Download citation
Download citation
link to html
In the title mol­ecule, C21H20N2O4, the dihedral angle between the phenol ring and the isoindole-1,3-dione mean plane is 69.79 (6)°. The cyclo­hexane ring adopts a chair conformation. Weak inter­molecular O—H...O and O—H...N inter­actions feature as part of the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811019787/ff2012sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811019787/ff2012Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536811019787/ff2012Isup3.cml
Supplementary material

CCDC reference: 834265

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.041
  • wR factor = 0.132
  • Data-to-parameter ratio = 18.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No '_symmetry_space_group_name_Hall' Given ..... ? PLAT411_ALERT_2_C Short Inter H...H Contact H4A .. H16A .. 2.11 Ang. PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 34 A   3
Alert level G REFLT03_ALERT_4_G ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases. From the CIF: _diffrn_reflns_theta_max 28.34 From the CIF: _reflns_number_total 4727 Count of symmetry unique reflns 2683 Completeness (_total/calc) 176.18% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2044 Fraction of Friedel pairs measured 0.762 Are heavy atom types Z>Si present no PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 2 PLAT791_ALERT_4_G Note: The Model has Chirality at C8 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C13 (Verify) S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1 PLAT917_ALERT_2_G The FCF is likely NOT based on a BASF/TWIN Flack !
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Salen-type Schiff base ligands incorporating two different benzylidene moieties and a diamine backbone were synthesized in high yield under mild conditions via a stepwise approach. In the synthesis of salen-type Schiff base ligands (Campbell et al., 2001), the compound (I) was a significant intermediate product. Here we report its crystal structure.

Related literature top

For details of the synthesis, see: Berkessel et al. (2006); Ren & Fu (2009). For background to the synthesis of salen-type Schiff base ligands, see: Campbell & Nguyen (2001).

Experimental top

Compound (I) was synthesized according to the procedure of Berkessel et al. (2006); Ren et al. (2009). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of ethanol and acetonitrile (1:1) by slow evaporation at room temperature.

Refinement top

All the hydrogen atoms were placed at the geometrical positions with C—H = 0.93 Å(CH), 0.97Å (CH), 0.97Å (CH2), and refined as riding, with Uiso(H) = 1.2 Ueq(C) and Uiso(H) = 1~1.4 Ueq(O). A restrained refinement comment "DFIX" is used to restraint the distance of O3 and H3a.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 30% probability displacement ellipsoids.
2-{(1S*,2S*)-2-[(E)-(2,4- Dihydroxybenzylidene)amino]cyclohexyl}isoindoline-1,3-dione top
Crystal data top
C21H20N2O4Dx = 1.275 Mg m3
Mr = 364.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 34622 reflections
a = 9.0247 (3) Åθ = 2.1–28.3°
b = 11.7748 (4) ŵ = 0.09 mm1
c = 17.8585 (6) ÅT = 296 K
V = 1897.72 (11) Å3Block, colourless
Z = 40.20 × 0.20 × 0.20 mm
F(000) = 768
Data collection top
Bruker APEX CCD area-detector
diffractometer
4727 independent reflections
Radiation source: fine-focus sealed tube4317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.982, Tmax = 0.982k = 1515
34622 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4727 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C21H20N2O4V = 1897.72 (11) Å3
Mr = 364.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0247 (3) ŵ = 0.09 mm1
b = 11.7748 (4) ÅT = 296 K
c = 17.8585 (6) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
4727 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4317 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.982Rint = 0.023
34622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.26 e Å3
4727 reflectionsΔρmin = 0.32 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30161 (15)0.36416 (11)0.06573 (7)0.0377 (3)
C20.42917 (15)0.34393 (11)0.02192 (7)0.0388 (3)
H2B0.44450.27210.00170.047*
C30.53102 (15)0.42835 (11)0.00866 (7)0.0405 (3)
C40.5076 (2)0.53951 (12)0.03634 (11)0.0576 (4)
H4A0.57590.59670.02620.069*
C50.3856 (2)0.56221 (12)0.07755 (10)0.0551 (4)
H5A0.37020.63580.09480.066*
C60.28074 (16)0.47702 (11)0.09522 (7)0.0400 (3)
C70.15624 (16)0.50289 (12)0.13977 (7)0.0442 (3)
H7A0.14380.57740.15590.053*
C80.07381 (16)0.45130 (14)0.20425 (7)0.0452 (3)
H8A0.08120.53300.21410.054*
C90.21031 (18)0.4117 (2)0.16090 (8)0.0604 (4)
H9A0.21900.45540.11510.072*
H9B0.19860.33240.14740.072*
C100.3512 (2)0.4259 (3)0.20717 (11)0.0762 (6)
H10A0.43520.39730.17900.091*
H10B0.36780.50600.21690.091*
C110.3396 (2)0.3625 (3)0.28091 (10)0.0809 (7)
H11A0.42870.37510.31020.097*
H11B0.33110.28170.27130.097*
C120.2046 (2)0.4032 (2)0.32491 (9)0.0683 (5)
H12A0.19690.36080.37130.082*
H12B0.21600.48290.33720.082*
C130.06454 (17)0.38642 (13)0.27883 (7)0.0458 (3)
H13A0.05880.30540.26650.055*
C140.1428 (2)0.33206 (13)0.36431 (9)0.0524 (4)
C150.27356 (18)0.38879 (13)0.39836 (8)0.0480 (3)
C160.3843 (2)0.34711 (16)0.44396 (10)0.0667 (5)
H16A0.38450.27160.45920.080*
C170.4951 (2)0.4208 (2)0.46639 (11)0.0683 (5)
H17A0.57100.39450.49710.082*
C180.4943 (2)0.53120 (17)0.44398 (10)0.0631 (5)
H18A0.57140.57870.45850.076*
C190.38096 (18)0.57462 (14)0.39993 (10)0.0549 (4)
H19A0.37920.65070.38610.066*
C200.27078 (16)0.50062 (12)0.37739 (7)0.0432 (3)
C210.13765 (16)0.52076 (11)0.33052 (7)0.0420 (3)
N10.06951 (15)0.41440 (10)0.32197 (6)0.0446 (3)
N20.05849 (14)0.42829 (11)0.15940 (6)0.0445 (3)
O10.1041 (2)0.23425 (11)0.36929 (9)0.0804 (5)
O20.09328 (16)0.60904 (9)0.30445 (7)0.0612 (3)
O30.20554 (13)0.28623 (9)0.07975 (7)0.0560 (3)
H3A0.141 (2)0.3207 (16)0.1129 (9)0.065*
O40.65643 (13)0.41288 (9)0.02971 (7)0.0526 (3)
H4B0.665 (3)0.340 (2)0.0447 (12)0.070 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (6)0.0376 (6)0.0423 (5)0.0025 (5)0.0030 (5)0.0034 (4)
C20.0352 (6)0.0353 (5)0.0459 (5)0.0004 (5)0.0008 (5)0.0045 (5)
C30.0371 (6)0.0386 (6)0.0459 (6)0.0001 (5)0.0037 (5)0.0001 (5)
C40.0567 (9)0.0350 (6)0.0812 (10)0.0097 (6)0.0230 (8)0.0054 (6)
C50.0574 (9)0.0341 (6)0.0737 (9)0.0044 (6)0.0188 (8)0.0091 (6)
C60.0361 (6)0.0399 (6)0.0439 (5)0.0015 (5)0.0010 (5)0.0044 (5)
C70.0423 (7)0.0450 (6)0.0452 (6)0.0012 (6)0.0027 (5)0.0045 (5)
C80.0337 (6)0.0610 (8)0.0408 (5)0.0011 (6)0.0023 (5)0.0061 (5)
C90.0374 (7)0.0999 (13)0.0439 (6)0.0054 (9)0.0031 (6)0.0076 (7)
C100.0341 (8)0.130 (2)0.0648 (9)0.0055 (11)0.0019 (7)0.0189 (11)
C110.0448 (9)0.141 (2)0.0570 (9)0.0316 (12)0.0100 (7)0.0177 (10)
C120.0469 (9)0.1134 (16)0.0445 (7)0.0239 (10)0.0069 (7)0.0135 (8)
C130.0407 (7)0.0544 (7)0.0423 (6)0.0122 (6)0.0009 (5)0.0059 (5)
C140.0586 (9)0.0461 (7)0.0524 (7)0.0066 (7)0.0056 (7)0.0016 (6)
C150.0469 (8)0.0470 (7)0.0502 (6)0.0010 (6)0.0045 (6)0.0030 (5)
C160.0713 (12)0.0577 (9)0.0712 (10)0.0147 (9)0.0154 (9)0.0034 (8)
C170.0510 (9)0.0877 (13)0.0661 (9)0.0242 (9)0.0171 (8)0.0182 (9)
C180.0387 (8)0.0766 (11)0.0741 (10)0.0040 (8)0.0097 (7)0.0236 (9)
C190.0422 (8)0.0529 (8)0.0695 (9)0.0048 (7)0.0075 (7)0.0107 (7)
C200.0391 (7)0.0449 (6)0.0456 (6)0.0002 (6)0.0024 (5)0.0063 (5)
C210.0405 (7)0.0408 (6)0.0445 (6)0.0048 (5)0.0035 (5)0.0025 (5)
N10.0430 (6)0.0445 (6)0.0462 (5)0.0079 (5)0.0059 (5)0.0017 (4)
N20.0368 (6)0.0543 (6)0.0425 (5)0.0017 (5)0.0042 (4)0.0061 (4)
O10.1011 (12)0.0451 (6)0.0951 (9)0.0188 (7)0.0246 (9)0.0109 (6)
O20.0689 (8)0.0429 (5)0.0719 (6)0.0015 (5)0.0229 (6)0.0039 (5)
O30.0460 (6)0.0466 (5)0.0756 (7)0.0154 (5)0.0170 (5)0.0165 (5)
O40.0426 (6)0.0449 (5)0.0703 (6)0.0043 (4)0.0187 (5)0.0051 (5)
Geometric parameters (Å, º) top
C1—O31.2869 (16)C11—H11A0.9700
C1—C21.4122 (18)C11—H11B0.9700
C1—C61.4418 (17)C12—C131.521 (2)
C2—C31.3744 (19)C12—H12A0.9700
C2—H2B0.9300C12—H12B0.9700
C3—O41.3355 (16)C13—N11.4716 (17)
C3—C41.4150 (19)C13—H13A0.9800
C4—C51.351 (2)C14—O11.207 (2)
C4—H4A0.9300C14—N11.396 (2)
C5—C61.415 (2)C14—C151.486 (2)
C5—H5A0.9300C15—C201.369 (2)
C6—C71.4101 (19)C15—C161.380 (2)
C7—N21.2933 (19)C16—C171.383 (3)
C7—H7A0.9300C16—H16A0.9300
C8—N21.4630 (17)C17—C181.361 (3)
C8—C91.528 (2)C17—H17A0.9300
C8—C131.5377 (19)C18—C191.388 (2)
C8—H8A0.9800C18—H18A0.9300
C9—C101.525 (2)C19—C201.382 (2)
C9—H9A0.9700C19—H19A0.9300
C9—H9B0.9700C20—C211.4833 (19)
C10—C111.518 (3)C21—O21.2073 (18)
C10—H10A0.9700C21—N11.4036 (18)
C10—H10B0.9700O3—H3A0.927 (9)
C11—C121.527 (2)O4—H4B0.90 (2)
O3—C1—C2122.46 (11)H11A—C11—H11B108.1
O3—C1—C6119.88 (12)C11—C12—C13110.13 (13)
C2—C1—C6117.66 (11)C11—C12—H12A109.6
C3—C2—C1121.25 (11)C13—C12—H12A109.6
C3—C2—H2B119.4C11—C12—H12B109.6
C1—C2—H2B119.4C13—C12—H12B109.6
O4—C3—C2123.82 (12)H12A—C12—H12B108.1
O4—C3—C4115.58 (12)N1—C13—C12111.77 (10)
C2—C3—C4120.60 (12)N1—C13—C8112.77 (11)
C5—C4—C3119.66 (13)C12—C13—C8111.04 (14)
C5—C4—H4A120.2N1—C13—H13A107.0
C3—C4—H4A120.2C12—C13—H13A107.0
C4—C5—C6121.77 (13)C8—C13—H13A107.0
C4—C5—H5A119.1O1—C14—N1124.41 (16)
C6—C5—H5A119.1O1—C14—C15128.97 (17)
C7—C6—C5120.39 (12)N1—C14—C15106.61 (12)
C7—C6—C1120.61 (12)C20—C15—C16121.12 (15)
C5—C6—C1118.98 (12)C20—C15—C14107.81 (13)
N2—C7—C6123.35 (13)C16—C15—C14131.07 (15)
N2—C7—H7A118.3C17—C16—C15118.15 (17)
C6—C7—H7A118.3C17—C16—H16A120.9
N2—C8—C9108.92 (11)C15—C16—H16A120.9
N2—C8—C13109.74 (12)C18—C17—C16120.68 (17)
C9—C8—C13109.34 (13)C18—C17—H17A119.7
N2—C8—H8A109.6C16—C17—H17A119.7
C9—C8—H8A109.6C17—C18—C19121.53 (17)
C13—C8—H8A109.6C17—C18—H18A119.2
C10—C9—C8111.36 (12)C19—C18—H18A119.2
C10—C9—H9A109.4C20—C19—C18117.58 (16)
C8—C9—H9A109.4C20—C19—H19A121.2
C10—C9—H9B109.4C18—C19—H19A121.2
C8—C9—H9B109.4C15—C20—C19120.90 (14)
H9A—C9—H9B108.0C15—C20—C21108.84 (13)
C9—C10—C11111.02 (17)C19—C20—C21130.27 (14)
C9—C10—H10A109.4O2—C21—N1125.52 (13)
C11—C10—H10A109.4O2—C21—C20128.60 (13)
C9—C10—H10B109.4N1—C21—C20105.88 (11)
C11—C10—H10B109.4C14—N1—C21110.67 (11)
H10A—C10—H10B108.0C14—N1—C13121.18 (12)
C12—C11—C10110.31 (18)C21—N1—C13128.09 (12)
C12—C11—H11A109.6C7—N2—C8125.40 (13)
C10—C11—H11A109.6C1—O3—H3A103.8 (13)
C12—C11—H11B109.6C3—O4—H4B110.7 (15)
C10—C11—H11B109.6
O3—C1—C2—C3179.12 (13)C20—C15—C16—C171.7 (3)
C6—C1—C2—C30.89 (18)C14—C15—C16—C17178.88 (18)
C1—C2—C3—O4177.16 (12)C15—C16—C17—C180.0 (3)
C1—C2—C3—C42.5 (2)C16—C17—C18—C191.9 (3)
O4—C3—C4—C5178.20 (16)C17—C18—C19—C202.1 (3)
C2—C3—C4—C51.5 (3)C16—C15—C20—C191.5 (2)
C3—C4—C5—C61.1 (3)C14—C15—C20—C19178.98 (14)
C4—C5—C6—C7178.57 (16)C16—C15—C20—C21178.48 (14)
C4—C5—C6—C12.7 (3)C14—C15—C20—C211.04 (17)
O3—C1—C6—C70.4 (2)C18—C19—C20—C150.4 (2)
C2—C1—C6—C7179.62 (11)C18—C19—C20—C21179.62 (14)
O3—C1—C6—C5178.38 (14)C15—C20—C21—O2176.27 (16)
C2—C1—C6—C51.6 (2)C19—C20—C21—O23.7 (3)
C5—C6—C7—N2178.23 (14)C15—C20—C21—N13.42 (16)
C1—C6—C7—N23.0 (2)C19—C20—C21—N1176.60 (15)
N2—C8—C9—C10176.03 (17)O1—C14—N1—C21177.16 (18)
C13—C8—C9—C1056.1 (2)C15—C14—N1—C214.00 (17)
C8—C9—C10—C1156.8 (2)O1—C14—N1—C130.2 (3)
C9—C10—C11—C1257.0 (3)C15—C14—N1—C13178.65 (12)
C10—C11—C12—C1357.9 (3)O2—C21—N1—C14175.12 (16)
C11—C12—C13—N1174.55 (17)C20—C21—N1—C144.58 (16)
C11—C12—C13—C858.6 (2)O2—C21—N1—C132.0 (2)
N2—C8—C13—N156.93 (16)C20—C21—N1—C13178.30 (12)
C9—C8—C13—N1176.34 (13)C12—C13—N1—C1489.91 (19)
N2—C8—C13—C12176.74 (13)C8—C13—N1—C14144.14 (14)
C9—C8—C13—C1257.33 (18)C12—C13—N1—C2186.94 (19)
O1—C14—C15—C20179.50 (19)C8—C13—N1—C2139.01 (19)
N1—C14—C15—C201.73 (18)C6—C7—N2—C8178.75 (12)
O1—C14—C15—C160.0 (3)C9—C8—N2—C7124.08 (16)
N1—C14—C15—C16178.81 (17)C13—C8—N2—C7116.25 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.93 (1)1.69 (1)2.5656 (16)157 (2)
O4—H4B···O3i0.90 (2)1.66 (2)2.5478 (15)170 (2)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H20N2O4
Mr364.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.0247 (3), 11.7748 (4), 17.8585 (6)
V3)1897.72 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
34622, 4727, 4317
Rint0.023
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.132, 1.10
No. of reflections4727
No. of parameters251
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.927 (9)1.686 (12)2.5656 (16)157.2 (19)
O4—H4B···O3i0.90 (2)1.66 (2)2.5478 (15)170 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds