3) motif in (II). Inter­molecular contacts are of the I...I type in (III), but they are of the N...I type in JAYFEV.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107006233/fa3067sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107006233/fa3067Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107006233/fa3067IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107006233/fa3067IIIsup4.hkl
Contains datablock III

CCDC references: 645628; 645629; 645630

Computing details top

For all compounds, data collection: SMART (Bruker, 2001). Cell refinement: SAINT-Plus,(Bruker, 2003) for (I); SAINT-Plus (Bruker, 2003) for (II), (III). For all compounds, data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

(I) N,N'-bis(2-methoxybenzylidene)phenylene-1,4-diamine top
Crystal data top
C22H20N2O2Dx = 1.310 Mg m3
Mr = 344.40Melting point = 149–151 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.9580 (5) ÅCell parameters from 2198 reflections
b = 12.2984 (10) Åθ = 2.4–25.0°
c = 11.9168 (9) ŵ = 0.09 mm1
β = 90.185 (1)°T = 173 K
V = 873.19 (12) Å3Needle, yellow
Z = 20.48 × 0.20 × 0.18 mm
F(000) = 364
Data collection top
Bruker PLATFORM/SMART CCD area-detector
diffractometer
1543 independent reflections
Radiation source: normal-focus sealed tube1418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
h = 77
Tmin = 0.957, Tmax = 0.982k = 1414
7597 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.282P]
where P = (Fo2 + 2Fc2)/3
1543 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. (Melting points were determined on a Fisher-Johns melting point apparatus and are uncorrected.)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0407 (2)0.18569 (11)0.15406 (11)0.0266 (3)
C20.0632 (2)0.07187 (11)0.14866 (11)0.0269 (3)
C30.0952 (2)0.00537 (11)0.19891 (11)0.0303 (3)
H30.07930.07140.19520.036*
C40.2761 (2)0.05025 (12)0.25424 (12)0.0330 (3)
H40.38450.00410.28790.040*
C50.3007 (2)0.16227 (12)0.26102 (12)0.0342 (3)
H50.42510.19290.29940.041*
C60.1429 (2)0.22868 (11)0.21155 (11)0.0301 (3)
H60.15950.30530.21670.036*
C70.2881 (3)0.08005 (11)0.09169 (13)0.0363 (4)
H7A0.30240.10550.16930.054*
H7B0.42760.09500.05120.054*
H7C0.16340.11800.05490.054*
C80.2015 (2)0.25688 (11)0.09754 (11)0.0289 (3)
H80.31500.22530.05220.035*
C90.3524 (2)0.42638 (10)0.05186 (10)0.0251 (3)
C100.2974 (2)0.53613 (10)0.04102 (11)0.0280 (3)
H100.15810.56140.06950.034*
C110.5591 (2)0.39127 (10)0.01014 (11)0.0278 (3)
H110.60090.31700.01710.033*
N10.19386 (19)0.35969 (9)0.10739 (9)0.0281 (3)
O10.24547 (17)0.03454 (7)0.09121 (8)0.0355 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (7)0.0229 (7)0.0284 (7)0.0026 (5)0.0012 (6)0.0020 (5)
C20.0294 (7)0.0237 (7)0.0277 (7)0.0009 (5)0.0017 (5)0.0003 (5)
C30.0350 (8)0.0202 (7)0.0357 (8)0.0038 (6)0.0018 (6)0.0033 (6)
C40.0315 (8)0.0299 (8)0.0375 (8)0.0074 (6)0.0050 (6)0.0060 (6)
C50.0304 (8)0.0308 (8)0.0413 (8)0.0001 (6)0.0088 (6)0.0020 (6)
C60.0321 (8)0.0208 (7)0.0374 (8)0.0009 (5)0.0048 (6)0.0010 (6)
C70.0439 (9)0.0215 (7)0.0434 (8)0.0037 (6)0.0072 (7)0.0004 (6)
C80.0300 (8)0.0246 (7)0.0320 (7)0.0004 (5)0.0063 (6)0.0002 (6)
C90.0277 (7)0.0214 (7)0.0263 (7)0.0022 (5)0.0019 (5)0.0005 (5)
C100.0263 (7)0.0234 (7)0.0344 (7)0.0014 (5)0.0063 (5)0.0006 (6)
C110.0304 (8)0.0164 (6)0.0367 (8)0.0009 (5)0.0036 (6)0.0016 (5)
N10.0294 (6)0.0214 (6)0.0337 (6)0.0017 (5)0.0061 (5)0.0024 (5)
O10.0386 (6)0.0207 (5)0.0471 (6)0.0010 (4)0.0157 (5)0.0002 (4)
Geometric parameters (Å, º) top
C1—C61.3964 (19)C7—O11.4320 (16)
C1—C21.4077 (19)C7—H7A0.98
C1—C81.4640 (18)C7—H7B0.98
C2—O11.3650 (16)C7—H7C0.98
C2—C31.3865 (19)C8—N11.2707 (18)
C3—C41.380 (2)C8—H80.95
C3—H30.95C9—C101.3949 (19)
C4—C51.388 (2)C9—C111.3977 (18)
C4—H40.95C9—N11.4167 (17)
C5—C61.3790 (19)C10—C11i1.3798 (18)
C5—H50.95C10—H100.95
C6—H60.95C11—H110.95
C6—C1—C2118.29 (12)O1—C7—H7B110
C6—C1—C8120.95 (12)H7A—C7—H7B110
C2—C1—C8120.72 (12)O1—C7—H7C110
O1—C2—C3124.20 (12)H7A—C7—H7C110
O1—C2—C1115.70 (11)H7B—C7—H7C110
C3—C2—C1120.10 (12)N1—C8—C1121.93 (12)
C4—C3—C2120.27 (13)N1—C8—H8119
C4—C3—H3120C1—C8—H8119
C2—C3—H3120C10—C9—C11118.24 (12)
C3—C4—C5120.50 (13)C10—C9—N1116.52 (11)
C3—C4—H4120C11—C9—N1125.23 (12)
C5—C4—H4120C11i—C10—C9121.41 (12)
C6—C5—C4119.39 (13)C11i—C10—H10119
C6—C5—H5120C9—C10—H10119
C4—C5—H5120C10i—C11—C9120.35 (12)
C5—C6—C1121.44 (13)C10i—C11—H11120
C5—C6—H6119C9—C11—H11120
C1—C6—H6119C8—N1—C9120.58 (11)
O1—C7—H7A110C2—O1—C7118.05 (11)
C6—C1—C2—O1179.86 (12)C6—C1—C8—N17.0 (2)
C8—C1—C2—O11.90 (19)C2—C1—C8—N1175.14 (13)
C6—C1—C2—C30.5 (2)C11—C9—C10—C11i0.5 (2)
C8—C1—C2—C3177.49 (12)N1—C9—C10—C11i179.05 (12)
O1—C2—C3—C4179.20 (12)C10—C9—C11—C10i0.5 (2)
C1—C2—C3—C40.1 (2)N1—C9—C11—C10i178.91 (12)
C2—C3—C4—C50.5 (2)C1—C8—N1—C9179.82 (11)
C3—C4—C5—C60.2 (2)C10—C9—N1—C8162.75 (13)
C4—C5—C6—C10.4 (2)C11—C9—N1—C818.8 (2)
C2—C1—C6—C50.7 (2)C3—C2—O1—C76.2 (2)
C8—C1—C6—C5177.21 (13)C1—C2—O1—C7174.42 (12)
Symmetry code: (i) x+1, y+1, z.
(II) 2,2'-dimethoxy-(p-phenylenedimethylene)dianiline top
Crystal data top
C22H20N2O2Dx = 1.277 Mg m3
Mr = 344.40Melting point = 178–180 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1825 (4) ÅCell parameters from 4025 reflections
b = 7.2077 (4) Åθ = 2.4–25.0°
c = 17.3048 (10) ŵ = 0.08 mm1
β = 91.068 (1)°T = 173 K
V = 895.70 (9) Å3Prism, yellow
Z = 20.52 × 0.25 × 0.20 mm
F(000) = 364
Data collection top
Bruker PLATFORM/SMART CCD area-detector
diffractometer
1583 independent reflections
Radiation source: normal-focus sealed tube1392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
h = 88
Tmin = 0.954, Tmax = 0.981k = 88
8550 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2159P]
where P = (Fo2 + 2Fc2)/3
1583 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12635 (16)0.52075 (16)0.87726 (6)0.0263 (3)
C20.17536 (16)0.64991 (16)0.82007 (7)0.0286 (3)
C30.04336 (19)0.77468 (18)0.79202 (7)0.0366 (3)
H30.07630.86300.75390.044*
C40.13689 (19)0.7705 (2)0.81967 (8)0.0417 (4)
H40.22600.85750.80080.050*
C50.18797 (18)0.6419 (2)0.87412 (7)0.0385 (3)
H50.31230.63790.89180.046*
C60.05573 (17)0.51806 (17)0.90287 (7)0.0318 (3)
H60.09050.42990.94080.038*
C70.3998 (2)0.7514 (2)0.73027 (10)0.0564 (4)
H7A0.31450.72410.68690.085*
H7B0.52790.72500.71510.085*
H7C0.38900.88260.74440.085*
C80.23490 (16)0.23783 (16)0.92365 (6)0.0274 (3)
H80.11760.18750.90850.033*
C90.37217 (16)0.11740 (16)0.96261 (6)0.0264 (3)
C100.32917 (17)0.06887 (17)0.97522 (7)0.0299 (3)
H100.21190.11620.95830.036*
C110.54470 (16)0.18510 (16)0.98797 (7)0.0301 (3)
H110.57560.31170.97990.036*
N10.26845 (13)0.40749 (14)0.90959 (5)0.0277 (3)
O10.35341 (11)0.63883 (12)0.79483 (5)0.0352 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (6)0.0248 (6)0.0230 (6)0.0031 (5)0.0050 (4)0.0035 (4)
C20.0329 (6)0.0249 (6)0.0277 (6)0.0004 (5)0.0045 (5)0.0022 (5)
C30.0455 (8)0.0302 (7)0.0340 (7)0.0048 (6)0.0082 (6)0.0040 (5)
C40.0441 (8)0.0407 (8)0.0398 (7)0.0165 (6)0.0099 (6)0.0006 (6)
C50.0334 (7)0.0489 (8)0.0330 (7)0.0113 (6)0.0019 (5)0.0070 (6)
C60.0355 (7)0.0351 (7)0.0249 (6)0.0033 (5)0.0009 (5)0.0030 (5)
C70.0457 (8)0.0646 (10)0.0589 (10)0.0077 (8)0.0041 (7)0.0309 (8)
C80.0283 (6)0.0287 (6)0.0252 (6)0.0005 (5)0.0009 (4)0.0002 (5)
C90.0307 (6)0.0257 (6)0.0230 (6)0.0027 (5)0.0016 (5)0.0004 (4)
C100.0295 (6)0.0279 (6)0.0321 (6)0.0013 (5)0.0027 (5)0.0009 (5)
C110.0331 (6)0.0227 (6)0.0346 (7)0.0004 (5)0.0007 (5)0.0029 (5)
N10.0301 (5)0.0272 (5)0.0257 (5)0.0030 (4)0.0014 (4)0.0022 (4)
O10.0326 (5)0.0358 (5)0.0371 (5)0.0010 (4)0.0001 (4)0.0107 (4)
Geometric parameters (Å, º) top
C1—C61.3888 (17)C7—O11.4253 (16)
C1—C21.4082 (17)C7—H7A0.98
C1—N11.4141 (15)C7—H7B0.98
C2—O11.3614 (15)C7—H7C0.98
C2—C31.3878 (17)C8—N11.2708 (15)
C3—C41.389 (2)C8—C91.4680 (16)
C3—H30.95C8—H80.95
C4—C51.376 (2)C9—C111.3950 (17)
C4—H40.95C9—C101.3957 (17)
C5—C61.3889 (18)C10—C11i1.3809 (17)
C5—H50.95C10—H100.95
C6—H60.95C11—H110.95
C6—C1—C2118.86 (11)O1—C7—H7B110
C6—C1—N1122.87 (11)H7A—C7—H7B110
C2—C1—N1118.14 (10)O1—C7—H7C110
O1—C2—C3124.44 (11)H7A—C7—H7C110
O1—C2—C1115.81 (10)H7B—C7—H7C110
C3—C2—C1119.74 (12)N1—C8—C9121.93 (11)
C2—C3—C4120.05 (12)N1—C8—H8119
C2—C3—H3120C9—C8—H8119
C4—C3—H3120C11—C9—C10119.02 (11)
C5—C4—C3120.82 (12)C11—C9—C8121.51 (11)
C5—C4—H4120C10—C9—C8119.47 (11)
C3—C4—H4120C11i—C10—C9120.70 (11)
C4—C5—C6119.27 (12)C11i—C10—H10120
C4—C5—H5120C9—C10—H10120
C6—C5—H5120C10i—C11—C9120.28 (11)
C1—C6—C5121.23 (12)C10i—C11—H11120
C1—C6—H6119C9—C11—H11120
C5—C6—H6119C8—N1—C1119.56 (10)
O1—C7—H7A110C2—O1—C7116.93 (10)
C6—C1—C2—O1176.81 (10)N1—C8—C9—C111.75 (17)
N1—C1—C2—O17.20 (15)N1—C8—C9—C10178.74 (11)
C6—C1—C2—C31.74 (17)C11—C9—C10—C11i0.18 (19)
N1—C1—C2—C3174.24 (11)C8—C9—C10—C11i179.70 (11)
O1—C2—C3—C4177.67 (12)C10—C9—C11—C10i0.18 (19)
C1—C2—C3—C40.75 (18)C8—C9—C11—C10i179.69 (11)
C2—C3—C4—C50.9 (2)C9—C8—N1—C1175.21 (10)
C3—C4—C5—C61.5 (2)C6—C1—N1—C844.03 (16)
C2—C1—C6—C51.12 (17)C2—C1—N1—C8140.16 (11)
N1—C1—C6—C5174.66 (11)C3—C2—O1—C76.27 (18)
C4—C5—C6—C10.51 (19)C1—C2—O1—C7172.21 (12)
Symmetry code: (i) x+1, y, z+2.
(III) (E,E)-1,4-bis(3-iodophenyl)-2,3-diazabuta-1,3-diene top
Crystal data top
C14H10I2N2Dx = 2.195 Mg m3
Mr = 460.04Melting point = 148–150 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.1216 (4) ÅCell parameters from 3299 reflections
b = 15.2474 (16) Åθ = 2.3–27.5°
c = 11.0751 (12) ŵ = 4.50 mm1
β = 90.707 (2)°T = 173 K
V = 695.95 (12) Å3Needle, yellow
Z = 20.50 × 0.15 × 0.15 mm
F(000) = 428
Data collection top
Siemens PLATFORM/SMART CCD area-detector
diffractometer
1615 independent reflections
Radiation source: normal-focus sealed tube1542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
h = 55
Tmin = 0.293, Tmax = 0.509k = 1919
8140 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0109P)2 + 0.3499P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.004
1615 reflectionsΔρmax = 0.40 e Å3
83 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0213 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7633 (4)0.86481 (11)0.67086 (16)0.0217 (3)
C20.6408 (4)0.78630 (11)0.62329 (16)0.0214 (3)
H20.52360.78620.54890.026*
C30.6919 (4)0.70900 (11)0.68555 (16)0.0209 (3)
C40.8590 (5)0.70748 (12)0.79623 (17)0.0256 (4)
H40.88880.65410.83910.031*
C50.9799 (5)0.78548 (13)0.84180 (17)0.0276 (4)
H51.09430.78550.91680.033*
C60.9367 (5)0.86358 (12)0.77989 (17)0.0262 (4)
H61.02530.91640.81170.031*
C70.7082 (5)0.94892 (12)0.60949 (17)0.0250 (4)
H70.82440.99930.63630.030*
I10.51243 (3)0.591153 (7)0.613685 (11)0.02654 (7)
N10.5084 (4)0.95618 (10)0.52113 (15)0.0276 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (8)0.0186 (8)0.0218 (8)0.0004 (7)0.0028 (7)0.0001 (7)
C20.0239 (8)0.0191 (8)0.0212 (8)0.0020 (7)0.0007 (6)0.0005 (6)
C30.0215 (8)0.0165 (8)0.0247 (9)0.0001 (6)0.0020 (7)0.0011 (6)
C40.0304 (9)0.0226 (9)0.0237 (9)0.0050 (7)0.0005 (7)0.0037 (7)
C50.0321 (10)0.0291 (10)0.0216 (8)0.0038 (8)0.0053 (7)0.0021 (7)
C60.0283 (9)0.0225 (9)0.0277 (9)0.0007 (7)0.0001 (7)0.0049 (7)
C70.0319 (9)0.0162 (8)0.0271 (9)0.0015 (7)0.0045 (7)0.0012 (7)
I10.02734 (9)0.01759 (8)0.03468 (10)0.00227 (4)0.00077 (5)0.00046 (4)
N10.0364 (9)0.0165 (7)0.0298 (8)0.0002 (7)0.0003 (7)0.0026 (6)
Geometric parameters (Å, º) top
C1—C61.396 (3)C4—H40.95
C1—C21.400 (2)C5—C61.384 (3)
C1—C71.468 (2)C5—H50.95
C2—C31.380 (2)C6—H60.95
C2—H20.95C7—N11.276 (3)
C3—C41.399 (3)C7—H70.95
C3—I12.0964 (17)N1—N1i1.417 (3)
C4—C51.382 (3)
C6—C1—C2119.52 (16)C3—C4—H4121
C6—C1—C7119.14 (16)C4—C5—C6121.05 (17)
C2—C1—C7121.33 (16)C4—C5—H5120
C3—C2—C1119.35 (16)C6—C5—H5120
C3—C2—H2120C5—C6—C1120.08 (17)
C1—C2—H2120C5—C6—H6120
C2—C3—C4121.49 (16)C1—C6—H6120
C2—C3—I1119.42 (13)N1—C7—C1121.71 (17)
C4—C3—I1119.09 (13)N1—C7—H7119
C5—C4—C3118.49 (17)C1—C7—H7119
C5—C4—H4121C7—N1—N1i111.33 (19)
C6—C1—C2—C30.4 (3)C4—C5—C6—C11.3 (3)
C7—C1—C2—C3178.47 (16)C2—C1—C6—C51.6 (3)
C1—C2—C3—C41.1 (3)C7—C1—C6—C5177.32 (17)
C1—C2—C3—I1179.43 (13)C6—C1—C7—N1168.26 (18)
C2—C3—C4—C51.3 (3)C2—C1—C7—N110.6 (3)
I1—C3—C4—C5179.15 (14)C1—C7—N1—N1i178.61 (18)
C3—C4—C5—C60.1 (3)
Symmetry code: (i) x+1, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds