Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112018598/fg3242sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270112018598/fg3242Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270112018598/fg3242IIsup3.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112018598/fg3242Isup4.cml | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112018598/fg3242IIsup5.cml |
CCDC references: 889373; 889374
Compounds (I) and (II) were synthesized from commercially available 5-acetylthiophen-2-ylboronic acid and 4-formylphenylboronic acid (Sigma–Aldrich Co.) by reaction with the corresponding diols (Schnürch et al., 2007). Colourless crystals of both compounds were grown from a petroleum ether–tetrahydrofuran [Solvent ratio?] solution kept at 277 K.
C-bound H atoms were placed in idealized positions, with C—H = 0.93 and 0.98 Å for aromatic and methine groups, respectively, and 0.96 Å for methyl groups, and refined as riding, with Uiso(H) = 1.2Ueq(C) for for aromatic and methine groups and 1.5Ueq(C) for methyl groups.
For both compounds, data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: CrystalStructure (Rigaku/MSC, 2005) and SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
C10H13BO3S | F(000) = 472 |
Mr = 224.07 | Dx = 1.226 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 836 reflections |
a = 6.038 (3) Å | θ = 2.0–27.5° |
b = 10.286 (4) Å | µ = 0.25 mm−1 |
c = 20.096 (8) Å | T = 293 K |
β = 103.390 (16)° | Block, colourless |
V = 1214.2 (9) Å3 | 0.42 × 0.33 × 0.22 mm |
Z = 4 |
Rigaku AFC-7S Mercury diffractometer | 2365 independent reflections |
Radiation source: Normal-focus sealed tube | 1479 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
ω scans | θmax = 27.7°, θmin = 2.1° |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −6→6 |
Tmin = 0.962, Tmax = 0.980 | k = −12→13 |
13808 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0619P)2 + 0.3633P] where P = (Fo2 + 2Fc2)/3 |
2365 reflections | (Δ/σ)max < 0.001 |
139 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C10H13BO3S | V = 1214.2 (9) Å3 |
Mr = 224.07 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.038 (3) Å | µ = 0.25 mm−1 |
b = 10.286 (4) Å | T = 293 K |
c = 20.096 (8) Å | 0.42 × 0.33 × 0.22 mm |
β = 103.390 (16)° |
Rigaku AFC-7S Mercury diffractometer | 2365 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 1479 reflections with I > 2σ(I) |
Tmin = 0.962, Tmax = 0.980 | Rint = 0.060 |
13808 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.18 e Å−3 |
2365 reflections | Δρmin = −0.27 e Å−3 |
139 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.08116 (13) | −0.06102 (8) | 0.41076 (4) | 0.0722 (3) | |
O1 | −0.2449 (4) | 0.2032 (3) | 0.33680 (13) | 0.0985 (9) | |
O2 | 0.1025 (4) | 0.2696 (2) | 0.32444 (14) | 0.0980 (8) | |
O3 | −0.0798 (5) | −0.3107 (3) | 0.48410 (19) | 0.1243 (11) | |
B1 | −0.0174 (7) | 0.1781 (4) | 0.3488 (2) | 0.0738 (10) | |
C1 | −0.0545 (8) | 0.3691 (4) | 0.2914 (2) | 0.1065 (14) | |
H1 | −0.0580 | 0.3696 | 0.2424 | 0.128* | |
C2 | −0.2886 (8) | 0.3259 (5) | 0.3013 (2) | 0.1107 (15) | |
H2 | −0.3437 | 0.3890 | 0.3303 | 0.133* | |
C3 | 0.0868 (5) | 0.0540 (3) | 0.38535 (15) | 0.0630 (8) | |
C4 | 0.3103 (5) | 0.0150 (3) | 0.40285 (16) | 0.0702 (9) | |
H4 | 0.4287 | 0.0644 | 0.3936 | 0.084* | |
C5 | 0.3439 (5) | −0.1055 (3) | 0.43578 (16) | 0.0675 (8) | |
H5 | 0.4856 | −0.1448 | 0.4502 | 0.081* | |
C6 | 0.1463 (5) | −0.1590 (3) | 0.44453 (15) | 0.0625 (8) | |
C7 | 0.1096 (7) | −0.2809 (3) | 0.4785 (2) | 0.0847 (11) | |
C8 | 0.3125 (7) | −0.3645 (4) | 0.5073 (2) | 0.1080 (14) | |
H8A | 0.2626 | −0.4502 | 0.5158 | 0.162* | |
H8B | 0.3975 | −0.3274 | 0.5493 | 0.162* | |
H8C | 0.4074 | −0.3695 | 0.4751 | 0.162* | |
C9 | −0.4652 (8) | 0.3080 (7) | 0.2357 (3) | 0.170 (3) | |
H9A | −0.5990 | 0.2692 | 0.2453 | 0.255* | |
H9B | −0.4059 | 0.2523 | 0.2056 | 0.255* | |
H9C | −0.5035 | 0.3909 | 0.2142 | 0.255* | |
C10 | 0.0263 (12) | 0.4987 (5) | 0.3210 (4) | 0.187 (3) | |
H10A | 0.1768 | 0.5148 | 0.3147 | 0.280* | |
H10B | 0.0290 | 0.4994 | 0.3689 | 0.280* | |
H10C | −0.0750 | 0.5652 | 0.2983 | 0.280* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0442 (5) | 0.0841 (6) | 0.0895 (6) | −0.0001 (4) | 0.0179 (4) | 0.0033 (5) |
O1 | 0.0650 (16) | 0.122 (2) | 0.1110 (19) | 0.0254 (14) | 0.0258 (13) | 0.0537 (16) |
O2 | 0.0786 (18) | 0.1005 (18) | 0.120 (2) | 0.0116 (14) | 0.0334 (15) | 0.0405 (16) |
O3 | 0.099 (2) | 0.0847 (18) | 0.210 (3) | −0.0057 (15) | 0.077 (2) | 0.0258 (19) |
B1 | 0.059 (2) | 0.093 (3) | 0.072 (2) | 0.010 (2) | 0.0217 (19) | 0.012 (2) |
C1 | 0.110 (3) | 0.110 (3) | 0.105 (3) | 0.026 (3) | 0.036 (3) | 0.049 (3) |
C2 | 0.102 (3) | 0.135 (3) | 0.106 (3) | 0.048 (3) | 0.046 (3) | 0.056 (3) |
C3 | 0.0529 (18) | 0.0754 (19) | 0.0611 (17) | −0.0002 (15) | 0.0140 (14) | 0.0021 (16) |
C4 | 0.0474 (19) | 0.086 (2) | 0.079 (2) | −0.0043 (16) | 0.0180 (15) | 0.0076 (18) |
C5 | 0.0469 (19) | 0.076 (2) | 0.081 (2) | 0.0058 (15) | 0.0175 (16) | 0.0074 (17) |
C6 | 0.0569 (19) | 0.0630 (17) | 0.0701 (19) | 0.0010 (14) | 0.0196 (15) | −0.0017 (15) |
C7 | 0.087 (3) | 0.067 (2) | 0.111 (3) | 0.0005 (19) | 0.046 (2) | 0.001 (2) |
C8 | 0.099 (3) | 0.089 (3) | 0.144 (4) | 0.024 (2) | 0.046 (3) | 0.037 (3) |
C9 | 0.080 (3) | 0.276 (8) | 0.149 (5) | 0.029 (4) | 0.018 (3) | 0.104 (5) |
C10 | 0.217 (7) | 0.098 (4) | 0.242 (7) | 0.013 (4) | 0.043 (6) | 0.013 (4) |
S1—C3 | 1.711 (3) | C4—H4 | 0.9300 |
S1—C6 | 1.712 (3) | C5—C6 | 1.362 (4) |
O1—B1 | 1.363 (4) | C5—H5 | 0.9300 |
O1—C2 | 1.443 (4) | C6—C7 | 1.469 (5) |
O2—B1 | 1.347 (5) | C7—C8 | 1.499 (5) |
O2—C1 | 1.447 (4) | C8—H8A | 0.9600 |
O3—C7 | 1.214 (4) | C8—H8B | 0.9600 |
B1—C3 | 1.533 (5) | C8—H8C | 0.9600 |
C1—C10 | 1.495 (7) | C9—H9A | 0.9600 |
C1—C2 | 1.538 (6) | C9—H9B | 0.9600 |
C1—H1 | 0.9800 | C9—H9C | 0.9600 |
C2—C9 | 1.503 (6) | C10—H10A | 0.9600 |
C2—H2 | 0.9800 | C10—H10B | 0.9600 |
C3—C4 | 1.373 (4) | C10—H10C | 0.9600 |
C4—C5 | 1.397 (4) | ||
C3—S1—C6 | 92.80 (15) | C4—C5—H5 | 123.7 |
B1—O1—C2 | 108.4 (3) | C5—C6—C7 | 129.5 (3) |
B1—O2—C1 | 108.1 (3) | C5—C6—S1 | 110.9 (2) |
O2—B1—O1 | 114.0 (3) | C7—C6—S1 | 119.6 (2) |
O2—B1—C3 | 124.1 (3) | O3—C7—C6 | 120.3 (4) |
O1—B1—C3 | 121.9 (3) | O3—C7—C8 | 121.5 (3) |
O2—C1—C10 | 109.3 (4) | C6—C7—C8 | 118.1 (3) |
O2—C1—C2 | 105.1 (3) | C7—C8—H8A | 109.5 |
C10—C1—C2 | 115.6 (5) | C7—C8—H8B | 109.5 |
O2—C1—H1 | 108.9 | H8A—C8—H8B | 109.5 |
C10—C1—H1 | 108.9 | C7—C8—H8C | 109.5 |
C2—C1—H1 | 108.9 | H8A—C8—H8C | 109.5 |
O1—C2—C9 | 109.8 (4) | H8B—C8—H8C | 109.5 |
O1—C2—C1 | 104.3 (3) | C2—C9—H9A | 109.5 |
C9—C2—C1 | 114.1 (4) | C2—C9—H9B | 109.5 |
O1—C2—H2 | 109.5 | H9A—C9—H9B | 109.5 |
C9—C2—H2 | 109.5 | C2—C9—H9C | 109.5 |
C1—C2—H2 | 109.5 | H9A—C9—H9C | 109.5 |
C4—C3—B1 | 129.5 (3) | H9B—C9—H9C | 109.5 |
C4—C3—S1 | 109.7 (2) | C1—C10—H10A | 109.5 |
B1—C3—S1 | 120.8 (2) | C1—C10—H10B | 109.5 |
C3—C4—C5 | 114.0 (3) | H10A—C10—H10B | 109.5 |
C3—C4—H4 | 123.0 | C1—C10—H10C | 109.5 |
C5—C4—H4 | 123.0 | H10A—C10—H10C | 109.5 |
C6—C5—C4 | 112.6 (3) | H10B—C10—H10C | 109.5 |
C6—C5—H5 | 123.7 | ||
C1—O2—B1—O1 | −0.5 (5) | O1—B1—C3—S1 | 1.7 (5) |
C1—O2—B1—C3 | 178.0 (3) | C6—S1—C3—C4 | 0.2 (2) |
C2—O1—B1—O2 | −1.0 (5) | C6—S1—C3—B1 | −179.8 (3) |
C2—O1—B1—C3 | −179.5 (3) | B1—C3—C4—C5 | −179.7 (3) |
B1—O2—C1—C10 | 126.2 (4) | S1—C3—C4—C5 | 0.2 (4) |
B1—O2—C1—C2 | 1.6 (5) | C3—C4—C5—C6 | −0.8 (4) |
B1—O1—C2—C9 | 124.6 (4) | C4—C5—C6—C7 | −177.6 (3) |
B1—O1—C2—C1 | 1.9 (5) | C4—C5—C6—S1 | 0.9 (4) |
O2—C1—C2—O1 | −2.1 (5) | C3—S1—C6—C5 | −0.7 (3) |
C10—C1—C2—O1 | −122.6 (5) | C3—S1—C6—C7 | 178.0 (3) |
O2—C1—C2—C9 | −121.9 (4) | C5—C6—C7—O3 | 176.8 (4) |
C10—C1—C2—C9 | 117.6 (5) | S1—C6—C7—O3 | −1.7 (5) |
O2—B1—C3—C4 | 3.3 (6) | C5—C6—C7—C8 | −1.8 (6) |
O1—B1—C3—C4 | −178.3 (3) | S1—C6—C7—C8 | 179.8 (3) |
O2—B1—C3—S1 | −176.6 (3) |
C13H17BO3 | Z = 2 |
Mr = 232.08 | F(000) = 248 |
Triclinic, P1 | Dx = 1.158 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71070 Å |
a = 6.664 (5) Å | Cell parameters from 836 reflections |
b = 9.537 (8) Å | θ = 2.0–27.5° |
c = 10.771 (9) Å | µ = 0.08 mm−1 |
α = 102.252 (19)° | T = 293 K |
β = 93.24 (3)° | Block, colourless |
γ = 94.07 (3)° | 0.48 × 0.37 × 0.22 mm |
V = 665.5 (9) Å3 |
Rigaku AFC-7S Mercury diffractometer | 2388 independent reflections |
Radiation source: Normal-focus sealed tube | 1639 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ω scans | θmax = 27.6°, θmin = 1.9° |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −8→6 |
Tmin = 0.962, Tmax = 0.980 | k = −11→11 |
7390 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.203 | w = 1/[σ2(Fo2) + (0.104P)2 + 0.0631P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2388 reflections | Δρmax = 0.18 e Å−3 |
155 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.07 (2) |
C13H17BO3 | γ = 94.07 (3)° |
Mr = 232.08 | V = 665.5 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.664 (5) Å | Mo Kα radiation |
b = 9.537 (8) Å | µ = 0.08 mm−1 |
c = 10.771 (9) Å | T = 293 K |
α = 102.252 (19)° | 0.48 × 0.37 × 0.22 mm |
β = 93.24 (3)° |
Rigaku AFC-7S Mercury diffractometer | 2388 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 1639 reflections with I > 2σ(I) |
Tmin = 0.962, Tmax = 0.980 | Rint = 0.039 |
7390 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.203 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.18 e Å−3 |
2388 reflections | Δρmin = −0.17 e Å−3 |
155 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O3 | 1.1747 (3) | −0.3505 (2) | 0.4710 (2) | 0.1084 (7) | |
O2 | 0.4989 (2) | 0.1506 (2) | 0.22127 (18) | 0.0902 (7) | |
O1 | 0.8126 (2) | 0.20802 (17) | 0.17153 (17) | 0.0795 (6) | |
B1 | 0.6941 (3) | 0.1217 (3) | 0.2263 (2) | 0.0566 (6) | |
C1 | 0.6909 (3) | 0.3024 (2) | 0.1174 (2) | 0.0629 (6) | |
C2 | 0.4752 (3) | 0.2699 (3) | 0.1615 (2) | 0.0695 (7) | |
C3 | 0.7750 (3) | 0.0026 (2) | 0.28926 (18) | 0.0547 (6) | |
C4 | 0.9722 (3) | −0.0348 (2) | 0.2788 (2) | 0.0664 (6) | |
H4 | 1.0572 | 0.0117 | 0.2318 | 0.080* | |
C5 | 1.0452 (3) | −0.1389 (2) | 0.3359 (2) | 0.0660 (6) | |
H5 | 1.1771 | −0.1628 | 0.3257 | 0.079* | |
C6 | 0.9245 (3) | −0.2079 (2) | 0.40811 (19) | 0.0604 (6) | |
C7 | 0.7271 (3) | −0.1734 (3) | 0.4189 (2) | 0.0732 (7) | |
H7 | 0.6428 | −0.2206 | 0.4658 | 0.088* | |
C8 | 0.6542 (3) | −0.0697 (2) | 0.3607 (2) | 0.0658 (6) | |
H8 | 0.5213 | −0.0477 | 0.3694 | 0.079* | |
C9 | 1.0048 (4) | −0.3154 (3) | 0.4735 (2) | 0.0840 (8) | |
H9 | 0.9171 | −0.3596 | 0.5205 | 0.101* | |
C10 | 0.7845 (5) | 0.4531 (3) | 0.1694 (5) | 0.1437 (16) | |
H10A | 0.9154 | 0.4636 | 0.1378 | 0.216* | |
H10B | 0.7976 | 0.4714 | 0.2607 | 0.216* | |
H10C | 0.7003 | 0.5205 | 0.1427 | 0.216* | |
C11 | 0.7053 (5) | 0.2615 (5) | −0.0236 (3) | 0.1370 (15) | |
H11A | 0.8409 | 0.2844 | −0.0432 | 0.206* | |
H11B | 0.6145 | 0.3138 | −0.0650 | 0.206* | |
H11C | 0.6699 | 0.1600 | −0.0530 | 0.206* | |
C12 | 0.4097 (7) | 0.3872 (4) | 0.2619 (4) | 0.171 (2) | |
H12A | 0.2771 | 0.3599 | 0.2840 | 0.257* | |
H12B | 0.4072 | 0.4740 | 0.2304 | 0.257* | |
H12C | 0.5024 | 0.4032 | 0.3360 | 0.257* | |
C13 | 0.3148 (4) | 0.2223 (5) | 0.0534 (3) | 0.1282 (14) | |
H13A | 0.1874 | 0.2044 | 0.0870 | 0.192* | |
H13B | 0.3494 | 0.1357 | −0.0017 | 0.192* | |
H13C | 0.3055 | 0.2965 | 0.0060 | 0.192* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.1236 (17) | 0.0989 (15) | 0.1151 (17) | 0.0498 (12) | 0.0004 (12) | 0.0399 (13) |
O2 | 0.0573 (10) | 0.1166 (14) | 0.1230 (15) | 0.0164 (8) | 0.0113 (8) | 0.0808 (12) |
O1 | 0.0631 (9) | 0.0861 (11) | 0.1092 (13) | 0.0235 (7) | 0.0220 (8) | 0.0563 (10) |
B1 | 0.0565 (13) | 0.0616 (14) | 0.0538 (13) | 0.0075 (10) | 0.0045 (9) | 0.0164 (11) |
C1 | 0.0620 (13) | 0.0651 (13) | 0.0695 (14) | 0.0144 (9) | 0.0056 (9) | 0.0291 (11) |
C2 | 0.0642 (13) | 0.0795 (15) | 0.0780 (15) | 0.0235 (10) | 0.0147 (10) | 0.0383 (12) |
C3 | 0.0575 (12) | 0.0563 (12) | 0.0505 (11) | 0.0057 (9) | 0.0018 (8) | 0.0123 (9) |
C4 | 0.0628 (13) | 0.0691 (14) | 0.0753 (15) | 0.0116 (10) | 0.0144 (10) | 0.0292 (12) |
C5 | 0.0601 (12) | 0.0650 (14) | 0.0773 (15) | 0.0166 (10) | 0.0071 (10) | 0.0212 (12) |
C6 | 0.0776 (14) | 0.0523 (12) | 0.0511 (12) | 0.0129 (10) | 0.0023 (9) | 0.0094 (9) |
C7 | 0.0801 (15) | 0.0748 (15) | 0.0749 (16) | 0.0106 (11) | 0.0180 (11) | 0.0345 (12) |
C8 | 0.0590 (12) | 0.0737 (14) | 0.0713 (14) | 0.0111 (10) | 0.0102 (9) | 0.0271 (12) |
C9 | 0.115 (2) | 0.0703 (16) | 0.0744 (17) | 0.0280 (14) | 0.0103 (13) | 0.0242 (13) |
C10 | 0.103 (2) | 0.0728 (19) | 0.249 (5) | −0.0027 (16) | −0.003 (3) | 0.029 (2) |
C11 | 0.101 (2) | 0.248 (5) | 0.076 (2) | 0.026 (2) | 0.0237 (16) | 0.058 (3) |
C12 | 0.219 (4) | 0.126 (3) | 0.188 (4) | 0.060 (3) | 0.138 (4) | 0.033 (3) |
C13 | 0.0748 (18) | 0.201 (4) | 0.128 (3) | −0.010 (2) | −0.0174 (16) | 0.092 (3) |
O3—C9 | 1.203 (3) | C6—C9 | 1.475 (3) |
O2—B1 | 1.349 (3) | C7—C8 | 1.380 (3) |
O2—C2 | 1.435 (3) | C7—H7 | 0.9300 |
O1—B1 | 1.348 (3) | C8—H8 | 0.9300 |
O1—C1 | 1.442 (3) | C9—H9 | 0.9300 |
B1—C3 | 1.553 (3) | C10—H10A | 0.9600 |
C1—C11 | 1.496 (4) | C10—H10B | 0.9600 |
C1—C10 | 1.504 (4) | C10—H10C | 0.9600 |
C1—C2 | 1.570 (3) | C11—H11A | 0.9600 |
C2—C12 | 1.490 (4) | C11—H11B | 0.9600 |
C2—C13 | 1.507 (4) | C11—H11C | 0.9600 |
C3—C8 | 1.390 (3) | C12—H12A | 0.9600 |
C3—C4 | 1.391 (3) | C12—H12B | 0.9600 |
C4—C5 | 1.376 (3) | C12—H12C | 0.9600 |
C4—H4 | 0.9300 | C13—H13A | 0.9600 |
C5—C6 | 1.377 (3) | C13—H13B | 0.9600 |
C5—H5 | 0.9300 | C13—H13C | 0.9600 |
C6—C7 | 1.383 (3) | ||
B1—O2—C2 | 110.10 (17) | C6—C7—H7 | 119.7 |
B1—O1—C1 | 109.69 (17) | C7—C8—C3 | 121.5 (2) |
O1—B1—O2 | 112.8 (2) | C7—C8—H8 | 119.3 |
O1—B1—C3 | 123.31 (19) | C3—C8—H8 | 119.3 |
O2—B1—C3 | 123.89 (19) | O3—C9—C6 | 125.3 (3) |
O1—C1—C11 | 106.2 (2) | O3—C9—H9 | 117.4 |
O1—C1—C10 | 106.6 (2) | C6—C9—H9 | 117.4 |
C11—C1—C10 | 110.4 (3) | C1—C10—H10A | 109.5 |
O1—C1—C2 | 103.52 (16) | C1—C10—H10B | 109.5 |
C11—C1—C2 | 114.2 (2) | H10A—C10—H10B | 109.5 |
C10—C1—C2 | 114.9 (2) | C1—C10—H10C | 109.5 |
O2—C2—C12 | 105.7 (2) | H10A—C10—H10C | 109.5 |
O2—C2—C13 | 107.6 (2) | H10B—C10—H10C | 109.5 |
C12—C2—C13 | 111.2 (3) | C1—C11—H11A | 109.5 |
O2—C2—C1 | 103.43 (15) | C1—C11—H11B | 109.5 |
C12—C2—C1 | 114.2 (2) | H11A—C11—H11B | 109.5 |
C13—C2—C1 | 113.9 (2) | C1—C11—H11C | 109.5 |
C8—C3—C4 | 116.9 (2) | H11A—C11—H11C | 109.5 |
C8—C3—B1 | 121.37 (19) | H11B—C11—H11C | 109.5 |
C4—C3—B1 | 121.71 (18) | C2—C12—H12A | 109.5 |
C5—C4—C3 | 121.8 (2) | C2—C12—H12B | 109.5 |
C5—C4—H4 | 119.1 | H12A—C12—H12B | 109.5 |
C3—C4—H4 | 119.1 | C2—C12—H12C | 109.5 |
C4—C5—C6 | 120.5 (2) | H12A—C12—H12C | 109.5 |
C4—C5—H5 | 119.7 | H12B—C12—H12C | 109.5 |
C6—C5—H5 | 119.7 | C2—C13—H13A | 109.5 |
C5—C6—C7 | 118.7 (2) | C2—C13—H13B | 109.5 |
C5—C6—C9 | 120.6 (2) | H13A—C13—H13B | 109.5 |
C7—C6—C9 | 120.7 (2) | C2—C13—H13C | 109.5 |
C8—C7—C6 | 120.6 (2) | H13A—C13—H13C | 109.5 |
C8—C7—H7 | 119.7 | H13B—C13—H13C | 109.5 |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C10H13BO3S | C13H17BO3 |
Mr | 224.07 | 232.08 |
Crystal system, space group | Monoclinic, P21/c | Triclinic, P1 |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 6.038 (3), 10.286 (4), 20.096 (8) | 6.664 (5), 9.537 (8), 10.771 (9) |
α, β, γ (°) | 90, 103.390 (16), 90 | 102.252 (19), 93.24 (3), 94.07 (3) |
V (Å3) | 1214.2 (9) | 665.5 (9) |
Z | 4 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.25 | 0.08 |
Crystal size (mm) | 0.42 × 0.33 × 0.22 | 0.48 × 0.37 × 0.22 |
Data collection | ||
Diffractometer | Rigaku AFC-7S Mercury diffractometer | Rigaku AFC-7S Mercury diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.962, 0.980 | 0.962, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13808, 2365, 1479 | 7390, 2388, 1639 |
Rint | 0.060 | 0.039 |
(sin θ/λ)max (Å−1) | 0.653 | 0.653 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.167, 1.08 | 0.064, 0.203, 1.06 |
No. of reflections | 2365 | 2388 |
No. of parameters | 139 | 155 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.27 | 0.18, −0.17 |
Computer programs: CrystalClear (Rigaku, 2005), CrystalStructure (Rigaku/MSC, 2005) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Compounds containing boronate esters [RB(OR)2] represent valuable intermediates in organic synthesis, particularly in the Suzuki–Miyaura coupling reaction (Miyaura & Suzuki, 1995). They are also well established compounds for the detection of carbohydrates (Striegler, 2003), as a result of their ability to form cyclic esters with appropriate diols (Schnürch et al., 2007). It has been found that some imines containing boronate ester groups display antifungal behaviour against both Aspergillus niger and A. flavus (Vogels et al., 2001). Crystallographic studies related to the structure–property relationship of boronate esters remains largely unexplored and only a few crystal structures have been reported so far. In particular, there is a crystallograhic report on the space group revision of 4-formylphenylboronic acid (Fronczek et al., 2001), where both the formyl and B(OH)2 groups were found ordered, in contrast with the previous, disordered, report (Feulner et al., 1990). In this contribution, as part of our ongoing investigation of the synthesis and solid-state reactivity of unsaturated pyridyl compounds (Linares & Briceño, 2010; Hill et al., 2012), we describe the molecular structures of the title compounds, (I) and (II), which are interesting precursors for the preparation of asymmetric olefins via a condensation process.
The molecule of (I) (Fig. 1) adopts a nearly planar conformation, The acetyl and boronate ester substituents make dihedral angles of 3.35 (6) and 2.96 (2)° with respect to the mean plane of the thiophene ring. The methyl groups are oriented in a trans configuration on the five-membered ring formed by atoms B1/O2/C1/C2/O1. The B—O distances are statistically similar, with B1—O1 = 1.363 (4) Å and B1—O2 = 1.347 (5) Å. Likewise, the C—S [1.711 (3) and 1.712 (3) Å] and C═C [C3—C4 = 1.373 (4) Å and C5—C6 = 1.362 (4) Å] distances from the thiophene ring are also similar, displaying bond lengths typical for C—S single and C═C double bonds, respectively [average C—S 1.69 (8) Å and average C═C = 1.34 (3) Å (Cambridge structural Database, Version 5.32; Allen, 2002)]. The B—O distances are significantly different, with B1—O1 [1.363 (4) Å] slightly longer than B1—O2 [1.347 (5) Å]. In contrast, the C—S [1.711 (3) and 1.712 (3) Å] and C═C [C3—C4 = 1.373 (4) and C5—C6 = 1.362 (4) Å] distances from the thiophene ring are statistically similar, displaying lengths typical for C—S single bonds and C═C double bonds, respectively [Standard reference?]. The carbonyl group is oriented cis to the S atom of the thiophene ring, forming an S1—C6—C7—O3 torsion angle of -1.569 (3)°.
The crystal structure of (I) consists of supramolecular layers built up from centrosymmetric pairs of molecules linked by dipole–dipole interactions between carbonyl and B—O groups [B1i···O3 = 3.545 (5) Å and O1i···C7 = 3.699 (5) Å; symmetry code: (i) -x, -y, -z + 1] (Fig. 2b), generating a herringbone-like supramolecular two-dimensional network parallel to the bc plane (Fig. 2a). The three-dimensional array is accomplished by the stacking of the layers through van der Waals and hydrophobic methyl–methyl interactions.
The molecule of (II) (Fig. 3) deviates from planarity, with the boronate ester group forming a dihedral angle of 7.53 (2)° with respect to the mean plane of the benzaldehyde group. The B—O [B1—O1 = 1.348 (3) Å and B1—O2 = 1.349 (3) Å] distances found for (II) are similar, in contrast with what is observed for (I).
The crystal structure of (II) also consists of supramolecular layers built up from centrosymmetric pairs of molecules via π–π interactions [Cg1···Cg1ii = 3.811 (3) Å; Cg1 is the centroid of the C3–C8 aromatic ring; symmetry code: (ii) -x + 2, -y, -z + 1]. These pairs are self-organized in an offset fashion related by a symmetry centre, generating supramolecular ribbons running along the [101] direction. Neighbouring ribbons are stacked via complementary van der Waals and hydrophobic methyl–methyl interactions, generating a two-dimensional network (Fig. 4). The final three-dimensional array is stabilized via van der Waals interactions.