Download citation
Download citation
link to html
The title isomorphous compounds, tetra-μ-but-2-enoato-bis­[diaqua­(but-2-enoato)dysprosium(III)]–2,6-diamino­purine (1/2), [Dy2(C4H5O2)6(H2O)4]·2C5H6N6, and tetra-μ-but-2-enoato-bis­[diaqua­(but-2-enoato)holmium(III)]–2,6-diaminopurine (1/2), [Ho2(C4H5O2)6(H2O)4]·2C5H6N6, consist of [Ln(crot)3(H2O)2]2 dimers (crot is crotonate or but-2-enoate; Ln is the lanthanide cation), built up around inversion centres and completed by 2,6-diamino­purine mol­ecules. The lanthanide cation is coordinated by three chelating crotonate units and two water mol­ecules. One of the chelating carboxyl­ate groups acts also in a bridging mode sharing one O atom with both cations and the final result is a pair of DyO9 tricapped prismatic polyhedra linked to each other through a central (Dy—O)2 loop. A feature of the structures is the existence of a complex inter­molecular inter­action scheme involving two sets of tightly inter­linked non-inter­secting one-dimensional structures, one of them formed by the [Dy(crot)3(H2O)2]2 dimers (running along [100] and linked by O—H...O hydrogen bonds) and the second formed by 2,6-diamino­purine mol­ecules (evolving along [010] linked by N—H...N hydrogen bonds).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109037512/fg3130sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109037512/fg3130Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109037512/fg3130IIsup3.hkl
Contains datablock II

CCDC references: 760053; 760054

Comment top

We report here structural work on two isomorphous Ln complexes, formulated as [Ln(crot)3(H2O)2]2.2(dap) [crot is crotonate or but-2-enoate, C4H5O2; dap is 2,6-diaminopurine, C5H6N6; and Ln = Dy for compound (I) and Ho for (II)]. These are the first cases in which a free unsubstituted 2,6-diaminopurine molecule is reported to take part in a crystal structure, although some closely related substituted analogues have already been the subject of structural work (Singh & Hodgson, 1975; Simundza et al., 1970; Sakore et al., 1969 etc.). For the sake of simplicity we shall only describe the Dy isologue, (I), as representative of the pair of compounds, but numerical data for both compounds are freely available in the archived CIF.

The structure for the Dy complex, shown in Fig. 1, consists of [Dy(crot)3(H2O)2]2 dimers, along with 2,6-diaminopurine molecules. The dimer is build up around an inversion centre. The unique Dy cation is coordinated by three chelating crotonate units and two water molecules. One of the O atoms (O23) from one of the crotonate carboxylate groups acts also in a bridging mode, and the result is a pair of DyO9 polyhedra [with Dy—O distances in the range 2.3457 (17) to 2.5257 (17) Å] presenting a tricapped prismatic coordination geometry linked to form a dimer through a central (Dy—O)2 loop leading to a Dy···Dy distance of 4.0407 (2) Å. This type of carboxylate-linked [Ln(COO)3(H2O)2]2 dimer is well known in the literature: we could trace 36 of them in a Cambridge Structural Database search (CSD; 2009 Version; Allen, 2002), the vast majority (22 cases) with acetate and only one (an isomorphous family) with butenoate (Rizzi et al., 2003, Atria et al., 2006). The dimers are further linked by hydrogen bonding (see below).

The dimensions of the crotonate ligands and 2,6-diaminepurine molecule are normal, with non-H atoms in the latter one laying in a plane (within experimental error). The most significant deviation from planarity is to be found in the amine H atoms, with a conspicuous pyramidal arrangement around N2 (evidencing an N-atom hybridization with a significan sp3 contribution) and a rather flattened one in N6 (suggesting a predominat sp2 character). If N-pyramidality is measured by χN (the angle between the C—N vector and the NH2 plane; Allen et al., 1995), for which the ideal values are 0 (for pure sp2) and 54.7° (for pure sp3), the corresponding values for both N atoms in the case of (I) are χN2 = 42.3° (mostly sp3) and χN6 = 15.5° (mostly sp2). This is consistent with the C2—N2 bond length [1.360 (3)Å] being longer than the C6—N6 bond length [1.346 (3)Å], suggesting a smaller delocalization in the former. The existence of a large number of efficient hydrogen-bonding donors and acceptors in the structure leads to a complex intermolecular interaction scheme involving two sets of tightly interlinked, non-intersecting hydrogen-bonded one-dimensional structures, one of them running along the crystallographic a-axis direction and formed by the [Dy(crot)3(H2O)2]2 dimers, the second evolving along the b-axis direction and formed by 2,6-diaminopurine molecules.

Both types of chains embed two sets of inversion centres. In the case of the dimeric chain shown in Fig. 2, the same centre (site A1) that relates the two molecules in the dimer through a four-atom coordination loop also links them through an R22(8) hydrogen-bonded ring (Bernstein et al., 1995), almost at right angles to the former loop, via O1W—H1WA···O11i hydrogen bonds (Table 1). The second centre (site A2) links neighbouring dimers into chains through two centrosymmetric R22(8) motifs involving O1W—H1WB···O2Wv and O2W—H2A···O12v hydrogen bonds (Table 1) as well as two non-centrosymmetric R22(6) motifs. A much simpler situation arises in the 2,6-diaminopurine chain (Fig. 3), which also utilizes two independent inversion centres and gives rise to two almost identical centrosymmetric R22(8) motifs involving N2—H2A···N3iv and N6—H8A···N1iii hydrogen bonds, denoted as B1 and B2 in Fig. 3.

The two perpendicular, non-intersecting families of chains (the `dimeric' one, running parallel to [100] at y z 0, and the 2,6-diaminopurine one, parallel to [010] at x z 1/2) interact at their point of maximal approach through a variety of hydrogen bonds in which there are donors and acceptors on both sides (Fig. 3 and Table 1). These hydrogen bonds give rise to three noncentrosymmetric (sites C1, C3 and C4 in Fig. 3) and one centrosymmetric (site C2) hydrogen-bonded rings, with graph-set descriptors R44(14), R22(7), R32(9), R33(12) and R44(14), respectively.

There are also inter-dimeric interactions of the ππ type mediated by symmetry-related crotonate double bonds, as in the case between C21C31 and its (-x, -y + 1, -z) image, characterized by an intercentroid distance of 3.588 (1) Å and a slippage angle of 26.6 (1)°. These interactions link along the [001] direction the dimeric chains that run along [100].

Related literature top

For related literature, see: Allen (2002); Atria et al. (2006); Bernstein et al. (1995); Rizzi et al. (2003); Sakore et al. (1969); Simundza et al. (1970); Singh & Hodgson (1975).

Experimental top

Complexes (I) and (II) were synthesized by similar methods: a mixture of Ln2O3 (Ln = Dy or Ho, 1 mmol) and crotonic acid (3 mmol) was dissolved in water (100 mmol), and then the 2,6-diaminopurine ligand (1 mmol) dissolved in methanol (10 ml) was added. The resulting mixture was refluxed for 24 h, filtered while hot and then concentrated to 25 ml. The filtrate was left at room temperature. On standing, colorless crystals suitable for single-crystal X-ray diffraction appeared, which were used without further processing.

Refinement top

All H atoms were clearly seen in a difference Fourier; C—H and (non-amino) N—H groups were, however, subsequently idealized at their expected positions and allowed to ride (C—H = 0.93–0.98Å and N–H = 0.88Å). Amino N atoms were in a partially hybridized state, N6 being mostly sp2 and N2 being mostly sp3; the corresponding H-atom geometry around them followed this scheme with a distorted planar environment around N6 and an important pyramidalization around N2. These H atoms, as well as those corresponding to water molecules, were refined with metric restraints for a few cycles, after which they were allowed to ride. For all H atoms, isotropic displacement factors were taken as Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2002); data reduction: SAINT-NT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : A displacement ellipsoid plot of (I), drawn at the 40% probability level, with independent (symmetry-related) atoms indicated by bold (fine) bonds and filled (empty) ellipsoids. [Symmetry code: (i) -x, -y, -z.]
[Figure 2] Fig. 2. : A view of the packing of (I), projected down c, showing the `dimeric' chains and their internal hydrogen-bonding linkage (see text). For clarity, only the carboxylate end of the butenoate units have been drawn. [Symmetry codes: (i) -x, -y, -z; (v) -x + 1, -y, -z.]
[Figure 3] Fig. 3. : A view of the packing of (I), projected along the a axis, showing on the projection plane (running vertically, in hollow bonds) the `solvate' chains. The `dimeric' chains are perpendicular to the latter and are shown coming out of the plane (in bold, full bonds). Intra- and inter-chain hydrogen bonds are shown as broken lines. For clarity, only the carboxylate ends of the butenoate units have been drawn. [Symmetry codes: (i) -x, -y, -z; (ii) x, y + 1, z; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y, -z; (vi) -x + 1, -y + 1, -z; (vii) x - 1, y - 1, z.]
(I) tetra-µ-but-2-enoato-bis[diaqua(µ2-but-2-enoato)dysprosium(III)]–2,6- diaminopurine (1/2) top
Crystal data top
[Dy2(C4H5O2)6(H2O)4]·2C5H6N6Z = 1
Mr = 1207.86F(000) = 598
Triclinic, P1Dx = 1.792 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6441 (2) ÅCell parameters from 4220 reflections
b = 11.1173 (3) Åθ = 1.9–25.7°
c = 13.3944 (3) ŵ = 3.39 mm1
α = 101.234 (2)°T = 150 K
β = 107.521 (3)°Block, colourless
γ = 106.587 (2)°0.18 × 0.12 × 0.10 mm
V = 1119.51 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4676 independent reflections
Radiation source: fine-focus sealed tube4487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
phi and ω scansθmax = 27.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1110
Tmin = 0.60, Tmax = 0.71k = 1414
9254 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.9935P]
where P = (Fo2 + 2Fc2)/3
4676 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Dy2(C4H5O2)6(H2O)4]·2C5H6N6γ = 106.587 (2)°
Mr = 1207.86V = 1119.51 (5) Å3
Triclinic, P1Z = 1
a = 8.6441 (2) ÅMo Kα radiation
b = 11.1173 (3) ŵ = 3.39 mm1
c = 13.3944 (3) ÅT = 150 K
α = 101.234 (2)°0.18 × 0.12 × 0.10 mm
β = 107.521 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4676 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4487 reflections with I > 2σ(I)
Tmin = 0.60, Tmax = 0.71Rint = 0.013
9254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.06Δρmax = 1.43 e Å3
4676 reflectionsΔρmin = 0.57 e Å3
292 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.257311 (13)0.111249 (10)0.062817 (8)0.01299 (4)
O110.1170 (2)0.25418 (16)0.11431 (14)0.0173 (3)
O210.2650 (2)0.31148 (17)0.01214 (14)0.0186 (4)
C110.1808 (3)0.3380 (2)0.0702 (2)0.0163 (5)
C210.1601 (3)0.4664 (2)0.0901 (2)0.0205 (5)
H210.19260.52240.04880.025*
C310.0976 (4)0.5061 (3)0.1640 (2)0.0253 (6)
H310.06010.44600.20120.030*
C410.0810 (4)0.6370 (3)0.1938 (3)0.0348 (7)
H41A0.12850.69120.15260.052*
H41B0.14580.68140.27290.052*
H41C0.04240.62450.17550.052*
O120.5466 (2)0.09731 (17)0.16405 (14)0.0187 (4)
O220.5166 (2)0.28831 (16)0.19531 (14)0.0187 (4)
C120.6126 (3)0.2203 (2)0.2119 (2)0.0167 (5)
C220.7970 (3)0.2890 (3)0.2868 (2)0.0251 (6)
H220.83440.37990.32540.030*
C320.9119 (4)0.2331 (3)0.3033 (2)0.0282 (6)
H320.87240.14150.26600.034*
C421.1011 (4)0.3009 (4)0.3761 (3)0.0379 (7)
H42A1.12230.39100.41720.057*
H42B1.17190.30360.33100.057*
H42C1.13280.25240.42780.057*
O130.2538 (2)0.07059 (17)0.23275 (14)0.0176 (3)
O230.0012 (2)0.02447 (16)0.09435 (13)0.0160 (3)
C130.0967 (3)0.0049 (2)0.19510 (19)0.0147 (5)
C230.0180 (3)0.0758 (2)0.2606 (2)0.0184 (5)
H230.10260.12940.22830.022*
C330.1084 (3)0.0677 (3)0.3621 (2)0.0205 (5)
H330.22620.00780.39500.025*
C430.0401 (4)0.1454 (3)0.4297 (2)0.0277 (6)
H43A0.08390.19930.38840.042*
H43B0.05430.08490.49850.042*
H43C0.10520.20290.44640.042*
O1W0.2293 (2)0.11385 (17)0.00070 (15)0.0203 (4)
H1WA0.13040.17170.04300.024*
H1WB0.31100.14120.00090.024*
O2W0.4087 (2)0.11358 (17)0.05853 (15)0.0190 (4)
H2WA0.40320.03830.09040.023*
H2WB0.41290.16200.09990.023*
N10.5034 (3)0.8160 (2)0.45832 (17)0.0185 (4)
C20.4950 (3)0.6955 (3)0.4701 (2)0.0189 (5)
N20.4658 (3)0.6733 (2)0.56031 (19)0.0258 (5)
H2A0.48470.60470.57700.031*
H2B0.51410.74640.61610.031*
N30.5091 (3)0.5967 (2)0.40318 (17)0.0181 (4)
C40.5358 (3)0.6285 (2)0.3163 (2)0.0155 (5)
C50.5447 (3)0.7457 (2)0.2926 (2)0.0171 (5)
C60.5281 (3)0.8431 (2)0.3691 (2)0.0170 (5)
N60.5406 (3)0.9634 (2)0.35924 (19)0.0224 (5)
H6A0.52311.01860.40750.027*
H6B0.53570.97570.29560.027*
N70.5749 (3)0.7412 (2)0.19575 (18)0.0190 (4)
C80.5844 (3)0.6242 (2)0.1645 (2)0.0196 (5)
H80.60380.59300.09980.024*
N90.5633 (3)0.5532 (2)0.23454 (17)0.0178 (4)
H90.56680.47380.22850.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.01263 (6)0.01285 (6)0.01376 (6)0.00496 (4)0.00504 (4)0.00418 (4)
O110.0185 (9)0.0146 (8)0.0212 (9)0.0069 (7)0.0096 (7)0.0062 (7)
O210.0212 (9)0.0184 (9)0.0191 (9)0.0085 (7)0.0096 (7)0.0069 (7)
C110.0116 (11)0.0165 (11)0.0155 (11)0.0040 (9)0.0006 (9)0.0024 (9)
C210.0188 (12)0.0154 (12)0.0252 (13)0.0067 (10)0.0049 (10)0.0067 (10)
C310.0244 (14)0.0219 (13)0.0275 (14)0.0105 (11)0.0063 (11)0.0055 (11)
C410.0339 (16)0.0269 (15)0.0398 (18)0.0184 (13)0.0080 (14)0.0006 (13)
O120.0177 (9)0.0178 (9)0.0212 (9)0.0084 (7)0.0072 (7)0.0048 (7)
O220.0172 (8)0.0141 (8)0.0219 (9)0.0054 (7)0.0047 (7)0.0044 (7)
C120.0160 (12)0.0202 (12)0.0146 (11)0.0057 (9)0.0077 (9)0.0058 (9)
C220.0165 (13)0.0285 (14)0.0223 (14)0.0033 (11)0.0039 (11)0.0039 (11)
C320.0225 (14)0.0351 (16)0.0259 (14)0.0097 (12)0.0079 (12)0.0104 (12)
C420.0213 (15)0.056 (2)0.0341 (17)0.0137 (14)0.0058 (13)0.0162 (15)
O130.0141 (8)0.0192 (9)0.0170 (9)0.0035 (7)0.0041 (7)0.0070 (7)
O230.0164 (8)0.0167 (8)0.0147 (8)0.0064 (7)0.0047 (7)0.0058 (7)
C130.0175 (12)0.0150 (11)0.0150 (11)0.0088 (9)0.0079 (9)0.0043 (9)
C230.0156 (12)0.0181 (12)0.0214 (13)0.0040 (9)0.0077 (10)0.0081 (10)
C330.0202 (12)0.0207 (13)0.0203 (13)0.0062 (10)0.0093 (10)0.0052 (10)
C430.0309 (15)0.0316 (15)0.0240 (14)0.0090 (12)0.0130 (12)0.0154 (12)
O1W0.0149 (8)0.0162 (9)0.0276 (10)0.0059 (7)0.0069 (7)0.0033 (7)
O2W0.0266 (9)0.0160 (8)0.0217 (9)0.0113 (7)0.0133 (8)0.0096 (7)
N10.0198 (11)0.0192 (10)0.0168 (10)0.0075 (8)0.0067 (8)0.0061 (8)
C20.0161 (12)0.0219 (13)0.0180 (12)0.0053 (10)0.0059 (10)0.0080 (10)
N20.0363 (13)0.0235 (12)0.0209 (11)0.0123 (10)0.0124 (10)0.0094 (9)
N30.0184 (10)0.0175 (10)0.0175 (10)0.0056 (8)0.0054 (8)0.0074 (8)
C40.0126 (11)0.0144 (11)0.0167 (12)0.0029 (9)0.0040 (9)0.0045 (9)
C50.0144 (11)0.0181 (12)0.0164 (12)0.0035 (9)0.0045 (9)0.0061 (10)
C60.0135 (11)0.0157 (11)0.0193 (12)0.0040 (9)0.0039 (9)0.0058 (10)
N60.0314 (12)0.0201 (11)0.0227 (11)0.0138 (10)0.0136 (10)0.0100 (9)
N70.0205 (11)0.0166 (10)0.0210 (11)0.0060 (8)0.0097 (9)0.0065 (9)
C80.0198 (12)0.0203 (12)0.0194 (12)0.0057 (10)0.0098 (10)0.0064 (10)
N90.0208 (11)0.0140 (10)0.0190 (10)0.0065 (8)0.0081 (9)0.0050 (8)
Geometric parameters (Å, º) top
Dy1—O23i2.3455 (16)C13—C231.475 (3)
Dy1—O2W2.3733 (17)C23—C331.319 (4)
Dy1—O112.3770 (16)C23—H230.9500
Dy1—O1W2.3969 (17)C33—C431.500 (4)
Dy1—O222.4025 (17)C33—H330.9500
Dy1—O132.4126 (17)C43—H43A0.9800
Dy1—O212.4397 (17)C43—H43B0.9800
Dy1—O232.5021 (16)C43—H43C0.9800
Dy1—O122.5256 (17)O1W—H1WA0.8474
O11—C111.281 (3)O1W—H1WB0.8415
O21—C111.262 (3)O2W—H2WA0.8435
C11—C211.472 (3)O2W—H2WB0.8453
C21—C311.324 (4)N1—C61.349 (3)
C21—H210.9500N1—C21.363 (3)
C31—C411.493 (4)C2—N31.335 (3)
C31—H310.9500C2—N21.360 (3)
C41—H41A0.9800N2—H2A0.8800
C41—H41B0.9800N2—H2B0.8800
C41—H41C0.9800N3—C41.344 (3)
O12—C121.265 (3)C4—N91.368 (3)
O22—C121.273 (3)C4—C51.387 (3)
C12—C221.474 (3)C5—N71.393 (3)
C22—C321.302 (4)C5—C61.410 (3)
C22—H220.9500C6—N61.346 (3)
C32—C421.497 (4)N6—H6A0.8800
C32—H320.9500N6—H6B0.8800
C42—H42A0.9800N7—C81.320 (3)
C42—H42B0.9800C8—N91.359 (3)
C42—H42C0.9800C8—H80.9500
O13—C131.255 (3)N9—H90.8800
O23—C131.289 (3)
O23i—Dy1—O2W87.01 (6)C22—C32—C42125.5 (3)
O23i—Dy1—O1180.90 (6)C22—C32—H32117.2
O2W—Dy1—O11129.89 (6)C42—C32—H32117.2
O23i—Dy1—O1W77.97 (6)C32—C42—H42A109.5
O2W—Dy1—O1W76.10 (6)C32—C42—H42B109.5
O11—Dy1—O1W145.35 (6)H42A—C42—H42B109.5
O23i—Dy1—O22152.87 (6)C32—C42—H42C109.5
O2W—Dy1—O2286.39 (6)H42A—C42—H42C109.5
O11—Dy1—O2283.29 (6)H42B—C42—H42C109.5
O1W—Dy1—O22125.53 (6)C13—O13—Dy196.52 (14)
O23i—Dy1—O13120.01 (6)C13—O23—Dy1i155.67 (16)
O2W—Dy1—O13144.27 (6)C13—O23—Dy191.43 (14)
O11—Dy1—O1380.58 (6)Dy1i—O23—Dy1112.89 (6)
O1W—Dy1—O1386.61 (6)O13—C13—O23118.9 (2)
O22—Dy1—O1378.53 (6)O13—C13—C23122.5 (2)
O23i—Dy1—O2180.52 (6)O23—C13—C23118.5 (2)
O2W—Dy1—O2175.77 (6)C33—C23—C13122.6 (2)
O11—Dy1—O2154.36 (6)C33—C23—H23118.7
O1W—Dy1—O21145.21 (6)C13—C23—H23118.7
O22—Dy1—O2172.35 (6)C23—C33—C43125.2 (2)
O13—Dy1—O21128.00 (6)C23—C33—H33117.4
O23i—Dy1—O2367.11 (6)C43—C33—H33117.4
O2W—Dy1—O23143.48 (6)C33—C43—H43A109.5
O11—Dy1—O2372.91 (5)C33—C43—H43B109.5
O1W—Dy1—O2373.67 (6)H43A—C43—H43B109.5
O22—Dy1—O23128.17 (6)C33—C43—H43C109.5
O13—Dy1—O2352.93 (5)H43A—C43—H43C109.5
O21—Dy1—O23121.61 (5)H43B—C43—H43C109.5
O23i—Dy1—O12147.84 (6)Dy1—O1W—H1WA119.5
O2W—Dy1—O1273.15 (6)Dy1—O1W—H1WB126.4
O11—Dy1—O12131.23 (6)H1WA—O1W—H1WB112.2
O1W—Dy1—O1272.91 (6)Dy1—O2W—H2WA113.7
O22—Dy1—O1252.64 (6)Dy1—O2W—H2WB125.7
O13—Dy1—O1271.94 (6)H2WA—O2W—H2WB110.5
O21—Dy1—O12117.14 (6)C6—N1—C2118.5 (2)
O23—Dy1—O12115.84 (5)N3—C2—N2116.5 (2)
C11—O11—Dy193.81 (14)N3—C2—N1128.0 (2)
C11—O21—Dy191.39 (14)N2—C2—N1115.5 (2)
O21—C11—O11119.9 (2)C2—N2—H2A115.8
O21—C11—C21120.4 (2)C2—N2—H2B111.3
O11—C11—C21119.7 (2)H2A—N2—H2B114.5
C31—C21—C11122.0 (2)C2—N3—C4111.6 (2)
C31—C21—H21119.0N3—C4—N9127.2 (2)
C11—C21—H21119.0N3—C4—C5126.9 (2)
C21—C31—C41125.6 (3)N9—C4—C5105.9 (2)
C21—C31—H31117.2C4—C5—N7109.7 (2)
C41—C31—H31117.2C4—C5—C6116.5 (2)
C31—C41—H41A109.5N7—C5—C6133.7 (2)
C31—C41—H41B109.5N6—C6—N1118.3 (2)
H41A—C41—H41B109.5N6—C6—C5123.2 (2)
C31—C41—H41C109.5N1—C6—C5118.5 (2)
H41A—C41—H41C109.5C6—N6—H6A119.2
H41B—C41—H41C109.5C6—N6—H6B117.9
C12—O12—Dy191.33 (14)H6A—N6—H6B120.5
C12—O22—Dy196.88 (14)C8—N7—C5104.5 (2)
O12—C12—O22119.1 (2)N7—C8—N9112.9 (2)
O12—C12—C22122.6 (2)N7—C8—H8123.6
O22—C12—C22118.3 (2)N9—C8—H8123.6
C32—C22—C12124.2 (3)C8—N9—C4107.0 (2)
C32—C22—H22117.9C8—N9—H9126.5
C12—C22—H22117.9C4—N9—H9126.5
O23i—Dy1—O11—C1189.04 (14)O21—Dy1—O13—C13106.53 (14)
O2W—Dy1—O11—C1110.74 (16)O23—Dy1—O13—C132.44 (13)
O1W—Dy1—O11—C11141.95 (14)O12—Dy1—O13—C13142.72 (15)
O22—Dy1—O11—C1168.84 (14)O23i—Dy1—O23—C13179.49 (17)
O13—Dy1—O11—C11148.27 (14)O2W—Dy1—O23—C13131.21 (13)
O21—Dy1—O11—C114.23 (13)O11—Dy1—O23—C1393.37 (13)
O23—Dy1—O11—C11157.76 (14)O1W—Dy1—O23—C1395.92 (13)
O12—Dy1—O11—C1192.55 (15)O22—Dy1—O23—C1326.76 (15)
O23i—Dy1—O21—C1189.83 (14)O13—Dy1—O23—C132.36 (12)
O2W—Dy1—O21—C11179.12 (14)O21—Dy1—O23—C13118.54 (13)
O11—Dy1—O21—C114.28 (13)O12—Dy1—O23—C1334.75 (14)
O1W—Dy1—O21—C11142.19 (14)O23i—Dy1—O23—Dy1i0.0
O22—Dy1—O21—C1190.15 (14)O2W—Dy1—O23—Dy1i48.28 (12)
O13—Dy1—O21—C1131.04 (16)O11—Dy1—O23—Dy1i87.14 (7)
O23—Dy1—O21—C1134.29 (15)O1W—Dy1—O23—Dy1i83.57 (7)
O12—Dy1—O21—C11118.66 (13)O22—Dy1—O23—Dy1i153.75 (6)
Dy1—O21—C11—O117.5 (2)O13—Dy1—O23—Dy1i178.14 (10)
Dy1—O21—C11—C21170.7 (2)O21—Dy1—O23—Dy1i61.97 (9)
Dy1—O11—C11—O217.7 (2)O12—Dy1—O23—Dy1i144.74 (6)
Dy1—O11—C11—C21170.54 (19)Dy1—O13—C13—O234.3 (2)
O21—C11—C21—C31169.1 (2)Dy1—O13—C13—C23173.62 (19)
O11—C11—C21—C319.1 (4)Dy1i—O23—C13—O13177.0 (2)
C11—C21—C31—C41176.6 (3)Dy1—O23—C13—O134.1 (2)
O23i—Dy1—O12—C12151.05 (14)Dy1i—O23—C13—C235.0 (5)
O2W—Dy1—O12—C1296.81 (14)Dy1—O23—C13—C23173.88 (18)
O11—Dy1—O12—C1231.91 (17)O13—C13—C23—C331.9 (4)
O1W—Dy1—O12—C12177.06 (15)O23—C13—C23—C33176.0 (2)
O22—Dy1—O12—C121.74 (13)C13—C23—C33—C43174.8 (2)
O13—Dy1—O12—C1290.93 (14)C6—N1—C2—N30.3 (4)
O21—Dy1—O12—C1233.17 (15)C6—N1—C2—N2178.5 (2)
O23—Dy1—O12—C12121.35 (14)N2—C2—N3—C4179.3 (2)
O23i—Dy1—O22—C12146.00 (15)N1—C2—N3—C40.5 (4)
O2W—Dy1—O22—C1269.76 (14)C2—N3—C4—N9177.0 (2)
O11—Dy1—O22—C12159.37 (15)C2—N3—C4—C51.5 (3)
O1W—Dy1—O22—C120.32 (17)N3—C4—C5—N7179.7 (2)
O13—Dy1—O22—C1277.67 (14)N9—C4—C5—N70.9 (3)
O21—Dy1—O22—C12145.96 (15)N3—C4—C5—C61.6 (4)
O23—Dy1—O22—C1297.32 (15)N9—C4—C5—C6177.2 (2)
O12—Dy1—O22—C121.74 (13)C2—N1—C6—N6178.4 (2)
Dy1—O12—C12—O223.0 (2)C2—N1—C6—C50.3 (3)
Dy1—O12—C12—C22177.1 (2)C4—C5—C6—N6177.4 (2)
Dy1—O22—C12—O123.2 (2)N7—C5—C6—N60.1 (4)
Dy1—O22—C12—C22176.90 (19)C4—C5—C6—N10.6 (3)
O12—C12—C22—C326.2 (4)N7—C5—C6—N1178.1 (2)
O22—C12—C22—C32173.9 (3)C4—C5—N7—C80.4 (3)
C12—C22—C32—C42178.1 (3)C6—C5—N7—C8177.2 (3)
O23i—Dy1—O13—C134.42 (16)C5—N7—C8—N90.3 (3)
O2W—Dy1—O13—C13129.98 (14)N7—C8—N9—C40.9 (3)
O11—Dy1—O13—C1378.09 (14)N3—C4—N9—C8179.8 (2)
O1W—Dy1—O13—C1369.60 (14)C5—C4—N9—C81.1 (3)
O22—Dy1—O13—C13163.09 (14)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O220.881.912.775 (3)166
N6—H6B···O12ii0.882.433.257 (3)157
N6—H6A···N1iii0.882.423.300 (3)175
N2—H2A···N3iv0.882.323.190 (3)171
N2—H2B···O13iv0.882.433.256 (3)158
O1W—H1WB···O2Wv0.842.222.987 (2)152
O1W—H1WA···O11i0.851.912.716 (2)159
O2W—H2WB···N7vi0.851.842.681 (3)176
O2W—H2WA···O12v0.841.872.683 (2)163
C8—H8···O21vi0.952.373.128 (3)136
C23—H23···N7vii0.952.603.525 (3)164
C33—H33···N1iv0.952.573.469 (3)157
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x1, y1, z.
(II) tetra-µ-but-2-enoato-bis[diaqua(µ2-but-2-enoato)holmium(III)]–2,6- diaminopurine (1/2) top
Crystal data top
[Ho2(C4H5O2)6(H2O)4]·2C5H6N6Z = 1
Mr = 1212.72F(000) = 600
Triclinic, P1Dx = 1.794 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.644 (2) ÅCell parameters from 3982 reflections
b = 11.141 (3) Åθ = 2.0–24.9°
c = 13.412 (3) ŵ = 3.58 mm1
α = 101.360 (3)°T = 150 K
β = 107.537 (4)°Block, colourless
γ = 106.518 (4)°0.22 × 0.18 × 0.12 mm
V = 1122.9 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4612 independent reflections
Radiation source: fine-focus sealed tube4337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1110
Tmin = 0.40, Tmax = 0.65k = 1414
8804 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.35 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.9935P]
where P = (Fo2 + 2Fc2)/3
4612 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 2.52 e Å3
0 restraintsΔρmin = 1.73 e Å3
Crystal data top
[Ho2(C4H5O2)6(H2O)4]·2C5H6N6γ = 106.518 (4)°
Mr = 1212.72V = 1122.9 (5) Å3
Triclinic, P1Z = 1
a = 8.644 (2) ÅMo Kα radiation
b = 11.141 (3) ŵ = 3.58 mm1
c = 13.412 (3) ÅT = 150 K
α = 101.360 (3)°0.22 × 0.18 × 0.12 mm
β = 107.537 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4612 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4337 reflections with I > 2σ(I)
Tmin = 0.40, Tmax = 0.65Rint = 0.033
8804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.35Δρmax = 2.52 e Å3
4612 reflectionsΔρmin = 1.73 e Å3
292 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ho10.25679 (2)0.110951 (16)0.062756 (13)0.01423 (7)
O110.1172 (3)0.2539 (3)0.1150 (2)0.0203 (6)
O210.2634 (3)0.3097 (3)0.0114 (2)0.0191 (6)
C110.1800 (5)0.3367 (4)0.0702 (3)0.0157 (7)
C210.1596 (5)0.4651 (4)0.0899 (3)0.0212 (8)
H210.19240.52110.04880.025*
C310.0962 (5)0.5045 (4)0.1641 (3)0.0250 (9)
H310.05830.44450.20090.030*
C410.0799 (6)0.6356 (5)0.1939 (4)0.0364 (11)
H41A0.12120.68750.14950.055*
H41B0.15050.68230.27200.055*
H41C0.04250.62310.17960.055*
O120.5457 (3)0.0963 (3)0.1628 (2)0.0194 (6)
O220.5145 (3)0.2871 (3)0.1949 (2)0.0198 (6)
C120.6114 (5)0.2200 (4)0.2118 (3)0.0177 (8)
C220.7958 (5)0.2892 (5)0.2868 (4)0.0277 (9)
H220.83290.37990.32580.033*
C320.9114 (6)0.2328 (5)0.3029 (4)0.0295 (10)
H320.87230.14170.26460.035*
C421.1007 (6)0.3005 (6)0.3767 (4)0.0393 (12)
H42A1.12280.39190.41510.059*
H42B1.17260.29940.33260.059*
H42C1.13010.25460.43070.059*
O130.2536 (3)0.0706 (3)0.2318 (2)0.0194 (6)
O230.0009 (3)0.0248 (3)0.0934 (2)0.0170 (5)
C130.0970 (5)0.0048 (4)0.1952 (3)0.0162 (7)
C230.0178 (5)0.0754 (4)0.2600 (3)0.0206 (8)
H230.10260.12930.22750.025*
C330.1089 (5)0.0663 (4)0.3625 (3)0.0202 (8)
H330.22630.00580.39600.024*
C430.0396 (6)0.1452 (5)0.4295 (4)0.0291 (10)
H43A0.08200.20340.38590.044*
H43B0.04600.08520.49610.044*
H43C0.10980.19820.45020.044*
O1W0.2294 (3)0.1121 (3)0.0002 (2)0.0208 (6)
H1WA0.13050.17000.04260.025*
H1WB0.31110.13950.00130.025*
O2W0.4071 (3)0.1132 (3)0.0584 (2)0.0185 (6)
H2WA0.40160.03790.09020.022*
H2WB0.41130.16160.09970.022*
N10.5042 (4)0.8160 (3)0.4581 (3)0.0194 (7)
C20.4952 (5)0.6949 (4)0.4698 (3)0.0197 (8)
N20.4659 (5)0.6736 (4)0.5604 (3)0.0258 (8)
H2A0.48480.60490.57710.031*
H2B0.51410.74670.61610.031*
N30.5087 (4)0.5965 (3)0.4029 (3)0.0191 (7)
C40.5350 (5)0.6282 (4)0.3158 (3)0.0166 (7)
C50.5453 (5)0.7452 (4)0.2924 (3)0.0174 (8)
C60.5279 (5)0.8428 (4)0.3685 (3)0.0183 (8)
N60.5404 (5)0.9631 (3)0.3591 (3)0.0240 (7)
H6A0.52291.01830.40730.029*
H6B0.53550.97540.29540.029*
N70.5741 (4)0.7403 (3)0.1949 (3)0.0207 (7)
C80.5838 (5)0.6241 (4)0.1642 (3)0.0197 (8)
H80.60310.59280.09950.024*
N90.5632 (4)0.5530 (3)0.2341 (3)0.0186 (7)
H90.56730.47400.22800.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.01397 (10)0.01972 (10)0.01286 (10)0.00658 (7)0.00691 (7)0.00974 (7)
O110.0211 (14)0.0245 (14)0.0219 (14)0.0095 (11)0.0122 (11)0.0134 (12)
O210.0195 (14)0.0248 (14)0.0211 (14)0.0107 (11)0.0114 (11)0.0147 (11)
C110.0135 (17)0.0227 (19)0.0122 (17)0.0071 (14)0.0032 (14)0.0103 (15)
C210.0171 (19)0.024 (2)0.024 (2)0.0081 (15)0.0062 (16)0.0109 (16)
C310.023 (2)0.025 (2)0.026 (2)0.0092 (17)0.0076 (17)0.0080 (17)
C410.036 (3)0.035 (3)0.039 (3)0.022 (2)0.011 (2)0.006 (2)
O120.0183 (14)0.0236 (14)0.0207 (14)0.0102 (11)0.0084 (11)0.0109 (11)
O220.0213 (14)0.0215 (14)0.0186 (13)0.0083 (11)0.0076 (11)0.0099 (11)
C120.0187 (19)0.030 (2)0.0111 (17)0.0104 (16)0.0090 (14)0.0122 (15)
C220.018 (2)0.036 (2)0.026 (2)0.0077 (17)0.0053 (17)0.0119 (19)
C320.026 (2)0.040 (3)0.023 (2)0.0121 (19)0.0083 (18)0.0125 (19)
C420.020 (2)0.064 (3)0.036 (3)0.015 (2)0.008 (2)0.024 (3)
O130.0168 (14)0.0250 (14)0.0159 (13)0.0047 (11)0.0058 (10)0.0103 (11)
O230.0159 (13)0.0225 (14)0.0150 (13)0.0060 (10)0.0065 (10)0.0110 (11)
C130.0175 (18)0.0213 (19)0.0148 (17)0.0113 (15)0.0072 (14)0.0082 (15)
C230.0168 (19)0.025 (2)0.024 (2)0.0051 (15)0.0104 (16)0.0148 (17)
C330.021 (2)0.027 (2)0.0176 (19)0.0070 (16)0.0121 (16)0.0116 (16)
C430.034 (2)0.040 (3)0.022 (2)0.013 (2)0.0158 (18)0.0185 (19)
O1W0.0150 (13)0.0244 (14)0.0259 (15)0.0098 (11)0.0079 (11)0.0103 (12)
O2W0.0252 (15)0.0229 (14)0.0211 (14)0.0130 (11)0.0176 (12)0.0159 (11)
N10.0206 (17)0.0238 (17)0.0176 (16)0.0096 (13)0.0076 (13)0.0113 (13)
C20.0152 (18)0.028 (2)0.0174 (19)0.0055 (15)0.0059 (15)0.0139 (16)
N20.036 (2)0.0302 (19)0.0192 (17)0.0131 (16)0.0160 (15)0.0157 (15)
N30.0191 (17)0.0242 (17)0.0166 (16)0.0075 (13)0.0068 (13)0.0119 (13)
C40.0153 (18)0.0213 (19)0.0118 (17)0.0039 (14)0.0039 (14)0.0083 (15)
C50.0161 (18)0.0232 (19)0.0150 (18)0.0054 (15)0.0065 (14)0.0124 (15)
C60.0123 (18)0.0237 (19)0.0175 (18)0.0066 (14)0.0022 (14)0.0088 (15)
N60.034 (2)0.0277 (18)0.0225 (18)0.0166 (15)0.0171 (15)0.0161 (15)
N70.0215 (17)0.0256 (17)0.0180 (16)0.0071 (14)0.0096 (13)0.0120 (14)
C80.023 (2)0.0228 (19)0.0158 (18)0.0056 (15)0.0110 (15)0.0094 (15)
N90.0201 (17)0.0216 (16)0.0176 (16)0.0067 (13)0.0085 (13)0.0127 (13)
Geometric parameters (Å, º) top
Ho1—O23i2.335 (3)O13—C131.252 (5)
Ho1—O2W2.365 (3)O23—C131.302 (4)
Ho1—O112.376 (3)C13—C231.471 (5)
Ho1—O1W2.380 (3)C23—C331.330 (5)
Ho1—O222.391 (3)C23—H230.9500
Ho1—O132.403 (3)C33—C431.508 (5)
Ho1—O212.436 (3)C33—H330.9500
Ho1—O232.498 (3)C43—H43A0.9800
Ho1—O122.522 (3)C43—H43B0.9800
Ho1—C112.769 (4)C43—H43C0.9800
Ho1—C132.844 (4)O1W—H1WA0.8477
Ho1—C122.846 (4)O1W—H1WB0.8416
O11—C111.279 (4)O2W—H2WA0.8443
O21—C111.268 (4)O2W—H2WB0.8474
C11—C211.472 (5)N1—C61.353 (5)
C21—C311.333 (6)N1—C21.372 (5)
C21—H210.9500C2—N31.330 (5)
C31—C411.494 (6)C2—N21.364 (5)
C31—H310.9500N2—H2A0.8818
C41—H41A0.9800N2—H2B0.8803
C41—H41B0.9800N3—C41.348 (5)
C41—H41C0.9800C4—N91.370 (5)
O12—C121.275 (5)C4—C51.385 (5)
O22—C121.273 (5)C5—N71.397 (5)
C12—C221.475 (5)C5—C61.412 (6)
C22—C321.312 (6)C6—N61.348 (5)
C22—H220.9500N6—H6A0.8802
C32—C421.501 (6)N6—H6B0.8814
C32—H320.9500N7—C81.314 (5)
C42—H42A0.9800C8—N91.360 (5)
C42—H42B0.9800C8—H80.9500
C42—H42C0.9800N9—H90.8800
O23i—Ho1—O2W87.01 (9)C31—C41—H41B109.5
O23i—Ho1—O1181.00 (9)H41A—C41—H41B109.5
O2W—Ho1—O11129.89 (9)C31—C41—H41C109.5
O23i—Ho1—O1W78.12 (9)H41A—C41—H41C109.5
O2W—Ho1—O1W76.17 (9)H41B—C41—H41C109.5
O11—Ho1—O1W145.46 (9)C12—O12—Ho191.0 (2)
O23i—Ho1—O22152.83 (9)C12—O22—Ho197.2 (2)
O2W—Ho1—O2286.56 (9)O22—C12—O12118.8 (3)
O11—Ho1—O2283.03 (9)O22—C12—C22118.4 (4)
O1W—Ho1—O22125.53 (9)O12—C12—C22122.8 (4)
O23i—Ho1—O13119.94 (9)O22—C12—Ho156.45 (19)
O2W—Ho1—O13144.35 (9)O12—C12—Ho162.38 (19)
O11—Ho1—O1380.47 (9)C22—C12—Ho1174.2 (3)
O1W—Ho1—O1386.51 (9)C32—C22—C12123.8 (4)
O22—Ho1—O1378.49 (9)C32—C22—H22118.1
O23i—Ho1—O2180.23 (9)C12—C22—H22118.1
O2W—Ho1—O2175.54 (9)C22—C32—C42125.3 (5)
O11—Ho1—O2154.56 (9)C22—C32—H32117.3
O1W—Ho1—O21144.99 (9)C42—C32—H32117.3
O22—Ho1—O2172.60 (9)C32—C42—H42A109.5
O13—Ho1—O21128.31 (9)C32—C42—H42B109.5
O23i—Ho1—O2366.89 (10)H42A—C42—H42B109.5
O2W—Ho1—O23143.26 (9)C32—C42—H42C109.5
O11—Ho1—O2373.05 (9)H42A—C42—H42C109.5
O1W—Ho1—O2373.54 (9)H42B—C42—H42C109.5
O22—Ho1—O23128.27 (9)C13—O13—Ho197.2 (2)
O13—Ho1—O2353.09 (8)C13—O23—Ho1i155.5 (2)
O21—Ho1—O23121.62 (9)C13—O23—Ho191.4 (2)
O23i—Ho1—O12147.64 (9)Ho1i—O23—Ho1113.11 (10)
O2W—Ho1—O1273.02 (9)O13—C13—O23118.2 (3)
O11—Ho1—O12131.33 (9)O13—C13—C23123.4 (3)
O1W—Ho1—O1272.60 (9)O23—C13—C23118.3 (3)
O22—Ho1—O1252.94 (9)O13—C13—Ho156.93 (19)
O13—Ho1—O1272.14 (9)O23—C13—Ho161.41 (19)
O21—Ho1—O12117.37 (9)C23—C13—Ho1174.7 (3)
O23—Ho1—O12115.96 (9)C33—C23—C13122.3 (4)
O23i—Ho1—C1181.37 (10)C33—C23—H23118.9
O2W—Ho1—C11102.77 (10)C13—C23—H23118.9
O11—Ho1—C1127.45 (10)C23—C33—C43124.8 (4)
O1W—Ho1—C11159.49 (10)C23—C33—H33117.6
O22—Ho1—C1174.39 (10)C43—C33—H33117.6
O13—Ho1—C11103.99 (10)C33—C43—H43A109.5
O21—Ho1—C1127.24 (10)C33—C43—H43B109.5
O23—Ho1—C1198.47 (10)H43A—C43—H43B109.5
O12—Ho1—C11127.17 (10)C33—C43—H43C109.5
O23i—Ho1—C1394.11 (10)H43A—C43—H43C109.5
O2W—Ho1—C13153.41 (10)H43B—C43—H43C109.5
O11—Ho1—C1376.31 (10)Ho1—O1W—H1WA119.5
O1W—Ho1—C1378.08 (10)Ho1—O1W—H1WB126.5
O22—Ho1—C13103.29 (10)H1WA—O1W—H1WB112.2
O13—Ho1—C1325.90 (10)Ho1—O2W—H2WA113.6
O21—Ho1—C13130.86 (10)Ho1—O2W—H2WB125.8
O23—Ho1—C1327.22 (9)H2WA—O2W—H2WB110.5
O12—Ho1—C1393.08 (10)C6—N1—C2118.6 (3)
C11—Ho1—C13103.66 (11)N3—C2—N2116.9 (4)
O23i—Ho1—C12165.03 (10)N3—C2—N1127.8 (4)
O2W—Ho1—C1278.08 (10)N2—C2—N1115.2 (4)
O11—Ho1—C12107.65 (10)C2—N2—H2A115.5
O1W—Ho1—C1299.19 (10)C2—N2—H2B111.5
O22—Ho1—C1226.34 (10)H2A—N2—H2B114.5
O13—Ho1—C1274.22 (9)C2—N3—C4111.6 (3)
O21—Ho1—C1294.70 (10)N3—C4—N9127.1 (3)
O23—Ho1—C12126.84 (9)N3—C4—C5127.2 (4)
O12—Ho1—C1226.62 (10)N9—C4—C5105.7 (3)
C11—Ho1—C12100.60 (11)C4—C5—N7110.0 (3)
C13—Ho1—C1299.77 (10)C4—C5—C6116.6 (3)
C11—O11—Ho193.6 (2)N7—C5—C6133.4 (4)
C11—O21—Ho191.2 (2)N6—C6—N1118.1 (4)
O21—C11—O11120.1 (3)N6—C6—C5123.7 (4)
O21—C11—C21120.0 (3)N1—C6—C5118.2 (3)
O11—C11—C21119.9 (3)C6—N6—H6A119.4
O21—C11—Ho161.59 (19)C6—N6—H6B117.8
O11—C11—Ho158.90 (19)H6A—N6—H6B120.5
C21—C11—Ho1171.8 (3)C8—N7—C5104.2 (3)
C31—C21—C11121.5 (4)N7—C8—N9113.2 (3)
C31—C21—H21119.3N7—C8—H8123.4
C11—C21—H21119.3N9—C8—H8123.4
C21—C31—C41125.2 (4)C8—N9—C4106.8 (3)
C21—C31—H31117.4C8—N9—H9126.6
C41—C31—H31117.4C4—N9—H9126.6
C31—C41—H41A109.5
O23i—Ho1—O11—C1188.6 (2)C13—Ho1—C12—O1277.2 (2)
O2W—Ho1—O11—C1110.2 (3)O22—C12—C22—C32173.6 (4)
O1W—Ho1—O11—C11141.9 (2)O12—C12—C22—C325.8 (7)
O22—Ho1—O11—C1169.4 (2)C12—C22—C32—C42178.8 (4)
O13—Ho1—O11—C11148.8 (2)O23i—Ho1—O13—C134.5 (3)
O21—Ho1—O11—C114.22 (19)O2W—Ho1—O13—C13129.9 (2)
O23—Ho1—O11—C11157.0 (2)O11—Ho1—O13—C1378.3 (2)
O12—Ho1—O11—C1193.0 (2)O1W—Ho1—O13—C1369.6 (2)
C13—Ho1—O11—C11174.9 (2)O22—Ho1—O13—C13163.0 (2)
C12—Ho1—O11—C1178.8 (2)O21—Ho1—O13—C13106.4 (2)
O23i—Ho1—O21—C1190.1 (2)O23—Ho1—O13—C132.4 (2)
O2W—Ho1—O21—C11179.5 (2)O12—Ho1—O13—C13142.5 (2)
O11—Ho1—O21—C114.25 (19)C11—Ho1—O13—C1392.5 (2)
O1W—Ho1—O21—C11142.5 (2)C12—Ho1—O13—C13170.2 (2)
O22—Ho1—O21—C1189.6 (2)O23i—Ho1—O23—C13179.8 (3)
O13—Ho1—O21—C1130.5 (2)O2W—Ho1—O23—C13131.6 (2)
O23—Ho1—O21—C1135.1 (2)O11—Ho1—O23—C1393.0 (2)
O12—Ho1—O21—C11118.7 (2)O1W—Ho1—O23—C1395.9 (2)
C13—Ho1—O21—C113.1 (3)O22—Ho1—O23—C1326.7 (2)
C12—Ho1—O21—C11104.1 (2)O13—Ho1—O23—C132.3 (2)
Ho1—O21—C11—O117.5 (3)O21—Ho1—O23—C13118.9 (2)
Ho1—O21—C11—C21170.8 (3)O12—Ho1—O23—C1335.3 (2)
Ho1—O11—C11—O217.7 (3)C11—Ho1—O23—C13103.4 (2)
Ho1—O11—C11—C21170.5 (3)C12—Ho1—O23—C136.7 (3)
O23i—Ho1—C11—O2185.4 (2)O23i—Ho1—O23—Ho1i0.0
O2W—Ho1—C11—O210.5 (2)O2W—Ho1—O23—Ho1i48.19 (19)
O11—Ho1—C11—O21172.5 (3)O11—Ho1—O23—Ho1i87.26 (12)
O1W—Ho1—C11—O2185.1 (3)O1W—Ho1—O23—Ho1i83.84 (12)
O22—Ho1—C11—O2182.2 (2)O22—Ho1—O23—Ho1i153.56 (10)
O13—Ho1—C11—O21155.8 (2)O13—Ho1—O23—Ho1i177.97 (16)
O23—Ho1—C11—O21150.3 (2)O21—Ho1—O23—Ho1i61.35 (14)
O12—Ho1—C11—O2177.8 (2)O12—Ho1—O23—Ho1i144.45 (10)
C13—Ho1—C11—O21177.6 (2)C11—Ho1—O23—Ho1i76.79 (12)
C12—Ho1—C11—O2179.5 (2)C13—Ho1—O23—Ho1i179.8 (3)
O23i—Ho1—C11—O1187.1 (2)C12—Ho1—O23—Ho1i173.08 (11)
O2W—Ho1—C11—O11172.0 (2)Ho1—O13—C13—O234.1 (4)
O1W—Ho1—C11—O1187.4 (3)Ho1—O13—C13—C23173.7 (3)
O22—Ho1—C11—O11105.3 (2)Ho1i—O23—C13—O13176.6 (4)
O13—Ho1—C11—O1131.8 (2)Ho1—O23—C13—O133.9 (3)
O21—Ho1—C11—O11172.5 (3)Ho1i—O23—C13—C235.5 (8)
O23—Ho1—C11—O1122.2 (2)Ho1—O23—C13—C23174.0 (3)
O12—Ho1—C11—O11109.8 (2)Ho1i—O23—C13—Ho1179.5 (6)
C13—Ho1—C11—O115.1 (2)O23i—Ho1—C13—O13176.1 (2)
C12—Ho1—C11—O11108.0 (2)O2W—Ho1—C13—O1392.4 (3)
O21—C11—C21—C31169.8 (4)O11—Ho1—C13—O1396.4 (2)
O11—C11—C21—C318.4 (6)O1W—Ho1—C13—O13107.0 (2)
C11—C21—C31—C41176.5 (4)O22—Ho1—C13—O1317.1 (2)
O23i—Ho1—O12—C12151.6 (2)O21—Ho1—C13—O1395.5 (2)
O2W—Ho1—O12—C1297.3 (2)O23—Ho1—C13—O13175.9 (4)
O11—Ho1—O12—C1231.3 (2)O12—Ho1—C13—O1335.5 (2)
O1W—Ho1—O12—C12177.7 (2)C11—Ho1—C13—O1394.0 (2)
O22—Ho1—O12—C121.43 (19)C12—Ho1—C13—O139.6 (2)
O13—Ho1—O12—C1290.3 (2)O13—C13—C23—C331.6 (6)
O21—Ho1—O12—C1234.2 (2)O23—C13—C23—C33176.3 (4)
O23—Ho1—O12—C12121.1 (2)C13—C23—C33—C43174.3 (4)
C11—Ho1—O12—C123.9 (3)C6—N1—C2—N30.6 (6)
C13—Ho1—O12—C12105.8 (2)C6—N1—C2—N2178.1 (3)
O23i—Ho1—O22—C12146.4 (2)N2—C2—N3—C4179.1 (3)
O2W—Ho1—O22—C1269.8 (2)N1—C2—N3—C40.4 (6)
O11—Ho1—O22—C12159.3 (2)C2—N3—C4—N9176.5 (4)
O1W—Ho1—O22—C120.5 (3)C2—N3—C4—C51.1 (5)
O13—Ho1—O22—C1277.6 (2)N3—C4—C5—N7179.9 (4)
O21—Ho1—O22—C12145.7 (2)N9—C4—C5—N71.9 (4)
O23—Ho1—O22—C1297.4 (2)N3—C4—C5—C60.7 (6)
O12—Ho1—O22—C121.4 (2)N9—C4—C5—C6177.3 (3)
C11—Ho1—O22—C12174.1 (2)C2—N1—C6—N6178.6 (3)
C13—Ho1—O22—C1285.2 (2)C2—N1—C6—C51.1 (5)
Ho1—O22—C12—O122.6 (4)C4—C5—C6—N6177.8 (4)
O23i—Ho1—C12—O1280.5 (4)N7—C5—C6—N61.1 (7)
O2W—Ho1—C12—O1275.8 (2)C4—C5—C6—N10.5 (5)
O11—Ho1—C12—O12155.8 (2)N7—C5—C6—N1178.5 (4)
O1W—Ho1—C12—O122.2 (2)C4—C5—N7—C81.2 (4)
O22—Ho1—C12—O12177.4 (4)C6—C5—N7—C8177.8 (4)
O13—Ho1—C12—O1281.5 (2)C5—N7—C8—N90.1 (4)
O21—Ho1—C12—O12150.0 (2)N7—C8—N9—C41.1 (5)
O23—Ho1—C12—O1274.1 (2)N3—C4—N9—C8179.8 (4)
C11—Ho1—C12—O12176.8 (2)C5—C4—N9—C81.8 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O220.881.932.788 (4)166
N6—H6B···O12ii0.882.443.272 (4)157
N6—H6A···N1iii0.882.433.308 (5)175
N2—H2A···N3iv0.882.333.199 (5)171
N2—H2B···O13iv0.882.433.262 (5)158
O1W—H1WB···O2Wv0.842.233.005 (4)152
O1W—H1WA···O11i0.851.912.722 (4)160
O2W—H2WB···N7vi0.851.852.693 (4)176
O2W—H2WA···O12v0.841.862.678 (4)162
C8—H8···O21vi0.952.383.136 (5)136
C23—H23···N7vii0.952.613.534 (5)164
C33—H33···N1iv0.952.563.457 (5)158
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x1, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Dy2(C4H5O2)6(H2O)4]·2C5H6N6[Ho2(C4H5O2)6(H2O)4]·2C5H6N6
Mr1207.861212.72
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)150150
a, b, c (Å)8.6441 (2), 11.1173 (3), 13.3944 (3)8.644 (2), 11.141 (3), 13.412 (3)
α, β, γ (°)101.234 (2), 107.521 (3), 106.587 (2)101.360 (3), 107.537 (4), 106.518 (4)
V3)1119.51 (5)1122.9 (5)
Z11
Radiation typeMo KαMo Kα
µ (mm1)3.393.58
Crystal size (mm)0.18 × 0.12 × 0.100.22 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.60, 0.710.40, 0.65
No. of measured, independent and
observed [I > 2σ(I)] reflections
9254, 4676, 4487 8804, 4612, 4337
Rint0.0130.033
(sin θ/λ)max1)0.6560.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.06 0.029, 0.072, 1.35
No. of reflections46764612
No. of parameters292292
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.572.52, 1.73

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O220.881.912.775 (3)166.4
N6—H6B···O12i0.882.433.257 (3)157.1
N6—H6A···N1ii0.882.423.300 (3)175.3
N2—H2A···N3iii0.882.323.190 (3)170.5
N2—H2B···O13iii0.882.433.256 (3)157.6
O1W—H1WB···O2Wiv0.842.222.987 (2)152.0
O1W—H1WA···O11v0.851.912.716 (2)159.3
O2W—H2WB···N7vi0.851.842.681 (3)176.1
O2W—H2WA···O12iv0.841.872.683 (2)162.5
C8—H8···O21vi0.952.373.128 (3)136.4
C23—H23···N7vii0.952.603.525 (3)164.3
C33—H33···N1iii0.952.573.469 (3)157.0
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z; (vi) x+1, y+1, z; (vii) x1, y1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O220.881.932.788 (4)165.7
N6—H6B···O12i0.882.443.272 (4)157.4
N6—H6A···N1ii0.882.433.308 (5)175.4
N2—H2A···N3iii0.882.333.199 (5)170.6
N2—H2B···O13iii0.882.433.262 (5)157.6
O1W—H1WB···O2Wiv0.842.233.005 (4)152.4
O1W—H1WA···O11v0.851.912.722 (4)159.8
O2W—H2WB···N7vi0.851.852.693 (4)176.1
O2W—H2WA···O12iv0.841.862.678 (4)161.9
C8—H8···O21vi0.952.383.136 (5)135.9
C23—H23···N7vii0.952.613.534 (5)164.0
C33—H33···N1iii0.952.563.457 (5)157.8
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z; (vi) x+1, y+1, z; (vii) x1, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds