Download citation
Download citation
link to html
In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2}n, the coordination environment of the cationic CuII atom is distorted octa­hedral, formed by pairs of symmetry-equivalent 1,2-bis­(pyridin-4-yl)diazene ligands, bridging 1,2-bis­(pyridin-4-yl)diazene ligands and two non-equivalent water mol­ecules. The 1,2-bis­(pyridin-4-yl)diazene mol­ecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the CuII atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium–strong O—H...O hydrogen bonds with graph set R44(12). The water mol­ecules, which are coordinated to the CuII atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A π–π inter­action [centroid–centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C—H...O inter­actions also occur.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813012269/fb2274sup1.cif
Contains datablocks global, I

mol

MDL mol file https://doi.org/10.1107/S1600536813012269/fb2274Isup2.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813012269/fb2274Isup3.hkl
Contains datablock I

CCDC reference: 954374

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in solvent or counterion
  • R factor = 0.043
  • wR factor = 0.106
  • Data-to-parameter ratio = 10.0

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level A PLAT927_ALERT_1_A Reported and Calculated wR2 Differ by ......... -0.1336
Author Response: The structure was refined by JANA2006 which uses a different weighting scheme.
PLAT928_ALERT_1_A Reported and Calculated    S value   Differ by .     -3.362
Author Response: The structure was refined by JANA2006 which uses a different weighting scheme.

Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for N3 -- C7 .. 8.0 su PLAT230_ALERT_2_B Hirshfeld Test Diff for N6 -- C15 .. 20.0 su PLAT230_ALERT_2_B Hirshfeld Test Diff for C2 -- C15 .. 8.5 su PLAT234_ALERT_4_B Large Hirshfeld Difference Cl -- O4B .. 0.28 Ang. PLAT926_ALERT_1_B Reported and Calculated R1 Differ by ......... -0.0250 PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW .gt. 10 Outliers . 15
Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 2.670 PLAT230_ALERT_2_C Hirshfeld Test Diff for N4 -- C10 .. 6.0 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 -- C15 .. 5.5 su PLAT234_ALERT_4_C Large Hirshfeld Difference Cl -- O1B .. 0.17 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference Cl -- O3B .. 0.20 Ang. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cu1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of Cl PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.6 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 6 PLAT976_ALERT_2_C Negative Residual Density at 0.58A from N6 . -0.53 eA-3
Alert level G PLAT004_ALERT_5_G Info: Polymeric Structure Found with Dimension . 1 PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ ? PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT231_ALERT_4_G Hirshfeld Test (Solvent) Cl -- O2A .. 6.9 su PLAT302_ALERT_4_G Note: Anion/Solvent Disorder ................... 80 Perc. PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 14 PLAT794_ALERT_5_G Note: Tentative Bond Valency for Cu1 (II) 2.10 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 22 PLAT960_ALERT_3_G Number of Intensities with I .LT. - 2*sig(I) ... 10
2 ALERT level A = Most likely a serious problem - resolve or explain 6 ALERT level B = A potentially serious problem, consider carefully 10 ALERT level C = Check. Ensure it is not caused by an omission or oversight 10 ALERT level G = General information/check it is not something unexpected 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 9 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

In our studies of new inclusion-coordination compounds with cyclodextrins, we have employed Cu(II) coordination compounds with 1,2-bis(pyridin-4-yl)diazene (Brown & Granneman, 1975). However, we obtained as a side product the title structure which is a new polymer formed by Cu(II) and 1,2-bis(pyridin-4-yl)diazene (Azpy), namely [Cu(C10N4H8)3(H2O)2]2n+]n.2n(ClO4)- (Fig. 1). It is important to point out that the title structure is a product of a side reaction with no more than 5% yield. Water which was present in the reaction media allowed the crystallization of a polymeric structure with one-dimensional fishbone-type chain architecture (Fig. 2).

The polymeric motif present in the title structure is isomorphous to that of Zn-1D polymeric motif [Zn(C10N4H8)3(OH2)2]n2n+ which is present in catena-((µ2-1,2-bis(pyridin-4-yl)diazene-N,N')-diaqua-bis(1,2-bis(pyridin-4-yl)diazene-N)-zinc bis(hexafluorophosphate) bis(1,2-bis(pyridin-4-yl)diazene) tetrahydrate) (Noro et al., 2005). However, this polymeric motif in the Zn-compound is partly disodered in the position which corresponds to the bond N6—N6i (symmetry code i: -x + 3/2, -y + 1/2, 1 - z) in the title molecule (see below).

There are also known another related compounds that contain Cu(II), Azpy, water and other ligands in their metal coordination sphere such as tosylate (Kondo et al., 2006) or molecules resulting from condensation reactions between 2,6-diformil-p-cresol with 1,3-diaminopropane and 2-aminoethyl-pyridine (Marinescu et al. 2010). Specifically [Cu(C10N4H8)2(H2O)2]2n+n (He et al. 2000), which is present in catena-(bis(µ2-trans-4,4'-azopyridine-N,N')-copper dinitrate dihydrate, is a related 2-D motif, in which the Cu(II) is present in an octahedral enviroment: in its axial positions there are two water molecules, while in the equatorial plane is occupied by four Azpy ligands, this motif is also present in the title structure.

In the title compound, [Cu(C10N4H8)3(H2O)2]2n+]n.2n(ClO4)-, the cation Cu(II) is situated on the two fold-axis in the site 4e. The symmetry independent atoms are shown in Fig. 1. The coordination sphere of Cu(II) is octahedral and it is formed by pairs of the symmetry equivalent bis(1,2-bis(pyridin-4-yl)diazene, 1,2-bis(pyridin-4-yl)diazene and two non equivalent water molecules.

The 1,2-bis(pyridin-4-yl)diazene molecules form polymeric chains via azo-bonds formed between the symmetry equivalents of N6. These azo-bonds are situated about the inversion centres in 4d sites. These chains are parallel to (-1 0 1) (Fig. 2).

The perchlorate molecules are disordered and are acceptors of the water hydrogen bonds of a moderate strength. [For categorization of the hydrogen bonds, see Gilli & Gilli (2009).] The water molecules which are coordinated to Cu(II) form together with the perchlorates columns which are parallel to the monoclinic axis b (Fig. 3). The pertinent graph set motifs of the H atoms which are donated to the disordered perchlorate O atoms are R44(12).

It is of interest that the bond length N3—N4 measures 1.209 (4) which is considerably longer than 1.166 (4) Å which is the distance between N6—N6i (symmetry code i: -x + 3/2, -y + 1/2, -z + 2). This seems to be quite a large difference. On the other hand the adjacent bond-lengths C7—N3 and C10—N4 measure 1.448 (4) and 1.463 (4) Å while C15—N6 is 1.483 (3) Å long. The Cambridge Crystallographic Database (Allen, 2002; version CSD 5.33 with 586977 hits) has yielded 43 fragments of Caryl—NN—Caryl where N atoms are acyclic and are bonded just to two other atoms. The majority of the hits yielded NN distances between 1.23–1.26 Å while the corresponding C—N distances were in the range 1.40–1.44 Å. There were other four hits with NN distances between 1.17–1.19 Å while the corresponding C—C distances were between 1.47–1.51 Å. There is an indirect proportion between the C—N and NN distances in the given fragment. Thus the present result is in accordance with the previous observations. However, it is worthwhile stressing that the pairs of atoms N3-C7, N6-C15 and C2-C15 are in disagreement with the Hirshfeld test (Hirshfeld, 1009) as indicate the alerts generated by PLATON (Spek, 2009).

Another interesting point are unequal Cu—Owater bond lengths: Cu—O1 and Cu—O1 are 2.403 (3) and 2.522 (3) Å despite of the fact that equatorial Cu—N1 and Cu—N2 are almost the same 2.035 (2) and 2.036 (2) Å. A search in the Cambridge Crystallographic Database (Allen, 2002; version CSD 5.33 with 586977 hits) has shown that such structures are found relatively rarely.

There is also present a π-electron ring···π-electron ring interaction in the structure (Fig. 4). It takes place between the rings N2//C5..C6//C7//C8//C9 and the symmetry equivalent of N5//C12//C11//C10//C14 related by the operation 3/2 - x, 1/2 - y, 1 - z. The distance between the pertinent centroids is 3.913 (2) Å (Spek, 2009). Moreover, there are also weak C—H···O interactions in the structure (see Table 1).

Related literature top

For the synthesis of trans-4,4'-azobispyridine, see: Brown & Granneman (1975). For the synthesis and structures of other polymers with CuI or CuII and trans-4,4'-azobispyridine, see: He et al. (2000); Kondo et al. (2006); Marinescu et al. (2010). For compounds with trans-4,4'-azobispyridine with other cations, including one with an isomorphous ZnII polymeric motif, see: Noro et al. (2005). For the categorization of the hydrogen bonds, see: Gilli & Gilli (2009). For a description of the Cambridge Crystallographic Database, see: Allen (2002). For the Hirshfeld test, see: Hirshfeld (1976); Spek (2009).

Experimental top

Trans-4,4'-azobispiridine was prepared according to literature method (Brown & Granneman, 1975). β-Cyclodextrin (1 mmol) was dissolved in 60 ml of water, trans-4,4'-azobispiridine (1 mmol) was added to this solution and the mixture was heated kept at 40 °C for 5 h approximately while stirring. After this time, the volume decreased to 44.0 ml. Then the solution was left to cool down to room temperature without stirring. An aliquot of 4.2 ml of 0.049 M aqueous solution of Cu(ClO4).6H2O (corresponding to 0.21 mmol of Cu(ClO4).6H2O) was slowly added without stirring to 22 ml of 0.0005 M β-cyclodextrin: trans-4,4'-azobispiridine water solution. Adding of Cu(ClO4).6H2O was stopped when precipitation of a violet powder appeared. Dark prismatic violet crystals suitable for X-ray analysis were obtained letting the solution to stand for three weeks. The longest dimensions of the obtained crystals varied between 0.2 - 0.5 mm. IR (KBr, cm-1): 3337 (m), 3099 (m), 1609 (m), 1589 (m), 1566 (w), 1413 (m), 1224 (w), 1098 (s), 845 (m), 622 (m), 571 (m), 624 (w).)

Refinement top

All the H atoms were discernible in the difference electron density map. The H atoms attached to the aryl carbons have been treated in the riding atom approximation with C—H =0.95 Å and Uiso(Haryl)=1.2Ueq(Caryl). Since both water molecules are situated on the crystallographic twofold axis only one symmetry independent water hydrogen is pertinent to each oxygen. Each of these H atoms have been restrained to the water O atoms by the distance restraint 0.860 (1) Å while Uiso(Hwater oxygen)=1.5Ueq(Owater oxygen).

The O atoms of the perchlorate turned out to be disordered. The perchorate O atoms' electron density has been modelled by a split model in two positions with the constrained occupation of each of them. (The occupational parameters turned out to equal to 0.464 (9) and 0.536 (9).) The Cl—O distances were restrained to 1.440 (1) Å. The angles O—Cl—O were restrained to 109.47 (1)°.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2010).; software used to prepare material for publication: JANA2006 (Petříček et al., 2006) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title structure of catena-Poly[[[diaquabis[1,2-bis(pyridin-4-yl)diazene]copper(II)]-µ-1,2-bis(pyridin-4-yl)diazene] bis(perchlorate)] with the atomic labelling scheme. The displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The cationic polymeric motif in crystal packing of the compound catena-Poly[[[diaquabis[1,2-bis(pyridin-4-yl)diazene]copper(II)]-µ-1,2-bis(pyridin-4-yl)diazene] bis(perchlorate)]. Symmetry codes (i) = -x + 1, y, z + 3/2; (ii) = -x + 3/2, -y + 1/2, -z + 2.
[Figure 3] Fig. 3. The intermolecular hydrogen bonds (O-H···O) donated by the water hydrogen atoms and accepted by the perchlorate O atoms. Symmetry codes: i: x, 1 + y, z; ii: 1 - x, y, 3/2 - z; iii: 1 - x, 1 - y, 3/2 - z. (See also Table 1).
[Figure 4] Fig. 4. π-electron-ring—π-electron ring interaction between the rings N2//C5//C6//C7//C8//C9 (Cg1) and N5'//C13'//C14'//C10'//C11'//C12' (Cg2'). The primed atoms are related by the operation 3/2 - x, 1/2 - y, 1 - z.
catena-Poly[[[diaquabis[1,2-bis(pyridin-4-yl)diazene]copper(II)]-µ-1,2-bis(pyridin-4-yl)diazene] bis(perchlorate)] top
Crystal data top
[Cu(C10H8N4)3(H2O)2](ClO4)2F(000) = 1740
Mr = 851.29Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10880 reflections
a = 20.5028 (6) Åθ = 3.1–26.3°
b = 9.5882 (4) ŵ = 0.81 mm1
c = 18.7797 (6) ÅT = 293 K
β = 96.629 (3)°Prism, violet
V = 3667.1 (2) Å30.38 × 0.37 × 0.29 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Gemini
diffractometer
3738 independent reflections
Radiation source: X-ray tube2902 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009) and Clark & Reid (1995)]
h = 2525
Tmin = 0.951, Tmax = 0.965k = 1111
27735 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.043Secondary atom site location: difference Fourier map
wR(F2) = 0.106Hydrogen site location: difference Fourier map
S = 2.67H atoms treated by a mixture of independent and constrained refinement
3738 reflectionsWeighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
373 parameters(Δ/σ)max = 0.044
22 restraintsΔρmax = 0.76 e Å3
57 constraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C10H8N4)3(H2O)2](ClO4)2V = 3667.1 (2) Å3
Mr = 851.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.5028 (6) ŵ = 0.81 mm1
b = 9.5882 (4) ÅT = 293 K
c = 18.7797 (6) Å0.38 × 0.37 × 0.29 mm
β = 96.629 (3)°
Data collection top
Oxford Diffraction Xcalibur Gemini
diffractometer
3738 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009) and Clark & Reid (1995)]
2902 reflections with I > 3σ(I)
Tmin = 0.951, Tmax = 0.965Rint = 0.026
27735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04322 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 2.67Δρmax = 0.76 e Å3
3738 reflectionsΔρmin = 0.47 e Å3
373 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50.24717 (4)0.750.03398 (14)
Cl0.54953 (8)0.75644 (13)0.60764 (6)0.0956 (5)
N20.56205 (9)0.25720 (18)0.67295 (10)0.0359 (6)
N10.57826 (9)0.24420 (19)0.82723 (10)0.0378 (6)
C150.68446 (12)0.2241 (3)0.93132 (15)0.0513 (9)
C10.58515 (12)0.3335 (3)0.88204 (12)0.0457 (8)
H1c10.5536120.4024150.8846130.0548*
C20.63800 (13)0.3267 (3)0.93548 (13)0.0531 (9)
H1c20.6418960.3900840.9732130.0637*
N30.67222 (12)0.3481 (3)0.50343 (13)0.0614 (9)
C50.55314 (11)0.1796 (3)0.61320 (12)0.0431 (8)
H1c50.5219180.1088410.6105310.0517*
N60.74448 (13)0.2009 (3)0.98199 (13)0.0652 (10)
C60.58805 (13)0.1996 (3)0.55559 (14)0.0503 (9)
H1c60.5807470.1440850.5148570.0604*
C90.60886 (11)0.3549 (3)0.67708 (13)0.0463 (9)
H1c90.616850.4068850.7189930.0556*
C40.62437 (11)0.1462 (3)0.82472 (13)0.0525 (9)
H1c40.6203450.0846690.78620.063*
N40.66166 (12)0.2783 (3)0.44975 (14)0.0626 (9)
C110.74683 (13)0.4261 (3)0.39990 (14)0.0571 (10)
H1c110.7622090.461140.4448940.0685*
C70.63456 (12)0.3057 (3)0.56043 (14)0.0485 (9)
C100.69675 (13)0.3311 (3)0.39178 (14)0.0525 (10)
C80.64559 (12)0.3817 (3)0.62202 (14)0.0534 (10)
H1c80.6776260.4507580.6266480.064*
C30.67725 (12)0.1318 (3)0.87591 (14)0.0605 (11)
H1c30.7075480.0605080.8728580.0726*
N50.75455 (13)0.4230 (3)0.27360 (13)0.0724 (11)
C120.77402 (15)0.4687 (3)0.33930 (17)0.0666 (12)
H1c120.808040.5333350.3450320.0799*
C130.70650 (17)0.3312 (4)0.26799 (16)0.0761 (13)
H1c130.691990.297560.2224560.0913*
C140.67590 (16)0.2808 (3)0.32486 (16)0.0681 (12)
H1c140.6423930.2151450.3177540.0817*
O20.50.0034 (3)0.750.0688 (12)
O10.50.5102 (3)0.750.0725 (12)
H1o20.4866 (17)0.055 (3)0.7829 (14)0.1033*
H1o10.4862 (18)0.567 (3)0.7805 (16)0.1088*
O1a0.5232 (6)0.8609 (9)0.5573 (5)0.161 (7)0.464 (9)
O2a0.5038 (5)0.6425 (9)0.6076 (7)0.238 (11)0.464 (9)
O3a0.5602 (4)0.8164 (12)0.6783 (3)0.195 (5)0.464 (9)
O4a0.6109 (2)0.7059 (14)0.5874 (5)0.188 (6)0.464 (9)
O1b0.4963 (4)0.8525 (11)0.6130 (6)0.148 (4)0.536 (9)
O2b0.5246 (5)0.6320 (6)0.5712 (6)0.115 (4)0.536 (9)
O3b0.5796 (6)0.7209 (11)0.6784 (3)0.195 (6)0.536 (9)
O4b0.5976 (5)0.8204 (13)0.5679 (6)0.314 (13)0.536 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0240 (2)0.0517 (3)0.0246 (2)00.00415 (14)0
Cl0.1544 (12)0.0710 (8)0.0605 (6)0.0011 (9)0.0092 (7)0.0064 (6)
N20.0294 (9)0.0468 (12)0.0306 (10)0.0027 (8)0.0006 (8)0.0010 (9)
N10.0280 (9)0.0549 (12)0.0288 (10)0.0006 (9)0.0047 (8)0.0017 (9)
C150.0304 (13)0.074 (2)0.0460 (15)0.0075 (12)0.0122 (11)0.0231 (14)
C10.0436 (14)0.0534 (16)0.0369 (13)0.0036 (12)0.0084 (11)0.0011 (12)
C20.0629 (17)0.0571 (17)0.0352 (14)0.0217 (14)0.0115 (12)0.0011 (12)
N30.0730 (16)0.0581 (15)0.0559 (15)0.0015 (12)0.0198 (13)0.0023 (12)
C50.0411 (13)0.0502 (15)0.0374 (14)0.0062 (11)0.0025 (11)0.0021 (12)
N60.0789 (17)0.0660 (18)0.0487 (15)0.0019 (15)0.0011 (13)0.0060 (11)
C60.0518 (15)0.0614 (17)0.0381 (14)0.0020 (13)0.0065 (12)0.0049 (13)
C90.0402 (13)0.0532 (16)0.0455 (15)0.0074 (12)0.0049 (11)0.0033 (12)
C40.0367 (13)0.079 (2)0.0399 (14)0.0137 (13)0.0047 (11)0.0051 (13)
N40.0620 (16)0.0761 (18)0.0512 (15)0.0010 (12)0.0131 (12)0.0004 (13)
C110.0693 (18)0.0577 (17)0.0465 (16)0.0105 (15)0.0160 (14)0.0007 (13)
C70.0470 (15)0.0539 (15)0.0472 (16)0.0044 (13)0.0167 (12)0.0134 (13)
C100.0548 (16)0.0570 (18)0.0488 (16)0.0103 (13)0.0197 (13)0.0080 (13)
C80.0500 (15)0.0526 (17)0.0596 (17)0.0114 (12)0.0149 (13)0.0005 (13)
C30.0384 (14)0.090 (2)0.0498 (16)0.0141 (14)0.0076 (12)0.0025 (16)
N50.0883 (19)0.0797 (19)0.0543 (16)0.0033 (16)0.0298 (14)0.0107 (14)
C120.0715 (19)0.0575 (19)0.075 (2)0.0012 (15)0.0260 (17)0.0043 (16)
C130.092 (2)0.093 (3)0.0451 (18)0.001 (2)0.0146 (17)0.0001 (17)
C140.068 (2)0.084 (2)0.0537 (19)0.0058 (16)0.0123 (15)0.0019 (16)
O20.093 (2)0.0504 (18)0.065 (2)00.0167 (17)0
O10.089 (2)0.0526 (19)0.078 (2)00.0163 (17)0
O1a0.281 (17)0.078 (7)0.097 (9)0.032 (9)0.083 (10)0.037 (7)
O2a0.35 (2)0.111 (12)0.283 (19)0.030 (12)0.177 (17)0.059 (10)
O3a0.328 (12)0.178 (10)0.077 (6)0.159 (9)0.012 (6)0.026 (6)
O4a0.253 (8)0.214 (14)0.116 (7)0.122 (9)0.096 (7)0.020 (6)
O1b0.232 (9)0.091 (5)0.095 (7)0.042 (6)0.086 (6)0.032 (5)
O2b0.112 (5)0.066 (5)0.177 (10)0.016 (4)0.051 (7)0.032 (6)
O3b0.309 (15)0.148 (9)0.115 (7)0.023 (9)0.029 (8)0.006 (6)
O4b0.57 (3)0.157 (13)0.270 (19)0.102 (17)0.26 (2)0.088 (12)
Geometric parameters (Å, º) top
Cu1—N22.0364 (19)N4—C101.463 (4)
Cu1—N2i2.0364 (19)C11—H1c110.93
Cu1—N12.0350 (17)C11—C101.368 (4)
Cu1—N1i2.0350 (17)C11—C121.385 (4)
Cu1—O22.403 (3)C7—C81.363 (4)
Cu1—O12.522 (3)C10—C141.368 (4)
N2—C51.341 (3)C8—H1c80.93
N2—C91.337 (3)C3—H1c30.93
N1—C11.334 (3)N5—C121.327 (4)
N1—C41.337 (3)N5—C131.316 (5)
C15—C21.378 (4)C12—H1c120.93
C15—N61.483 (3)C13—H1c130.93
C15—C31.361 (4)C13—C141.386 (5)
C1—H1c10.93C14—H1c140.93
C1—C21.391 (3)O2—H1o20.86 (3)
C2—H1c20.93O2—H1o2i0.86 (3)
N3—N41.209 (4)O1—H1o10.86 (3)
N3—C71.448 (4)O1—H1o1i0.86 (3)
C5—H1c50.93Cl—O1a1.439 (9)
C5—C61.378 (4)Cl—O2a1.440 (10)
N6—N6ii1.166 (4)Cl—O3a1.439 (7)
C6—H1c60.93Cl—O4a1.440 (7)
C6—C71.390 (4)Cl—O1b1.440 (10)
C9—H1c90.93Cl—O2b1.440 (8)
C9—C81.372 (4)Cl—O3b1.440 (6)
C4—H1c40.93Cl—O4b1.440 (11)
C4—C31.370 (3)
N2—Cu1—N2i174.58 (7)N3—N4—C10111.9 (2)
N2—Cu1—N190.07 (7)H1c11—C11—C10120.8874
N2—Cu1—N1i90.01 (7)H1c11—C11—C12120.8893
N2—Cu1—O292.71 (5)C10—C11—C12118.2 (3)
N2—Cu1—O187.29 (5)N3—C7—C6125.3 (2)
N2i—Cu1—N190.01 (7)N3—C7—C8115.3 (2)
N2i—Cu1—N1i90.07 (7)C6—C7—C8119.4 (3)
N2i—Cu1—O292.71 (5)N4—C10—C11125.1 (2)
N2i—Cu1—O187.29 (5)N4—C10—C14115.7 (3)
N1—Cu1—N1i178.40 (8)C11—C10—C14119.2 (3)
N1—Cu1—O289.20 (5)C9—C8—C7119.2 (2)
N1—Cu1—O190.80 (5)C9—C8—H1c8120.3901
N1i—Cu1—O289.20 (5)C7—C8—H1c8120.3912
N1i—Cu1—O190.80 (5)C15—C3—C4118.6 (3)
O2—Cu1—O1180.0 (5)C15—C3—H1c3120.7243
C5—N2—C9117.7 (2)C4—C3—H1c3120.7229
C1—N1—C4117.74 (19)C12—N5—C13115.9 (3)
C2—C15—N6126.8 (2)C11—C12—N5124.1 (3)
C2—C15—C3119.5 (2)C11—C12—H1c12117.969
N6—C15—C3113.7 (2)N5—C12—H1c12117.9667
N1—C1—H1c1118.9506N5—C13—H1c13117.5416
N1—C1—C2122.1 (2)N5—C13—C14124.9 (3)
H1c1—C1—C2118.9493H1c13—C13—C14117.5406
C15—C2—C1118.6 (2)C10—C14—C13117.6 (3)
C15—C2—H1c2120.7066C10—C14—H1c14121.1841
C1—C2—H1c2120.7056C13—C14—H1c14121.1852
N4—N3—C7113.7 (2)H1o2—O2—H1o2i110 (3)
N2—C5—H1c5118.4381H1o1—O1—H1o1i102 (3)
N2—C5—C6123.1 (2)O1a—Cl—O2a109.5 (6)
H1c5—C5—C6118.4384O1a—Cl—O3a109.5 (6)
C15—N6—N6ii110.0 (2)O1a—Cl—O4a109.5 (7)
C5—C6—H1c6121.132O2a—Cl—O3a109.5 (6)
C5—C6—C7117.7 (2)O2a—Cl—O4a109.5 (6)
H1c6—C6—C7121.1303O3a—Cl—O4a109.5 (5)
N2—C9—H1c9118.6589O1b—Cl—O2b109.5 (6)
N2—C9—C8122.7 (2)O1b—Cl—O3b109.5 (6)
H1c9—C9—C8118.6588O1b—Cl—O4b109.5 (6)
N1—C4—H1c4118.2663O2b—Cl—O3b109.5 (6)
N1—C4—C3123.5 (2)O2b—Cl—O4b109.5 (7)
H1c4—C4—C3118.2675O3b—Cl—O4b109.5 (6)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+3/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o2···O1biii0.86 (3)2.14 (3)2.913 (12)150 (3)
O2—H1o2···O3aiii0.86 (3)1.77 (3)2.589 (10)158 (3)
O1—H1o1···O2ai0.86 (3)2.21 (3)2.969 (13)147 (3)
O1—H1o1···O3bi0.86 (3)2.20 (3)3.010 (11)157 (3)
C5—H1C5···O1biv0.932.513.346 (11)149
C13—H1c13···O3bv0.932.362.973 (11)123
Symmetry codes: (i) x+1, y, z+3/2; (iii) x+1, y1, z+3/2; (iv) x, y1, z; (v) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N4)3(H2O)2](ClO4)2
Mr851.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.5028 (6), 9.5882 (4), 18.7797 (6)
β (°) 96.629 (3)
V3)3667.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.38 × 0.37 × 0.29
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009) and Clark & Reid (1995)]
Tmin, Tmax0.951, 0.965
No. of measured, independent and
observed [I > 3σ(I)] reflections
27735, 3738, 2902
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 2.67
No. of reflections3738
No. of parameters373
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.76, 0.47

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2010)., JANA2006 (Petříček et al., 2006) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o2···O1bi0.86 (3)2.14 (3)2.913 (12)150 (3)
O2—H1o2···O3ai0.86 (3)1.77 (3)2.589 (10)158 (3)
O1—H1o1···O2aii0.86 (3)2.21 (3)2.969 (13)147 (3)
O1—H1o1···O3bii0.86 (3)2.20 (3)3.010 (11)157 (3)
C5—H1C5···O1biii0.932.513.346 (11)149
C13—H1c13···O3biv0.932.362.973 (11)123
Symmetry codes: (i) x+1, y1, z+3/2; (ii) x+1, y, z+3/2; (iii) x, y1, z; (iv) x, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds