Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105038928/fg1882sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105038928/fg1882ISsup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105038928/fg1882FSsup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105038928/fg1882MSsup4.hkl |
CCDC references: 296339; 296340; 296341
The title compounds were obtained from Bachem. Crystals were grown by diffusion of acetonitrile into 40 µl of an aqueous solution containing about 1 mg of the respective peptide.
Positional parameters were refined for IS and FS amino and amide H atoms, for IS and MS water molecules and for hydroxyl groups in all structures. Other H atoms were positioned with idealized geometry and with fixed X—H distances (X = C or N) in the range 0.88–1.00 Å. Uiso(H) values were 1.2Ueq of the carrier atom, or 1.5Ueq for hydroxyl, amino and methyl groups and for water molecules. The geometries of the two independent molecules in the MS structure were constrained by mild SHELX SAME 0.008 0.012 constraints, while DFIX constraints were used for the geometries of the water molecules. Due to the low crystal quality, the final R factor is rather high for MS, and the presence of S atoms was not enough to give a reliable determination of the absolute structure; without merging of Friedel pairs, the Flack parameter (Flack, 1983) was -0.1 (2). Accordingly, 476 Friedel pairs were merged in the final refinements, as were, in the absence of significant anomalous scattering effects, 700 and 339 Friedel pairs for IS and FS, respectively. The absolute configuration was known for the purchased materials.
In a series of papers, we have focused on the crystal structures of dipeptides with two hydrophobic residues (Görbitz, 2003, and references therein). Recently, this investigation was extended to include compounds with one hydrophobic and one hydrophilic residue (Netland et al., 2004). The most interesting structure of such a mixed dipeptide is L-leucyl-L-serine (LS), which was found to form a completely new type of nanoporous structure (Görbitz et al., 2005). Glycyl-L-serine (Görbitz, 1999) and L-alanyl-L-serine (Jones et al., 1978) are not isostructural with LS. Furthermore, we have previously shown that L-valyl-L-serine crystallizes as a layered trihydrate (VS-3w) from aqueous solutions (Johansen et al., 2005), but that a nanoporous structure related, not to LS, but to the L-valyl-L-alanine family of isostructural dipeptides (Görbitz, 2003), is obtained when trifluoroethanol is used as the solvent (Görbitz, 2005). It is nevertheless conceivable that L-isoleucyl-L-serine (IS), L-phenylalanyl-L-serine (FS) or L-methionyl-L-serine (MS) could form crystals with LS-type packing arrangements. We present here the structures of these three dipeptides.
The crystal structures of IS, FS and MS are shown in Fig. 1, while torsion angles and hydrogen-bonding data are listed in Tables 1–6. There is an intramolecular hydrogen bond for FS; equivalent interactions occur for L-alanyl-L-threonine (Netland et al., 2004) and LS (Görbitz et al., 2005). The unit cells and the crystal-packing arrangements are shown in Figs. 2–4. A l l structures are non-porous and are divided into hydrophobic and hydrophilic layers. Each hydrophilic layer can in turn be divided into two hydrogen-bonded sheets, but the construction of individual sheets and the way they are connected differ.
An FS sheet includes intermolecular amino···carboxylate, amino..carbonyl and amide···hydroxyl interactions (Fig. 5 and Table 4). Two sheets are joined tightly together by N1—H3···O4 hydrogen bonds into a compact hydrophilic double-layer. This is a rare motif in the structures of enantiopure L–L dipeptides, since it requires that the main chains adopt unusual conformations, with both side chains on the same side of the peptide plane. In FS, this is achieved primarily by the 146° φ2 torsion angle (C9—N2—C10—C12; Table 3), which may be compared with the values of around -163° for IS and MS (Tables 1 and 5) that are typical for dipeptides in extended conformations.
The sheets of IS and MS (Fig. 5) are rather similar to the sheets of VS-3w (Johansen et al., 2005) and L-glutamyl-L-aspartic acid (Eggleston & Hodgson, 1985). Short >N2—H4···O1═C< contacts are, however, missing for IS and MS, while interactions involving the serine side chains have been added. In contrast with FS, adjacent sheets are not in direct contact through amino···carboxylate interactions. The presence of such hydrogen bonds is only compatible with a small inter-sheet separation, which in each case is effectively prevented by peptide main-chain conformations that put side chains on opposing sides of the peptide plane (Figs. 2 and 4). The sheets are instead connected by two types of bridges, one involving the co-crystallized water molecules and one involving the serine side chain.
There is a small difference between the independent hydrophobic layers in the MS structure. Layers formed by the peptide B molecules are largely identical to the IS layers, while in layers formed by A molecules, the hydroxyl H atoms of the serine side chains are donated to the water molecules embedded in the layer rather than to the main-chain carboxylate groups. Water molecule 1, in the A layer, is thus fixed by a total of four hydrogen bonds, and the refined occupancy is 1.00. Water molecule 2 and the water molecule of IS are not hydrogen-bond acceptors and thus are not fixed to the same extent. The refined occupancies are 0.354 (18) and 0.668 (9), respectively.
The methionine side chains in the two molecules of MS have different conformations: N1—C1—C2—C3 is gauche and trans in molecules A and B, respectively, while both molecules have C1—C2—C3—S trans and C2—C3—S—C4 gauche (Table 5). The hydrophobic layers, with contributions from both A and B molecules, contain C—H···S interactions that may be described as weak hydrogen bonds. The associated H···S distances range from 2.90 Å for C3B—H32B···S1A(x, y + 1, z) and up.
For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
C9H18N2O4·0.33H2O | F(000) = 485.4 |
Mr = 224.27 | Dx = 1.357 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
a = 16.9692 (11) Å | Cell parameters from 3409 reflections |
b = 5.2167 (3) Å | θ = 2.4–28.3° |
c = 12.4065 (8) Å | µ = 0.11 mm−1 |
β = 90.942 (1)° | T = 105 K |
V = 1098.11 (12) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.25 × 0.10 mm |
Siemens SMART CCD area-detector diffractometer | 1454 independent reflections |
Radiation source: fine-focus sealed tube | 1373 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.3 pixels mm-1 | θmax = 28.3°, θmin = 1.6° |
Sets of exposures each taken over 0.3° ω rotation scans | h = −19→22 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −5→6 |
Tmin = 0.858, Tmax = 0.989 | l = −16→16 |
4482 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0524P)2 + 0.4828P] where P = (Fo2 + 2Fc2)/3 |
1454 reflections | (Δ/σ)max = 0.003 |
162 parameters | Δρmax = 0.32 e Å−3 |
1 restraint | Δρmin = −0.21 e Å−3 |
C9H18N2O4·0.33H2O | V = 1098.11 (12) Å3 |
Mr = 224.27 | Z = 4 |
Monoclinic, C2 | Mo Kα radiation |
a = 16.9692 (11) Å | µ = 0.11 mm−1 |
b = 5.2167 (3) Å | T = 105 K |
c = 12.4065 (8) Å | 0.40 × 0.25 × 0.10 mm |
β = 90.942 (1)° |
Siemens SMART CCD area-detector diffractometer | 1454 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1373 reflections with I > 2σ(I) |
Tmin = 0.858, Tmax = 0.989 | Rint = 0.023 |
4482 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 1 restraint |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.32 e Å−3 |
1454 reflections | Δρmin = −0.21 e Å−3 |
162 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.17779 (8) | 0.4492 (3) | 0.69462 (12) | 0.0240 (3) | |
O2 | 0.38873 (8) | 0.3939 (3) | 0.53174 (11) | 0.0245 (3) | |
H5 | 0.3846 (16) | 0.282 (7) | 0.582 (2) | 0.037* | |
O3 | 0.38543 (8) | 1.0734 (3) | 0.70512 (12) | 0.0232 (3) | |
O4 | 0.46639 (7) | 0.7373 (3) | 0.70364 (12) | 0.0269 (3) | |
N1 | 0.04799 (8) | 0.7822 (4) | 0.67305 (12) | 0.0189 (3) | |
H1 | 0.0597 (14) | 0.785 (6) | 0.601 (2) | 0.028* | |
H2 | 0.0076 (15) | 0.897 (6) | 0.684 (2) | 0.028* | |
H3 | 0.0287 (15) | 0.631 (6) | 0.692 (2) | 0.028* | |
N2 | 0.25631 (8) | 0.8009 (3) | 0.69495 (12) | 0.0160 (3) | |
H4 | 0.2567 (13) | 0.954 (7) | 0.7021 (18) | 0.019* | |
C1 | 0.11885 (9) | 0.8560 (4) | 0.73958 (13) | 0.0156 (3) | |
H11 | 0.1331 | 1.0372 | 0.7222 | 0.019* | |
C2 | 0.09915 (10) | 0.8396 (4) | 0.86059 (14) | 0.0210 (4) | |
H21 | 0.0537 | 0.9569 | 0.8734 | 0.025* | |
C4 | 0.14529 (18) | 0.9799 (9) | 1.04789 (19) | 0.0612 (11) | |
H41 | 0.1887 | 1.0669 | 1.0860 | 0.092* | |
H42 | 0.1347 | 0.8154 | 1.0829 | 0.092* | |
H43 | 0.0979 | 1.0873 | 1.0499 | 0.092* | |
C3 | 0.16802 (12) | 0.9332 (8) | 0.93015 (17) | 0.0443 (7) | |
H31 | 0.1885 | 1.0947 | 0.8994 | 0.053* | |
H32 | 0.2108 | 0.8044 | 0.9283 | 0.053* | |
C5 | 0.0745 (3) | 0.5726 (7) | 0.8944 (2) | 0.0649 (10) | |
H51 | 0.0643 | 0.5711 | 0.9719 | 0.097* | |
H52 | 0.1167 | 0.4509 | 0.8785 | 0.097* | |
H53 | 0.0265 | 0.5233 | 0.8546 | 0.097* | |
C6 | 0.18702 (10) | 0.6814 (4) | 0.70727 (13) | 0.0161 (4) | |
C7 | 0.32891 (9) | 0.6616 (4) | 0.67230 (14) | 0.0152 (3) | |
H71 | 0.3323 | 0.5059 | 0.7192 | 0.018* | |
C8 | 0.32924 (10) | 0.5795 (4) | 0.55242 (14) | 0.0187 (4) | |
H81 | 0.2771 | 0.5073 | 0.5324 | 0.022* | |
H82 | 0.3381 | 0.7323 | 0.5069 | 0.022* | |
C9 | 0.39909 (10) | 0.8379 (4) | 0.69732 (14) | 0.0179 (4) | |
O1W | 0.5000 | 0.9217 (7) | 0.5000 | 0.0284 (10) | 0.668 (9) |
H1W | 0.493 (3) | 0.807 (11) | 0.551 (4) | 0.043* | 0.668 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0168 (6) | 0.0153 (7) | 0.0400 (8) | −0.0015 (5) | 0.0031 (5) | −0.0019 (6) |
O2 | 0.0260 (7) | 0.0244 (8) | 0.0234 (6) | 0.0098 (6) | 0.0063 (5) | −0.0015 (6) |
O3 | 0.0150 (6) | 0.0184 (7) | 0.0363 (7) | −0.0018 (5) | 0.0011 (5) | −0.0033 (6) |
O4 | 0.0105 (6) | 0.0301 (9) | 0.0401 (8) | 0.0042 (6) | −0.0030 (5) | −0.0070 (7) |
N1 | 0.0106 (7) | 0.0244 (9) | 0.0218 (7) | −0.0009 (6) | 0.0003 (5) | −0.0024 (7) |
N2 | 0.0108 (6) | 0.0133 (8) | 0.0240 (7) | −0.0001 (6) | 0.0019 (5) | −0.0026 (6) |
C1 | 0.0091 (7) | 0.0174 (8) | 0.0205 (7) | −0.0005 (6) | 0.0006 (5) | 0.0003 (7) |
C2 | 0.0166 (8) | 0.0263 (10) | 0.0203 (7) | −0.0007 (7) | 0.0038 (6) | −0.0039 (8) |
C4 | 0.0554 (15) | 0.102 (3) | 0.0262 (10) | −0.0338 (19) | 0.0023 (10) | −0.0174 (16) |
C3 | 0.0227 (10) | 0.085 (2) | 0.0258 (9) | −0.0138 (13) | 0.0000 (7) | −0.0103 (13) |
C5 | 0.122 (3) | 0.0432 (16) | 0.0306 (12) | −0.0327 (19) | 0.0270 (15) | −0.0002 (12) |
C6 | 0.0114 (7) | 0.0185 (9) | 0.0185 (7) | 0.0000 (7) | 0.0002 (6) | 0.0001 (7) |
C7 | 0.0098 (7) | 0.0159 (8) | 0.0200 (7) | 0.0006 (6) | 0.0003 (5) | −0.0002 (7) |
C8 | 0.0144 (7) | 0.0216 (9) | 0.0200 (7) | 0.0034 (7) | −0.0006 (6) | −0.0017 (7) |
C9 | 0.0118 (7) | 0.0201 (9) | 0.0217 (7) | −0.0006 (7) | 0.0000 (6) | −0.0009 (7) |
O1W | 0.0344 (18) | 0.0227 (18) | 0.0285 (16) | 0.000 | 0.0112 (12) | 0.000 |
O1—C6 | 1.231 (2) | C2—H21 | 1.0000 |
O2—C8 | 1.425 (2) | C4—C3 | 1.536 (3) |
O2—H5 | 0.86 (3) | C4—H41 | 0.9800 |
O3—C9 | 1.254 (3) | C4—H42 | 0.9800 |
O4—C9 | 1.258 (2) | C4—H43 | 0.9800 |
N1—C1 | 1.498 (2) | C3—H31 | 0.9900 |
N1—H1 | 0.92 (3) | C3—H32 | 0.9900 |
N1—H2 | 0.92 (3) | C5—H51 | 0.9800 |
N1—H3 | 0.89 (3) | C5—H52 | 0.9800 |
N2—C6 | 1.342 (2) | C5—H53 | 0.9800 |
N2—C7 | 1.462 (2) | C7—C9 | 1.532 (2) |
N2—H4 | 0.81 (4) | C7—C8 | 1.548 (2) |
C1—C6 | 1.531 (2) | C7—H71 | 1.0000 |
C1—C2 | 1.546 (2) | C8—H81 | 0.9900 |
C1—H11 | 1.0000 | C8—H82 | 0.9900 |
C2—C5 | 1.515 (4) | O1W—H1W | 0.88 (5) |
C2—C3 | 1.522 (3) | ||
C8—O2—H5 | 105.2 (19) | C2—C3—H31 | 109.0 |
C1—N1—H1 | 110.4 (15) | C4—C3—H31 | 109.0 |
C1—N1—H2 | 110.3 (17) | C2—C3—H32 | 109.0 |
H1—N1—H2 | 107 (2) | C4—C3—H32 | 109.0 |
C1—N1—H3 | 112.2 (16) | H31—C3—H32 | 107.8 |
H1—N1—H3 | 111 (2) | C2—C5—H51 | 109.5 |
H2—N1—H3 | 105 (2) | C2—C5—H52 | 109.5 |
C6—N2—C7 | 122.26 (16) | H51—C5—H52 | 109.5 |
C6—N2—H4 | 117.1 (16) | C2—C5—H53 | 109.5 |
C7—N2—H4 | 120.7 (16) | H51—C5—H53 | 109.5 |
N1—C1—C6 | 107.81 (14) | H52—C5—H53 | 109.5 |
N1—C1—C2 | 109.67 (13) | O1—C6—N2 | 123.54 (18) |
C6—C1—C2 | 113.43 (14) | O1—C6—C1 | 121.58 (16) |
N1—C1—H11 | 108.6 | N2—C6—C1 | 114.87 (16) |
C6—C1—H11 | 108.6 | N2—C7—C9 | 108.49 (15) |
C2—C1—H11 | 108.6 | N2—C7—C8 | 109.79 (13) |
C5—C2—C3 | 110.5 (2) | C9—C7—C8 | 110.21 (14) |
C5—C2—C1 | 112.64 (17) | N2—C7—H71 | 109.4 |
C3—C2—C1 | 110.90 (15) | C9—C7—H71 | 109.4 |
C5—C2—H21 | 107.5 | C8—C7—H71 | 109.4 |
C3—C2—H21 | 107.5 | O2—C8—C7 | 112.00 (14) |
C1—C2—H21 | 107.5 | O2—C8—H81 | 109.2 |
C3—C4—H41 | 109.5 | C7—C8—H81 | 109.2 |
C3—C4—H42 | 109.5 | O2—C8—H82 | 109.2 |
H41—C4—H42 | 109.5 | C7—C8—H82 | 109.2 |
C3—C4—H43 | 109.5 | H81—C8—H82 | 107.9 |
H41—C4—H43 | 109.5 | O3—C9—O4 | 124.93 (18) |
H42—C4—H43 | 109.5 | O3—C9—C7 | 117.36 (16) |
C2—C3—C4 | 112.81 (18) | O4—C9—C7 | 117.63 (17) |
N1—C1—C6—N2 | 136.37 (16) | C5—C2—C3—C4 | −67.7 (4) |
C1—C6—N2—C7 | 175.27 (14) | C7—N2—C6—O1 | −4.3 (3) |
C6—N2—C7—C9 | −162.77 (16) | N1—C1—C6—O1 | −44.1 (2) |
N2—C7—C9—O3 | −17.1 (2) | C2—C1—C6—O1 | 77.6 (2) |
N1—C1—C2—C3 | −175.7 (2) | C2—C1—C6—N2 | −102.00 (18) |
N1—C1—C2—C5 | 59.9 (3) | C6—N2—C7—C8 | 76.7 (2) |
C1—C2—C3—C4 | 166.7 (3) | C9—C7—C8—O2 | 74.30 (19) |
N2—C7—C8—O2 | −166.25 (15) | C8—C7—C9—O3 | 103.17 (19) |
C7—C8—O2—H5 | 45.9 (17) | N2—C7—C9—O4 | 166.06 (15) |
C6—C1—C2—C5 | −60.7 (3) | C8—C7—C9—O4 | −73.7 (2) |
C6—C1—C2—C3 | 63.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.92 (3) | 1.95 (2) | 2.8353 (17) | 158 (2) |
N1—H2···O4ii | 0.92 (3) | 1.95 (3) | 2.777 (2) | 153 (2) |
N1—H3···O4iii | 0.89 (3) | 2.31 (3) | 3.187 (2) | 167.0 (18) |
N1—H3···O3iii | 0.89 (3) | 2.46 (2) | 2.9983 (17) | 119.7 (17) |
N2—H4···O3 | 0.81 (4) | 2.26 (2) | 2.6132 (18) | 106.0 (16) |
O2—H5···O3iv | 0.86 (3) | 1.88 (3) | 2.7258 (18) | 172 (2) |
C1—H11···O1v | 1.00 | 2.31 | 3.302 (2) | 174 |
C7—H71···O3iv | 1.00 | 2.44 | 3.240 (2) | 137 |
O1W—H1W···O4 | 0.88 (5) | 1.99 (4) | 2.771 (17) | 149 (4) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1; (ii) x−1/2, y+1/2, z; (iii) x−1/2, y−1/2, z; (iv) x, y−1, z; (v) x, y+1, z. |
C12H16N2O4 | F(000) = 268 |
Mr = 252.27 | Dx = 1.419 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6434 (7) Å | Cell parameters from 3332 reflections |
b = 5.7609 (5) Å | θ = 1.5–37.0° |
c = 13.4396 (12) Å | µ = 0.11 mm−1 |
β = 93.754 (4)° | T = 105 K |
V = 590.51 (9) Å3 | Needle, colourless |
Z = 2 | 0.70 × 0.15 × 0.15 mm |
Siemens SMART CCD area-detector diffractometer | 2392 independent reflections |
Radiation source: fine-focus sealed tube | 2268 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 8.3 pixels mm-1 | θmax = 37.0°, θmin = 1.5° |
Sets of exposures each taken over 0.3° ω rotation scans | h = −12→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −9→4 |
Tmin = 0.820, Tmax = 0.984 | l = −17→18 |
5381 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0562P)2 + 0.0336P] where P = (Fo2 + 2Fc2)/3 |
2392 reflections | (Δ/σ)max = 0.002 |
178 parameters | Δρmax = 0.35 e Å−3 |
1 restraint | Δρmin = −0.21 e Å−3 |
C12H16N2O4 | V = 590.51 (9) Å3 |
Mr = 252.27 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.6434 (7) Å | µ = 0.11 mm−1 |
b = 5.7609 (5) Å | T = 105 K |
c = 13.4396 (12) Å | 0.70 × 0.15 × 0.15 mm |
β = 93.754 (4)° |
Siemens SMART CCD area-detector diffractometer | 2392 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2268 reflections with I > 2σ(I) |
Tmin = 0.820, Tmax = 0.984 | Rint = 0.019 |
5381 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 1 restraint |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.35 e Å−3 |
2392 reflections | Δρmin = −0.21 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.86909 (11) | 0.39194 (14) | 0.87700 (7) | 0.01600 (17) | |
O2 | 0.41423 (11) | −0.02221 (14) | 0.78603 (8) | 0.01862 (19) | |
H5 | 0.351 (3) | −0.011 (4) | 0.8356 (17) | 0.028* | |
O3 | 0.28647 (11) | 0.60015 (14) | 0.92519 (8) | 0.01730 (19) | |
O4 | 0.24140 (10) | 0.21585 (15) | 0.92656 (8) | 0.01771 (19) | |
N1 | 0.97767 (11) | 0.85932 (15) | 0.92233 (8) | 0.01302 (18) | |
H1 | 1.018 (2) | 1.002 (4) | 0.9144 (16) | 0.020* | |
H2 | 1.071 (2) | 0.760 (4) | 0.9210 (14) | 0.020* | |
H3 | 0.917 (2) | 0.848 (4) | 0.9748 (14) | 0.020* | |
N2 | 0.60028 (11) | 0.55660 (16) | 0.84561 (8) | 0.01343 (19) | |
H4 | 0.544 (2) | 0.680 (3) | 0.8295 (14) | 0.016* | |
C1 | 0.85775 (13) | 0.79648 (18) | 0.83458 (9) | 0.0132 (2) | |
H11 | 0.7640 | 0.9167 | 0.8241 | 0.016* | |
C2 | 0.96727 (15) | 0.7849 (2) | 0.74285 (10) | 0.0193 (2) | |
H21 | 0.9966 | 0.9451 | 0.7232 | 0.023* | |
H22 | 1.0787 | 0.7039 | 0.7618 | 0.023* | |
C3 | 0.87900 (14) | 0.66349 (19) | 0.65394 (10) | 0.0158 (2) | |
C4 | 0.93755 (17) | 0.4446 (2) | 0.62669 (11) | 0.0207 (2) | |
H41 | 1.0264 | 0.3690 | 0.6675 | 0.025* | |
C5 | 0.86780 (18) | 0.3355 (2) | 0.54077 (13) | 0.0268 (3) | |
H51 | 0.9098 | 0.1870 | 0.5228 | 0.032* | |
C6 | 0.73728 (19) | 0.4431 (3) | 0.48154 (13) | 0.0298 (3) | |
H61 | 0.6914 | 0.3706 | 0.4219 | 0.036* | |
C7 | 0.67342 (18) | 0.6574 (3) | 0.50940 (12) | 0.0281 (3) | |
H71 | 0.5817 | 0.7300 | 0.4697 | 0.034* | |
C8 | 0.74345 (16) | 0.7662 (2) | 0.59534 (11) | 0.0208 (2) | |
H81 | 0.6983 | 0.9122 | 0.6143 | 0.025* | |
C9 | 0.77557 (13) | 0.56133 (18) | 0.85539 (9) | 0.01184 (19) | |
C10 | 0.50565 (13) | 0.34512 (17) | 0.86448 (9) | 0.0126 (2) | |
H101 | 0.5789 | 0.2487 | 0.9130 | 0.015* | |
C11 | 0.47358 (15) | 0.20685 (19) | 0.76770 (10) | 0.0163 (2) | |
H111 | 0.3850 | 0.2882 | 0.7234 | 0.020* | |
H112 | 0.5838 | 0.1990 | 0.7330 | 0.020* | |
C12 | 0.33007 (13) | 0.39552 (18) | 0.90922 (9) | 0.0127 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0128 (3) | 0.0140 (3) | 0.0211 (5) | 0.0005 (2) | 0.0011 (3) | 0.0030 (3) |
O2 | 0.0195 (4) | 0.0118 (3) | 0.0250 (5) | −0.0024 (3) | 0.0046 (4) | −0.0028 (3) |
O3 | 0.0124 (3) | 0.0151 (3) | 0.0247 (5) | 0.0011 (2) | 0.0031 (3) | −0.0045 (3) |
O4 | 0.0125 (3) | 0.0160 (3) | 0.0252 (5) | −0.0025 (3) | 0.0058 (3) | 0.0023 (3) |
N1 | 0.0116 (3) | 0.0132 (3) | 0.0144 (5) | −0.0021 (3) | 0.0023 (3) | −0.0013 (3) |
N2 | 0.0097 (3) | 0.0114 (3) | 0.0193 (6) | −0.0011 (3) | 0.0024 (3) | 0.0003 (3) |
C1 | 0.0115 (4) | 0.0132 (4) | 0.0150 (6) | −0.0025 (3) | 0.0000 (4) | 0.0008 (4) |
C2 | 0.0176 (4) | 0.0260 (5) | 0.0145 (6) | −0.0091 (4) | 0.0032 (4) | −0.0001 (5) |
C3 | 0.0166 (4) | 0.0160 (4) | 0.0151 (6) | −0.0028 (3) | 0.0039 (4) | 0.0006 (4) |
C4 | 0.0224 (5) | 0.0165 (4) | 0.0240 (7) | 0.0009 (4) | 0.0070 (5) | 0.0032 (4) |
C5 | 0.0307 (6) | 0.0195 (5) | 0.0317 (8) | −0.0062 (4) | 0.0149 (6) | −0.0078 (5) |
C6 | 0.0249 (6) | 0.0416 (8) | 0.0235 (8) | −0.0111 (6) | 0.0062 (6) | −0.0143 (7) |
C7 | 0.0195 (5) | 0.0457 (8) | 0.0189 (7) | 0.0038 (5) | −0.0013 (5) | −0.0048 (6) |
C8 | 0.0204 (5) | 0.0235 (5) | 0.0187 (7) | 0.0038 (4) | 0.0027 (5) | −0.0015 (5) |
C9 | 0.0104 (3) | 0.0133 (4) | 0.0119 (6) | −0.0019 (3) | 0.0016 (3) | 0.0000 (3) |
C10 | 0.0105 (3) | 0.0113 (3) | 0.0163 (6) | −0.0007 (3) | 0.0028 (4) | 0.0006 (3) |
C11 | 0.0175 (4) | 0.0127 (4) | 0.0190 (6) | −0.0005 (3) | 0.0038 (4) | −0.0007 (4) |
C12 | 0.0096 (4) | 0.0148 (4) | 0.0136 (6) | −0.0007 (3) | 0.0016 (4) | −0.0011 (4) |
O1—C9 | 1.2331 (13) | C2—H22 | 0.9900 |
O2—C11 | 1.4221 (14) | C3—C8 | 1.3918 (18) |
O2—H5 | 0.85 (2) | C3—C4 | 1.3949 (16) |
O3—C12 | 1.2475 (13) | C4—C5 | 1.390 (2) |
O4—C12 | 1.2672 (13) | C4—H41 | 0.9500 |
N1—C1 | 1.4901 (16) | C5—C6 | 1.382 (3) |
N1—H1 | 0.89 (2) | C5—H51 | 0.9500 |
N1—H2 | 0.917 (19) | C6—C7 | 1.388 (2) |
N1—H3 | 0.869 (19) | C6—H61 | 0.9500 |
N2—C9 | 1.3379 (13) | C7—C8 | 1.390 (2) |
N2—C10 | 1.4477 (13) | C7—H71 | 0.9500 |
N2—H4 | 0.85 (2) | C8—H81 | 0.9500 |
C1—C9 | 1.5267 (14) | C10—C11 | 1.5312 (18) |
C1—C2 | 1.5363 (16) | C10—C12 | 1.5337 (13) |
C1—H11 | 1.0000 | C10—H101 | 1.0000 |
C2—C3 | 1.5055 (18) | C11—H111 | 0.9900 |
C2—H21 | 0.9900 | C11—H112 | 0.9900 |
C11—O2—H5 | 105.6 (16) | C6—C5—H51 | 120.0 |
C1—N1—H1 | 109.2 (14) | C4—C5—H51 | 120.0 |
C1—N1—H2 | 105.9 (12) | C5—C6—C7 | 119.81 (15) |
H1—N1—H2 | 107.5 (18) | C5—C6—H61 | 120.1 |
C1—N1—H3 | 107.0 (12) | C7—C6—H61 | 120.1 |
H1—N1—H3 | 111.8 (19) | C6—C7—C8 | 120.13 (15) |
H2—N1—H3 | 115.2 (17) | C6—C7—H71 | 119.9 |
C9—N2—C10 | 120.56 (9) | C8—C7—H71 | 119.9 |
C9—N2—H4 | 119.3 (12) | C7—C8—C3 | 120.71 (12) |
C10—N2—H4 | 120.1 (12) | C7—C8—H81 | 119.6 |
N1—C1—C9 | 108.04 (9) | C3—C8—H81 | 119.6 |
N1—C1—C2 | 107.84 (8) | O1—C9—N2 | 124.64 (9) |
C9—C1—C2 | 111.15 (9) | O1—C9—C1 | 120.41 (9) |
N1—C1—H11 | 109.9 | N2—C9—C1 | 114.93 (9) |
C9—C1—H11 | 109.9 | N2—C10—C11 | 110.06 (9) |
C2—C1—H11 | 109.9 | N2—C10—C12 | 111.68 (8) |
C3—C2—C1 | 114.68 (9) | C11—C10—C12 | 109.63 (9) |
C3—C2—H21 | 108.6 | N2—C10—H101 | 108.5 |
C1—C2—H21 | 108.6 | C11—C10—H101 | 108.5 |
C3—C2—H22 | 108.6 | C12—C10—H101 | 108.5 |
C1—C2—H22 | 108.6 | O2—C11—C10 | 111.76 (10) |
H21—C2—H22 | 107.6 | O2—C11—H111 | 109.3 |
C8—C3—C4 | 118.38 (13) | C10—C11—H111 | 109.3 |
C8—C3—C2 | 122.00 (11) | O2—C11—H112 | 109.3 |
C4—C3—C2 | 119.58 (12) | C10—C11—H112 | 109.3 |
C5—C4—C3 | 120.99 (13) | H111—C11—H112 | 107.9 |
C5—C4—H41 | 119.5 | O3—C12—O4 | 126.02 (9) |
C3—C4—H41 | 119.5 | O3—C12—C10 | 119.79 (9) |
C6—C5—C4 | 119.91 (13) | O4—C12—C10 | 114.19 (9) |
N1—C1—C9—N2 | 126.45 (11) | C5—C6—C7—C8 | 1.6 (2) |
C1—C9—N2—C10 | −179.18 (10) | C6—C7—C8—C3 | 0.6 (2) |
C9—N2—C10—C12 | 146.35 (11) | C4—C3—C8—C7 | −2.72 (18) |
N2—C10—C12—O3 | −0.41 (17) | C2—C3—C8—C7 | 175.09 (12) |
N1—C1—C2—C3 | 164.51 (10) | C10—N2—C9—O1 | 2.55 (19) |
C1—C2—C3—C4 | −108.05 (13) | N1—C1—C9—O1 | −55.20 (14) |
C1—C2—C3—C8 | 74.17 (15) | C2—C1—C9—O1 | 62.94 (15) |
N2—C10—C11—O2 | 167.83 (9) | C2—C1—C9—N2 | −115.41 (12) |
C10—C11—O2—H5 | 34.7 (14) | C9—N2—C10—C11 | −91.65 (13) |
C9—C1—C2—C3 | 46.25 (14) | C12—C10—C11—O2 | −68.97 (11) |
C8—C3—C4—C5 | 2.74 (17) | C11—C10—C12—O3 | −122.66 (12) |
C2—C3—C4—C5 | −175.12 (11) | N2—C10—C12—O4 | 179.55 (10) |
C3—C4—C5—C6 | −0.63 (19) | C11—C10—C12—O4 | 57.31 (14) |
C4—C5—C6—C7 | −1.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.89 (2) | 2.106 (19) | 2.8758 (12) | 144.9 (17) |
N1—H1···O1ii | 0.89 (2) | 2.55 (2) | 3.2262 (13) | 133.5 (16) |
N1—H2···O3iii | 0.917 (19) | 1.883 (18) | 2.7910 (12) | 170.2 (18) |
N1—H3···O4iv | 0.869 (19) | 2.006 (19) | 2.8384 (13) | 160.0 (19) |
N2—H4···O2ii | 0.85 (2) | 2.05 (2) | 2.8986 (13) | 178.0 (18) |
O2—H5···O4 | 0.85 (2) | 2.01 (2) | 2.7422 (13) | 144 (2) |
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+2. |
C8H16N2O4S·0.34H2O | F(000) = 1035.2 |
Mr = 242.41 | Dx = 1.435 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
a = 16.791 (4) Å | Cell parameters from 3955 reflections |
b = 5.0711 (11) Å | θ = 4.6–56.4° |
c = 26.851 (6) Å | µ = 0.29 mm−1 |
β = 100.926 (4)° | T = 105 K |
V = 2244.8 (8) Å3 | Plate, colourless |
Z = 8 | 0.45 × 0.22 × 0.03 mm |
Siemens SMART CCD area-detector diffractometer | 2849 independent reflections |
Radiation source: fine-focus sealed tube | 2445 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
Detector resolution: 8.3 pixels mm-1 | θmax = 28.2°, θmin = 1.5° |
Sets of exposures each taken over 0.3° ω rotation scans | h = −22→20 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −3→6 |
Tmin = 0.744, Tmax = 0.991 | l = 0→34 |
3325 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.201 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.54 | w = 1/[σ2(Fo2) + (0.0748P)2 + 3.98P] where P = (Fo2 + 2Fc2)/3 |
2849 reflections | (Δ/σ)max = 0.001 |
298 parameters | Δρmax = 0.58 e Å−3 |
57 restraints | Δρmin = −0.49 e Å−3 |
C8H16N2O4S·0.34H2O | V = 2244.8 (8) Å3 |
Mr = 242.41 | Z = 8 |
Monoclinic, C2 | Mo Kα radiation |
a = 16.791 (4) Å | µ = 0.29 mm−1 |
b = 5.0711 (11) Å | T = 105 K |
c = 26.851 (6) Å | 0.45 × 0.22 × 0.03 mm |
β = 100.926 (4)° |
Siemens SMART CCD area-detector diffractometer | 2849 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2445 reflections with I > 2σ(I) |
Tmin = 0.744, Tmax = 0.991 | Rint = 0.066 |
3325 measured reflections |
R[F2 > 2σ(F2)] = 0.073 | 57 restraints |
wR(F2) = 0.201 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.54 | Δρmax = 0.58 e Å−3 |
2849 reflections | Δρmin = −0.49 e Å−3 |
298 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1A | 0.24104 (12) | 0.1459 (4) | 0.22534 (6) | 0.0377 (5) | |
O1A | 0.4448 (3) | 0.4913 (8) | 0.41707 (17) | 0.0252 (10) | |
O2A | 0.6421 (3) | 0.0642 (9) | 0.49175 (16) | 0.0230 (10) | |
H5A | 0.599 (3) | −0.017 (14) | 0.491 (3) | 0.035* | |
O3A | 0.6330 (3) | −0.1281 (8) | 0.36837 (17) | 0.0226 (10) | |
O4A | 0.7305 (2) | 0.1755 (8) | 0.38936 (16) | 0.0203 (9) | |
N1A | 0.3084 (3) | 0.1692 (10) | 0.40402 (16) | 0.0162 (10) | |
H1A | 0.2679 | 0.0558 | 0.3945 | 0.024* | |
H2A | 0.2899 | 0.3332 | 0.3985 | 0.024* | |
H3A | 0.3285 | 0.1480 | 0.4369 | 0.024* | |
N2A | 0.5199 (2) | 0.1497 (10) | 0.39587 (18) | 0.0194 (10) | |
H4A | 0.5173 | −0.0126 | 0.3864 | 0.023* | |
C1A | 0.3728 (3) | 0.1206 (11) | 0.37446 (18) | 0.0171 (12) | |
H11A | 0.3844 | −0.0688 | 0.3743 | 0.020* | |
C2A | 0.3436 (3) | 0.2167 (13) | 0.31965 (18) | 0.0222 (13) | |
H21A | 0.3294 | 0.4019 | 0.3202 | 0.027* | |
H22A | 0.3878 | 0.2005 | 0.3012 | 0.027* | |
C3A | 0.2707 (4) | 0.0630 (13) | 0.2917 (2) | 0.0312 (16) | |
H31A | 0.2251 | 0.0948 | 0.3083 | 0.037* | |
H32A | 0.2832 | −0.1238 | 0.2946 | 0.037* | |
C4A | 0.1885 (6) | 0.4492 (15) | 0.2306 (3) | 0.059 (3) | |
H41A | 0.1667 | 0.5155 | 0.1974 | 0.088* | |
H42A | 0.2256 | 0.5759 | 0.2487 | 0.088* | |
H43A | 0.1452 | 0.4187 | 0.2486 | 0.088* | |
C5A | 0.4498 (3) | 0.2695 (10) | 0.3986 (2) | 0.0163 (12) | |
C6A | 0.6006 (3) | 0.2690 (9) | 0.40745 (19) | 0.0150 (12) | |
H61A | 0.5987 | 0.4413 | 0.3907 | 0.018* | |
C7A | 0.6303 (4) | 0.3068 (11) | 0.4643 (2) | 0.0202 (13) | |
H71A | 0.6811 | 0.4032 | 0.4697 | 0.024* | |
H72A | 0.5911 | 0.4128 | 0.4777 | 0.024* | |
C8A | 0.6582 (3) | 0.0913 (10) | 0.3859 (2) | 0.0190 (13) | |
S1B | 0.47168 (13) | 0.7180 (4) | 0.27065 (7) | 0.0362 (5) | |
O1B | 0.3519 (2) | 1.1794 (8) | 0.09606 (19) | 0.0262 (10) | |
O2B | 0.1172 (3) | 1.2299 (9) | 0.01705 (16) | 0.0247 (10) | |
H5B | 0.131 (5) | 1.350 (12) | 0.038 (2) | 0.037* | |
O3B | 0.1468 (3) | 0.5314 (7) | 0.10009 (18) | 0.0220 (10) | |
O4B | 0.0628 (2) | 0.8742 (9) | 0.09727 (18) | 0.0254 (10) | |
N1B | 0.4775 (3) | 0.8443 (10) | 0.07909 (18) | 0.0184 (11) | |
H1B | 0.4509 | 0.8449 | 0.0471 | 0.028* | |
H2B | 0.5185 | 0.7304 | 0.0823 | 0.028* | |
H3B | 0.4967 | 1.0051 | 0.0875 | 0.028* | |
N2B | 0.2748 (2) | 0.8095 (9) | 0.09422 (18) | 0.0166 (10) | |
H4B | 0.2745 | 0.6404 | 0.0966 | 0.020* | |
C1B | 0.4219 (3) | 0.7658 (10) | 0.11283 (18) | 0.0153 (12) | |
H11B | 0.4067 | 0.5805 | 0.1066 | 0.018* | |
C2B | 0.4653 (4) | 0.7985 (13) | 0.16800 (19) | 0.0234 (13) | |
H21B | 0.5166 | 0.7052 | 0.1728 | 0.028* | |
H22B | 0.4769 | 0.9839 | 0.1746 | 0.028* | |
C3B | 0.4161 (4) | 0.6958 (15) | 0.2061 (2) | 0.0289 (15) | |
H31B | 0.4015 | 0.5132 | 0.1983 | 0.035* | |
H32B | 0.3663 | 0.7969 | 0.2030 | 0.035* | |
C4B | 0.5428 (4) | 0.4551 (14) | 0.2712 (3) | 0.0317 (16) | |
H41B | 0.5822 | 0.4612 | 0.3022 | 0.048* | |
H42B | 0.5697 | 0.4737 | 0.2429 | 0.048* | |
H43B | 0.5148 | 0.2894 | 0.2689 | 0.048* | |
C5B | 0.3461 (3) | 0.9373 (10) | 0.1004 (2) | 0.0196 (13) | |
C6B | 0.1972 (3) | 0.9519 (10) | 0.0835 (2) | 0.0154 (11) | |
H61B | 0.2009 | 1.1089 | 0.1051 | 0.018* | |
C7B | 0.1796 (4) | 1.0369 (12) | 0.0275 (2) | 0.0217 (13) | |
H71B | 0.2288 | 1.1077 | 0.0187 | 0.026* | |
H72B | 0.1638 | 0.8834 | 0.0064 | 0.026* | |
C8B | 0.1309 (3) | 0.7736 (10) | 0.0951 (2) | 0.0171 (13) | |
O1W | 0.5000 | 0.8124 (12) | 0.5000 | 0.0187 (13) | |
H1W | 0.470 (3) | 0.710 (9) | 0.4793 (15) | 0.028* | |
O2W | 0.0000 | 0.718 (3) | 0.0000 | 0.018 (5) | 0.355 (18) |
H2W | 0.017 (8) | 0.822 (11) | 0.0253 (13) | 0.028* | 0.355 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0396 (11) | 0.0502 (11) | 0.0212 (7) | 0.0045 (10) | 0.0000 (7) | −0.0035 (8) |
O1A | 0.027 (2) | 0.0173 (19) | 0.031 (2) | 0.0044 (18) | 0.0070 (18) | −0.0097 (18) |
O2A | 0.018 (2) | 0.026 (2) | 0.025 (2) | −0.0040 (19) | 0.0020 (19) | 0.0038 (19) |
O3A | 0.019 (2) | 0.016 (2) | 0.034 (2) | 0.0021 (18) | 0.0055 (19) | −0.0041 (18) |
O4A | 0.012 (2) | 0.015 (2) | 0.035 (2) | 0.0002 (17) | 0.0076 (17) | −0.0005 (19) |
N1A | 0.011 (2) | 0.017 (2) | 0.020 (2) | 0.001 (2) | 0.0032 (18) | −0.001 (2) |
N2A | 0.018 (2) | 0.014 (2) | 0.026 (2) | 0.000 (2) | 0.003 (2) | −0.003 (2) |
C1A | 0.018 (3) | 0.013 (2) | 0.022 (3) | 0.002 (2) | 0.007 (2) | −0.002 (2) |
C2A | 0.020 (3) | 0.025 (3) | 0.022 (3) | 0.000 (3) | 0.007 (2) | 0.005 (3) |
C3A | 0.041 (4) | 0.024 (3) | 0.025 (3) | −0.015 (3) | −0.005 (3) | −0.004 (3) |
C4A | 0.088 (8) | 0.029 (4) | 0.044 (5) | 0.006 (5) | −0.027 (5) | 0.006 (4) |
C5A | 0.014 (3) | 0.014 (3) | 0.021 (3) | −0.001 (2) | 0.003 (2) | 0.004 (2) |
C6A | 0.011 (3) | 0.011 (3) | 0.024 (3) | 0.003 (2) | 0.006 (2) | 0.001 (2) |
C7A | 0.015 (3) | 0.019 (3) | 0.027 (3) | −0.001 (2) | 0.001 (2) | −0.002 (2) |
C8A | 0.025 (3) | 0.013 (3) | 0.019 (3) | 0.007 (2) | 0.003 (2) | 0.000 (2) |
S1B | 0.0547 (12) | 0.0291 (9) | 0.0269 (8) | 0.0042 (9) | 0.0127 (8) | 0.0011 (7) |
O1B | 0.015 (2) | 0.015 (2) | 0.050 (3) | −0.0010 (19) | 0.010 (2) | 0.001 (2) |
O2B | 0.025 (2) | 0.023 (2) | 0.025 (2) | 0.011 (2) | 0.0012 (19) | 0.001 (2) |
O3B | 0.014 (2) | 0.015 (2) | 0.038 (3) | −0.0006 (17) | 0.0062 (19) | 0.0007 (19) |
O4B | 0.012 (2) | 0.025 (2) | 0.042 (2) | 0.0062 (18) | 0.0127 (18) | 0.0060 (19) |
N1B | 0.015 (3) | 0.018 (2) | 0.024 (2) | −0.004 (2) | 0.008 (2) | 0.000 (2) |
N2B | 0.009 (2) | 0.011 (2) | 0.029 (3) | 0.0012 (19) | 0.001 (2) | 0.002 (2) |
C1B | 0.009 (2) | 0.014 (2) | 0.022 (2) | 0.000 (2) | 0.002 (2) | 0.001 (2) |
C2B | 0.021 (3) | 0.026 (3) | 0.024 (3) | −0.005 (3) | 0.006 (3) | 0.000 (3) |
C3B | 0.021 (3) | 0.033 (4) | 0.033 (3) | 0.008 (3) | 0.008 (3) | 0.002 (3) |
C4B | 0.032 (4) | 0.037 (4) | 0.027 (3) | −0.002 (3) | 0.005 (3) | 0.006 (3) |
C5B | 0.020 (3) | 0.014 (3) | 0.025 (3) | −0.002 (2) | 0.005 (3) | 0.001 (2) |
C6B | 0.008 (3) | 0.014 (3) | 0.024 (3) | 0.003 (2) | 0.005 (2) | 0.003 (2) |
C7B | 0.023 (3) | 0.019 (3) | 0.025 (3) | 0.001 (3) | 0.007 (3) | 0.003 (3) |
C8B | 0.009 (3) | 0.021 (3) | 0.021 (3) | 0.004 (2) | 0.002 (2) | 0.002 (2) |
O1W | 0.015 (3) | 0.015 (3) | 0.025 (3) | 0.000 | 0.002 (2) | 0.000 |
O2W | 0.018 (9) | 0.018 (8) | 0.017 (8) | 0.000 | 0.001 (6) | 0.000 |
S1A—C4A | 1.792 (7) | S1B—C3B | 1.810 (6) |
S1A—C3A | 1.807 (6) | O1B—C5B | 1.239 (6) |
O1A—C5A | 1.239 (6) | O2B—C7B | 1.423 (6) |
O2A—C7A | 1.429 (6) | O2B—H5B | 0.83 (3) |
O2A—H5A | 0.84 (3) | O3B—C8B | 1.258 (6) |
O3A—C8A | 1.250 (6) | O4B—C8B | 1.263 (6) |
O4A—C8A | 1.273 (6) | N1B—C1B | 1.474 (6) |
N1A—C1A | 1.479 (6) | N1B—H1B | 0.8900 |
N1A—H1A | 0.8900 | N1B—H2B | 0.8900 |
N1A—H2A | 0.8900 | N1B—H3B | 0.8900 |
N1A—H3A | 0.8900 | N2B—C5B | 1.344 (6) |
N2A—C5A | 1.340 (6) | N2B—C6B | 1.469 (6) |
N2A—C6A | 1.462 (6) | N2B—H4B | 0.8600 |
N2A—H4A | 0.8600 | C1B—C5B | 1.525 (6) |
C1A—C5A | 1.531 (6) | C1B—C2B | 1.531 (6) |
C1A—C2A | 1.539 (6) | C1B—H11B | 0.9800 |
C1A—H11A | 0.9800 | C2B—C3B | 1.523 (7) |
C2A—C3A | 1.523 (7) | C2B—H21B | 0.9700 |
C2A—H21A | 0.9700 | C2B—H22B | 0.9700 |
C2A—H22A | 0.9700 | C3B—H31B | 0.9700 |
C3A—H31A | 0.9700 | C3B—H32B | 0.9700 |
C3A—H32A | 0.9700 | C4B—H41B | 0.9600 |
C4A—H41A | 0.9600 | C4B—H42B | 0.9600 |
C4A—H42A | 0.9600 | C4B—H43B | 0.9600 |
C4A—H43A | 0.9600 | C6B—C8B | 1.512 (6) |
C6A—C8A | 1.515 (6) | C6B—C7B | 1.538 (7) |
C6A—C7A | 1.526 (7) | C6B—H61B | 0.9800 |
C6A—H61A | 0.9800 | C7B—H71B | 0.9700 |
C7A—H71A | 0.9700 | C7B—H72B | 0.9700 |
C7A—H72A | 0.9700 | O1W—H1W | 0.85 (3) |
S1B—C4B | 1.788 (7) | O2W—H2W | 0.87 (3) |
C4A—S1A—C3A | 99.7 (4) | C4B—S1B—C3B | 100.6 (3) |
C7A—O2A—H5A | 113 (5) | C7B—O2B—H5B | 106 (6) |
C1A—N1A—H1A | 109.5 | C1B—N1B—H1B | 109.5 |
C1A—N1A—H2A | 109.5 | C1B—N1B—H2B | 109.5 |
H1A—N1A—H2A | 109.5 | H1B—N1B—H2B | 109.5 |
C1A—N1A—H3A | 109.5 | C1B—N1B—H3B | 109.5 |
H1A—N1A—H3A | 109.5 | H1B—N1B—H3B | 109.5 |
H2A—N1A—H3A | 109.5 | H2B—N1B—H3B | 109.5 |
C5A—N2A—C6A | 126.1 (4) | C5B—N2B—C6B | 121.6 (4) |
C5A—N2A—H4A | 116.9 | C5B—N2B—H4B | 119.2 |
C6A—N2A—H4A | 116.9 | C6B—N2B—H4B | 119.2 |
N1A—C1A—C5A | 109.6 (4) | N1B—C1B—C5B | 108.1 (4) |
N1A—C1A—C2A | 109.1 (4) | N1B—C1B—C2B | 109.0 (4) |
C5A—C1A—C2A | 109.8 (4) | C5B—C1B—C2B | 111.9 (4) |
N1A—C1A—H11A | 109.4 | N1B—C1B—H11B | 109.2 |
C5A—C1A—H11A | 109.4 | C5B—C1B—H11B | 109.2 |
C2A—C1A—H11A | 109.4 | C2B—C1B—H11B | 109.2 |
C1A—C2A—C3A | 112.9 (4) | C3B—C2B—C1B | 113.2 (4) |
C1A—C2A—H21A | 109.0 | C3B—C2B—H21B | 108.9 |
C3A—C2A—H21A | 109.0 | C1B—C2B—H21B | 108.9 |
C1A—C2A—H22A | 109.0 | C3B—C2B—H22B | 108.9 |
C3A—C2A—H22A | 109.0 | C1B—C2B—H22B | 108.9 |
H21A—C2A—H22A | 107.8 | H21B—C2B—H22B | 107.7 |
C2A—C3A—S1A | 114.3 (4) | C2B—C3B—S1B | 112.0 (4) |
C2A—C3A—H31A | 108.7 | C2B—C3B—H31B | 109.2 |
S1A—C3A—H31A | 108.7 | S1B—C3B—H31B | 109.2 |
C2A—C3A—H32A | 108.7 | C2B—C3B—H32B | 109.2 |
S1A—C3A—H32A | 108.7 | S1B—C3B—H32B | 109.2 |
H31A—C3A—H32A | 107.6 | H31B—C3B—H32B | 107.9 |
S1A—C4A—H41A | 109.5 | S1B—C4B—H41B | 109.5 |
S1A—C4A—H42A | 109.5 | S1B—C4B—H42B | 109.5 |
H41A—C4A—H42A | 109.5 | H41B—C4B—H42B | 109.5 |
S1A—C4A—H43A | 109.5 | S1B—C4B—H43B | 109.5 |
H41A—C4A—H43A | 109.5 | H41B—C4B—H43B | 109.5 |
H42A—C4A—H43A | 109.5 | H42B—C4B—H43B | 109.5 |
O1A—C5A—N2A | 124.1 (5) | O1B—C5B—N2B | 123.3 (5) |
O1A—C5A—C1A | 120.1 (5) | O1B—C5B—C1B | 120.6 (5) |
N2A—C5A—C1A | 115.7 (4) | N2B—C5B—C1B | 116.1 (4) |
N2A—C6A—C8A | 107.8 (4) | N2B—C6B—C8B | 109.0 (4) |
N2A—C6A—C7A | 112.2 (4) | N2B—C6B—C7B | 109.2 (4) |
C8A—C6A—C7A | 110.2 (4) | C8B—C6B—C7B | 110.9 (4) |
N2A—C6A—H61A | 108.8 | N2B—C6B—H61B | 109.2 |
C8A—C6A—H61A | 108.8 | C8B—C6B—H61B | 109.2 |
C7A—C6A—H61A | 108.8 | C7B—C6B—H61B | 109.2 |
O2A—C7A—C6A | 113.3 (4) | O2B—C7B—C6B | 112.5 (4) |
O2A—C7A—H71A | 108.9 | O2B—C7B—H71B | 109.1 |
C6A—C7A—H71A | 108.9 | C6B—C7B—H71B | 109.1 |
O2A—C7A—H72A | 108.9 | O2B—C7B—H72B | 109.1 |
C6A—C7A—H72A | 108.9 | C6B—C7B—H72B | 109.1 |
H71A—C7A—H72A | 107.7 | H71B—C7B—H72B | 107.8 |
O3A—C8A—O4A | 125.2 (5) | O4B—C8B—O3B | 124.3 (5) |
O3A—C8A—C6A | 118.6 (5) | O4B—C8B—C6B | 118.4 (4) |
O4A—C8A—C6A | 116.2 (4) | O3B—C8B—C6B | 117.2 (5) |
N1A—C1A—C5A—N2A | 145.6 (5) | N1B—C1B—C5B—N2B | 131.9 (5) |
C1A—C5A—N2A—C6A | 168.1 (5) | C1B—C5B—N2B—C6B | 178.4 (5) |
C5A—N2A—C6A—C8A | −164.8 (5) | C5B—N2B—C6B—C8B | −161.9 (5) |
N2A—C6A—C8A—O3A | −8.0 (7) | N2B—C6B—C8B—O3B | −15.5 (7) |
N1A—C1A—C2A—C3A | −64.2 (7) | N1B—C1B—C2B—C3B | −174.1 (5) |
C1A—C2A—C3A—S1A | −173.9 (4) | C1B—C2B—C3B—S1B | 176.3 (4) |
C2A—C3A—S1A—C4A | −78.0 (6) | C2B—C3B—S1B—C4B | −73.8 (6) |
N2A—C6A—C7A—O2A | 64.7 (6) | N2B—C6B—C7B—O2B | −165.2 (5) |
C6A—C7A—O2A—H5A | −66 (6) | C6B—C7B—O2B—H5B | 52 (6) |
C5A—C1A—C2A—C3A | 175.7 (5) | C5B—C1B—C2B—C3B | 66.4 (7) |
C6A—N2A—C5A—O1A | −8.7 (9) | C6B—N2B—C5B—O1B | −2.4 (9) |
N1A—C1A—C5A—O1A | −37.5 (7) | N1B—C1B—C5B—O1B | −47.3 (7) |
C2A—C1A—C5A—O1A | 82.3 (6) | C2B—C1B—C5B—O1B | 72.7 (7) |
C2A—C1A—C5A—N2A | −94.6 (6) | C2B—C1B—C5B—N2B | −108.0 (6) |
C5A—N2A—C6A—C7A | 73.6 (6) | C5B—N2B—C6B—C7B | 76.8 (6) |
C8A—C6A—C7A—O2A | −55.5 (6) | C8B—C6B—C7B—O2B | 74.6 (6) |
C7A—C6A—C8A—O3A | 114.8 (5) | N2B—C6B—C8B—O4B | 167.2 (5) |
N2A—C6A—C8A—O4A | 175.1 (5) | C7B—C6B—C8B—O4B | −72.5 (6) |
C7A—C6A—C8A—O4A | −62.1 (6) | C7B—C6B—C8B—O3B | 104.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O4Ai | 0.89 | 2.03 | 2.818 (7) | 148 |
N1A—H2A···O4Aii | 0.89 | 1.99 | 2.874 (7) | 170 |
N1A—H3A···O2Aiii | 0.89 | 1.93 | 2.815 (6) | 171 |
N2A—H4A···O3A | 0.86 | 2.17 | 2.582 (6) | 109 |
O2A—H5A···O1Wiv | 0.84 (3) | 1.92 (3) | 2.752 (5) | 172 (8) |
C6A—H61A···O3Av | 0.98 | 2.37 | 3.311 (6) | 162 |
N1B—H1B···O2Bvi | 0.89 | 1.97 | 2.824 (6) | 161 |
N1B—H2B···O4Bvii | 0.89 | 1.97 | 2.777 (7) | 151 |
N1B—H3B···O4Bviii | 0.89 | 2.17 | 3.041 (7) | 167 |
N2B—H4B···O3B | 0.86 | 2.23 | 2.600 (6) | 106 |
O2B—H5B···O3Bv | 0.84 (4) | 1.87 (4) | 2.671 (7) | 160 (8) |
C1B—H11B···O1Biv | 0.98 | 2.23 | 3.198 (7) | 170 |
C3B—H32B···S1Av | 0.97 | 2.90 | 3.833 (7) | 162 |
C6B—H61B···O3Bv | 0.98 | 2.32 | 3.114 (6) | 137 |
O1W—H1W···O1A | 0.86 (3) | 1.98 (4) | 2.773 (5) | 153 (6) |
O2W—H2W···O4B | 0.87 (3) | 1.96 (4) | 2.742 (7) | 150 (5) |
Symmetry codes: (i) x−1/2, y−1/2, z; (ii) x−1/2, y+1/2, z; (iii) −x+1, y, −z+1; (iv) x, y−1, z; (v) x, y+1, z; (vi) −x+1/2, y−1/2, −z; (vii) x+1/2, y−1/2, z; (viii) x+1/2, y+1/2, z. |
Experimental details
(IS) | (FS) | (MS) | |
Crystal data | |||
Chemical formula | C9H18N2O4·0.33H2O | C12H16N2O4 | C8H16N2O4S·0.34H2O |
Mr | 224.27 | 252.27 | 242.41 |
Crystal system, space group | Monoclinic, C2 | Monoclinic, P21 | Monoclinic, C2 |
Temperature (K) | 105 | 105 | 105 |
a, b, c (Å) | 16.9692 (11), 5.2167 (3), 12.4065 (8) | 7.6434 (7), 5.7609 (5), 13.4396 (12) | 16.791 (4), 5.0711 (11), 26.851 (6) |
β (°) | 90.942 (1) | 93.754 (4) | 100.926 (4) |
V (Å3) | 1098.11 (12) | 590.51 (9) | 2244.8 (8) |
Z | 4 | 2 | 8 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.11 | 0.11 | 0.29 |
Crystal size (mm) | 0.40 × 0.25 × 0.10 | 0.70 × 0.15 × 0.15 | 0.45 × 0.22 × 0.03 |
Data collection | |||
Diffractometer | Siemens SMART CCD area-detector | Siemens SMART CCD area-detector | Siemens SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) | Multi-scan (SADABS; Sheldrick, 1996) | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.858, 0.989 | 0.820, 0.984 | 0.744, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4482, 1454, 1373 | 5381, 2392, 2268 | 3325, 2849, 2445 |
Rint | 0.023 | 0.019 | 0.066 |
(sin θ/λ)max (Å−1) | 0.668 | 0.847 | 0.665 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.091, 1.10 | 0.031, 0.084, 1.06 | 0.073, 0.201, 1.54 |
No. of reflections | 1454 | 2392 | 2849 |
No. of parameters | 162 | 178 | 298 |
No. of restraints | 1 | 1 | 57 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.21 | 0.35, −0.21 | 0.58, −0.49 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXTL (Bruker, 2000), SHELXTL.
N1—C1—C6—N2 | 136.37 (16) | N1—C1—C2—C5 | 59.9 (3) |
C1—C6—N2—C7 | 175.27 (14) | C1—C2—C3—C4 | 166.7 (3) |
C6—N2—C7—C9 | −162.77 (16) | N2—C7—C8—O2 | −166.25 (15) |
N2—C7—C9—O3 | −17.1 (2) | C7—C8—O2—H5 | 45.9 (17) |
N1—C1—C2—C3 | −175.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.92 (3) | 1.95 (2) | 2.8353 (17) | 158 (2) |
N1—H2···O4ii | 0.92 (3) | 1.95 (3) | 2.777 (2) | 153 (2) |
N1—H3···O4iii | 0.89 (3) | 2.31 (3) | 3.187 (2) | 167.0 (18) |
N1—H3···O3iii | 0.89 (3) | 2.46 (2) | 2.9983 (17) | 119.7 (17) |
N2—H4···O3 | 0.81 (4) | 2.26 (2) | 2.6132 (18) | 106.0 (16) |
O2—H5···O3iv | 0.86 (3) | 1.88 (3) | 2.7258 (18) | 172 (2) |
C1—H11···O1v | 1.00 | 2.31 | 3.302 (2) | 174 |
C7—H71···O3iv | 1.00 | 2.44 | 3.240 (2) | 137 |
O1W—H1W···O4 | 0.88 (5) | 1.99 (4) | 2.771 (17) | 149 (4) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1; (ii) x−1/2, y+1/2, z; (iii) x−1/2, y−1/2, z; (iv) x, y−1, z; (v) x, y+1, z. |
N1—C1—C9—N2 | 126.45 (11) | C1—C2—C3—C4 | −108.05 (13) |
C1—C9—N2—C10 | −179.18 (10) | C1—C2—C3—C8 | 74.17 (15) |
C9—N2—C10—C12 | 146.35 (11) | N2—C10—C11—O2 | 167.83 (9) |
N2—C10—C12—O3 | −0.41 (17) | C10—C11—O2—H5 | 34.7 (14) |
N1—C1—C2—C3 | 164.51 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.89 (2) | 2.106 (19) | 2.8758 (12) | 144.9 (17) |
N1—H1···O1ii | 0.89 (2) | 2.55 (2) | 3.2262 (13) | 133.5 (16) |
N1—H2···O3iii | 0.917 (19) | 1.883 (18) | 2.7910 (12) | 170.2 (18) |
N1—H3···O4iv | 0.869 (19) | 2.006 (19) | 2.8384 (13) | 160.0 (19) |
N2—H4···O2ii | 0.85 (2) | 2.05 (2) | 2.8986 (13) | 178.0 (18) |
O2—H5···O4 | 0.85 (2) | 2.01 (2) | 2.7422 (13) | 144 (2) |
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+2. |
N1A—C1A—C5A—N2A | 145.6 (5) | N1B—C1B—C5B—N2B | 131.9 (5) |
C1A—C5A—N2A—C6A | 168.1 (5) | C1B—C5B—N2B—C6B | 178.4 (5) |
C5A—N2A—C6A—C8A | −164.8 (5) | C5B—N2B—C6B—C8B | −161.9 (5) |
N2A—C6A—C8A—O3A | −8.0 (7) | N2B—C6B—C8B—O3B | −15.5 (7) |
N1A—C1A—C2A—C3A | −64.2 (7) | N1B—C1B—C2B—C3B | −174.1 (5) |
C1A—C2A—C3A—S1A | −173.9 (4) | C1B—C2B—C3B—S1B | 176.3 (4) |
C2A—C3A—S1A—C4A | −78.0 (6) | C2B—C3B—S1B—C4B | −73.8 (6) |
N2A—C6A—C7A—O2A | 64.7 (6) | N2B—C6B—C7B—O2B | −165.2 (5) |
C6A—C7A—O2A—H5A | −66 (6) | C6B—C7B—O2B—H5B | 52 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O4Ai | 0.89 | 2.03 | 2.818 (7) | 148 |
N1A—H2A···O4Aii | 0.89 | 1.99 | 2.874 (7) | 170 |
N1A—H3A···O2Aiii | 0.89 | 1.93 | 2.815 (6) | 171 |
N2A—H4A···O3A | 0.86 | 2.17 | 2.582 (6) | 109 |
O2A—H5A···O1Wiv | 0.84 (3) | 1.92 (3) | 2.752 (5) | 172 (8) |
C6A—H61A···O3Av | 0.98 | 2.37 | 3.311 (6) | 162 |
N1B—H1B···O2Bvi | 0.89 | 1.97 | 2.824 (6) | 161 |
N1B—H2B···O4Bvii | 0.89 | 1.97 | 2.777 (7) | 151 |
N1B—H3B···O4Bviii | 0.89 | 2.17 | 3.041 (7) | 167 |
N2B—H4B···O3B | 0.86 | 2.23 | 2.600 (6) | 106 |
O2B—H5B···O3Bv | 0.84 (4) | 1.87 (4) | 2.671 (7) | 160 (8) |
C1B—H11B···O1Biv | 0.98 | 2.23 | 3.198 (7) | 170 |
C3B—H32B···S1Av | 0.97 | 2.90 | 3.833 (7) | 162 |
C6B—H61B···O3Bv | 0.98 | 2.32 | 3.114 (6) | 137 |
O1W—H1W···O1A | 0.86 (3) | 1.98 (4) | 2.773 (5) | 153 (6) |
O2W—H2W···O4B | 0.87 (3) | 1.96 (4) | 2.742 (7) | 150 (5) |
Symmetry codes: (i) x−1/2, y−1/2, z; (ii) x−1/2, y+1/2, z; (iii) −x+1, y, −z+1; (iv) x, y−1, z; (v) x, y+1, z; (vi) −x+1/2, y−1/2, −z; (vii) x+1/2, y−1/2, z; (viii) x+1/2, y+1/2, z. |
In a series of papers, we have focused on the crystal structures of dipeptides with two hydrophobic residues (Görbitz, 2003, and references therein). Recently, this investigation was extended to include compounds with one hydrophobic and one hydrophilic residue (Netland et al., 2004). The most interesting structure of such a mixed dipeptide is L-leucyl-L-serine (LS), which was found to form a completely new type of nanoporous structure (Görbitz et al., 2005). Glycyl-L-serine (Görbitz, 1999) and L-alanyl-L-serine (Jones et al., 1978) are not isostructural with LS. Furthermore, we have previously shown that L-valyl-L-serine crystallizes as a layered trihydrate (VS-3w) from aqueous solutions (Johansen et al., 2005), but that a nanoporous structure related, not to LS, but to the L-valyl-L-alanine family of isostructural dipeptides (Görbitz, 2003), is obtained when trifluoroethanol is used as the solvent (Görbitz, 2005). It is nevertheless conceivable that L-isoleucyl-L-serine (IS), L-phenylalanyl-L-serine (FS) or L-methionyl-L-serine (MS) could form crystals with LS-type packing arrangements. We present here the structures of these three dipeptides.
The crystal structures of IS, FS and MS are shown in Fig. 1, while torsion angles and hydrogen-bonding data are listed in Tables 1–6. There is an intramolecular hydrogen bond for FS; equivalent interactions occur for L-alanyl-L-threonine (Netland et al., 2004) and LS (Görbitz et al., 2005). The unit cells and the crystal-packing arrangements are shown in Figs. 2–4. A l l structures are non-porous and are divided into hydrophobic and hydrophilic layers. Each hydrophilic layer can in turn be divided into two hydrogen-bonded sheets, but the construction of individual sheets and the way they are connected differ.
An FS sheet includes intermolecular amino···carboxylate, amino..carbonyl and amide···hydroxyl interactions (Fig. 5 and Table 4). Two sheets are joined tightly together by N1—H3···O4 hydrogen bonds into a compact hydrophilic double-layer. This is a rare motif in the structures of enantiopure L–L dipeptides, since it requires that the main chains adopt unusual conformations, with both side chains on the same side of the peptide plane. In FS, this is achieved primarily by the 146° φ2 torsion angle (C9—N2—C10—C12; Table 3), which may be compared with the values of around -163° for IS and MS (Tables 1 and 5) that are typical for dipeptides in extended conformations.
The sheets of IS and MS (Fig. 5) are rather similar to the sheets of VS-3w (Johansen et al., 2005) and L-glutamyl-L-aspartic acid (Eggleston & Hodgson, 1985). Short >N2—H4···O1═C< contacts are, however, missing for IS and MS, while interactions involving the serine side chains have been added. In contrast with FS, adjacent sheets are not in direct contact through amino···carboxylate interactions. The presence of such hydrogen bonds is only compatible with a small inter-sheet separation, which in each case is effectively prevented by peptide main-chain conformations that put side chains on opposing sides of the peptide plane (Figs. 2 and 4). The sheets are instead connected by two types of bridges, one involving the co-crystallized water molecules and one involving the serine side chain.
There is a small difference between the independent hydrophobic layers in the MS structure. Layers formed by the peptide B molecules are largely identical to the IS layers, while in layers formed by A molecules, the hydroxyl H atoms of the serine side chains are donated to the water molecules embedded in the layer rather than to the main-chain carboxylate groups. Water molecule 1, in the A layer, is thus fixed by a total of four hydrogen bonds, and the refined occupancy is 1.00. Water molecule 2 and the water molecule of IS are not hydrogen-bond acceptors and thus are not fixed to the same extent. The refined occupancies are 0.354 (18) and 0.668 (9), respectively.
The methionine side chains in the two molecules of MS have different conformations: N1—C1—C2—C3 is gauche and trans in molecules A and B, respectively, while both molecules have C1—C2—C3—S trans and C2—C3—S—C4 gauche (Table 5). The hydrophobic layers, with contributions from both A and B molecules, contain C—H···S interactions that may be described as weak hydrogen bonds. The associated H···S distances range from 2.90 Å for C3B—H32B···S1A(x, y + 1, z) and up.