Download citation
Download citation
link to html
1,5-Bis(4-chloro­phenyl)-3-(2-oxo-1,2-dihydro­quinolin-3-yl)pentane-1,5-dione, (Ia), and 1,5-bis­(2-chloro­phenyl)-3-(2-oxo-1,2-dihydro­quinolin-3-yl)pentane-1,5-dione, (Ib), crystallize as an 84:16 mixture, 0.84C26H19Cl2NO3·0.16C26H19Cl2NO3, in the space group I41/a, where the mol­ecules of the two isomers occupy very similar sites in the unit cell. A combination of one N—H...O hydrogen bond and one C—H...O hydrogen bond links the mol­ecules, regardless of isomeric form, into a single three-dimensional framework structure. The mol­ecules of (9RS,10RS)-8,9-bis­(4-chloro­benzyl)-10-(2-oxo-1,2-dihydroquinolin-3-yl)-5,6,9,10-tetra­hydro­phenanthridine, C36H22Cl2N2O4, (II), are linked by two hydrogen bonds, one each of the N—H...O and C—H...O types, into a mol­ecular ribbon in which centrosymmetric rings of R22(18) and R44(24) types alternate. The hydrogen-bonded ribbons enclose channels, which contain highly disordered solvent mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112020860/fg3252sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112020860/fg3252Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112020860/fg3252IIsup3.hkl
Contains datablock II

CCDC references: 889376; 889377

Comment top

We report here the molecular and supramolecular structures of two closely related compounds, namely 1,5-bis(4-chlorophenyl)-3-(2-oxo-1,2-dihydroquinolin-3-yl)pentane-1,5-dione–1,5-bis(2-chlorophenyl)-3-(2-oxo-1,2-dihydroquinolin-3-yl)pentane-1,5-dione (84/16), (I) (Fig. 1), and (9RS,10RS)-8,9-bis(4-chlorobenzyl)-10-(2-oxo-1,2-dihydroquinolin-3-yl)-5,6,9,10-tetrahydrophenanthridine, (II) (Fig. 2), both of which were initially identified as unexpected by-products in the synthesis of a simple chalcone. As part of a synthetic programme focusing on novel quinolin-2-one derivatives having potential as antitumour agents (Abonía et al., 2010), we have prepared a number of chalcones containing both quinolin-2-one and benzoyl units. In the preparation of the chalcone, (A) (see Scheme 1), by base-catalysed condensation between 2-oxoquinoline-3-carbaldehyde and 4-chloroacetophenone, compound (I) was also isolated, but in trace amounts, presumably resulting from a Michael-type addition reaction between chalcone (A) and further 4-chloroacetophenone. Subsequently, the reaction between chalcone (A) and an excess of 4-chloroacetophenone under basic conditions was, indeed, found to provide an acceptable yield of (I), which was found from the structural study to be, in fact, an 84:16 mixture of the two isomeric compounds (Ia) and (Ib) (see below). The origin of the 2-chloro substituent was eventually traced to one batch of commercial 4-chloroacetophenone, as used in the conversion of (A) to (I). Consistent with this, there is no evidence for the presence of any 2-chloro substituent either in the other chlorinated aryl ring in (I) or in (II). As discussed below, the occurrence of the 2-chloro isomer, (Ib), has a negligible effect on the supramolecular aggregation in (I). When chalcone (A) was crystallized from hot dimethylformamide solution, trace quantities of a second compound, (II), were also obtained, apparently resulting from a Diels–Alder type dimerization of (A), accompanied by the loss of two H atoms by aerial oxidation (see Scheme 2).

Compound (I) contains geometric isomers (Ia) and (Ib) (Fig. 1) in an 84:16 ratio in the crystal selected for data collection. It is possible that this ratio may vary somewhat from one crystal to another and, in view of this and the absence of a simple small-integer ratio between the abundances of the two components, it may be better to regard (I) as a solid solution rather than as a cocrystal (Aitipamula et al., 2012). Compound (I) crystallizes in the rather uncommon space group I41/a; in the February 2012 release of the Cambridge Structural Database (Allen, 2002), only 2086 entries out of a total of 603298, ca 0.35%, have space group I41/a. In (I), the two isomeric forms occupy very similar positions within the unit cell (Fig. 3) and the similarity of the molecular conformations is confirmed by a comparison of the torsion angles (Table 1). Although the experimental uncertainties on the values for the minor isomer are fairly substantial, within that constraint the corresponding values for the two isomers are, in general, closely similar. In addition, the very different values (Table 1) of the two torsion angles Cx1—Cx2—Cx3—Cx4 and Cx2—Cx3—Cx4—Cx5 (where x = 1 or 2), which define the conformation of the molecular backbone in each isomer, show that the molecules of isomers (Ia) and (Ib) can have no internal symmetry. Both isomers are thus conformationally chiral, although the centrosymmetric space group accommodates equal numbers of the two conformational enantiomers. The close similarity between the conformations of (Ia) and (Ib) may be a straightforward consequence of the nature of the structure in which, at a minority of the molecular sites, a molecule of (Ib) has simply replaced a molecule of (Ia) and is thus constrained to adopt essentially the same overall molecular shape.

In the molecule of (II) (Fig. 2), there are two stereogenic centres, at atoms C9 and C10, and the compound crystallizes as a true racemate with configuration (9RS,10RS). For the (9R,10R) enantiomer, ring C6a/C7/C8/C9/C10/C10a adopts a screw-boat conformation, with atoms C9 and C10 displaced on opposite sides of the mean plane of the ring by 0.220 (2) and 0.213 (2) Å, respectively. The ring-puckering parameters (Cremer & Pople, 1975) are Q = 0.342 (2) Å, θ = 61.9 (3)° and ϕ = 207.5 (4)°; for an idealized screw-boat form the ring-puckering angles are θ = 67.5° and ϕ =(60k + 30)°, where k represents an integer. The substituent atoms C97 and C103 (Fig. 2) both adopt axial positions on the screw-boat ring, presumably in order to minimize the steric interactions between the acyl substituent at C9 and the quinolinone substituent at C10.

In the crystal structure of (I), the hydrogen bonds involving the two isomeric forms (Ia) and (Ib) are essentially the same (Table 2), as might be expected from the similarity of the two molecular conformations. Accordingly, it is necessary only to discuss the supramolecular aggregation of (Ia). Two hydrogen bonds, one each of N—H···O and C—H···O types, link the molecules of (Ia) into a single three-dimensional framework, and it is convenient to analyse the formation of the framework in terms of two simple substructures (Ferguson et al., 1998a,b; Gregson et al., 2000), each involving just one type of hydrogen bond, and which are respectively one- and zero-dimensional.

The one-dimensional substructure of (I) takes the form of a simple chain built using a C—H···O hydrogen bond having an aryl C—H unit as the donor. Aryl atom C156 in the molecule of (Ia) at (x, y, z) acts as hydrogen-bond donor to acyl atom O15 in the molecule at (y + 1/4, -x + 5/4, z + 1/4), while atom C156 at (y + 1/4, -x + 5/4, z + 1/4) in turn acts as donor to atom O15 at (-x + 3/2, -y + 1, z + 1/2), and so on, thereby forming a C(5) (Bernstein et al., 1995) helical chain running parallel to the [001] direction and containing molecules related by the 43 screw axis along (3/4, 1/2, z) (Fig. 4). There is also present a rather long C—H···O contact involving an aliphatic C—H unit; even if this were regarded as structurally significant, its role would be simply to reinforce the chain motif discussed above.

In the second, zero-dimensional, substructure, paired N—H···O hydrogen bonds link the molecules at (x, y, z) and (-x + 1, -y + 1, -z + 1) into a centrosymmetric dimer characterized by an R22(8) motif (Fig. 5). The molecule at (-x + 1, -y + 1, -z + 1) is a component of the C(5) chain built from molecules related by the 41 screw axis along (1/4, 1/2, z). Hence, the combination of these two motifs directly links the C(5) chain along (3/4, 1/2, z) to the four analogous chains along (1/4, 1/2, z), (1.25, 1/2, z), (3/4, 0, z) and (3/4, 1, z), thus, in turn, linking all of the C(5) chains into a continuous framework structure. Replacement, at any randomly selected molecular site, of a molecule of (Ia) by a molecule of (Ib) will have no significant influence on the supramolecular aggregation, as the direction-specific intermolecular interactions involving (Ia) and (Ib) are entirely equivalent (Table 2).

The supramolecular aggregation in (II) also involves a combination of N—H···O and C—H···O hydrogen bonds (Table 2), but here the resulting hydrogen-bonded structure is only one-dimensional. Acting in isolation, the N—H···O hydrogen bond links molecules of (II) related by translation into a C(9) chain running parallel to the [100] direction, while the C—H···O hydrogen bond, acting alone, links inversion-related pairs of molecules to form an R22(18) motif. In combination, the two hydrogen bonds generate a molecular ribbon parallel to [100], in which centrosymmetric rings centred at (n, 1/2, 0) alternate with centrosymmetric R44(24) rings centred at (n + 1/2, 1/2, 0), where n represents an integer in each case (Fig. 6). The only other direction-specific intermolecular contact in the structure of (II) (Table 2) has a fairly long H···O distance and, more significantly, a small C—H···O angle, and for this reason alone (cf. Wood et al., 2009) it is not regarded as structurally significant. Even if this contact were significant, it would not affect the overall supramolecular aggregation, since its action would simply be a reinforcement of the chain generated by the N—H···O hydrogen bond. The stacking of the hydrogen-bonded ribbons is such as to enclose substantial cavities. Although PLATON (Spek, 2009) indicates the presence of two such spaces, centred close to the origin and to (1/2, 0, 1/2), this space, in fact, takes the form of a single continuous channel parallel to [100] (Fig. 7). This space appears to contain disordered solvent molecules, but no chemically sensible model could be developed to account for the associated peaks in the difference map (see Refinement section). It is possible that the solvent species within the channels are mobile (Farrell et al., 2002).

Related literature top

For related literature, see: Abonía et al. (2010); Aitipamula (2012); Allen (2002); Bernstein et al. (1995); Cremer & Pople (1975); Farrell et al. (2002); Ferguson et al. (1998a, 1998b); Gregson et al. (2000); Spek (2009); Wood et al. (2009).

Experimental top

For the synthesis of (I), a solution of chalcone (A) (100 mg, 0.32 mmol) and 4-chloroacetophenone (61 mg, 0.40 mmol, 1.25 equivalents) in a mixture of 95% aqueous ethanol (5 ml) and 20% aqueous sodium hydroxide solution (2 drops) was heated under reflux for 7 h; after this time, the chalcone had been completely consumed, as indicated by thin-layer chromatography. The mixture was cooled to ambient temperature and water (2 ml) was added. The resulting solid, (I), was collected by filtration and washed with water (2 × 0.5 ml). Colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, of a solution in ethanol (yield 72%, m.p. 484 K). Analysis, found: C 67.0, H 4.3, N 2.9%; C26H19Cl2NO3 requires: C 67.3, H 4.1, N 3.0%.

Compound (II) was isolated in trace quantities as pale-yellow crystals, as a by-product during the crystallization of the colourless chalcone (A) from a solution in hot dimethylformamide (m.p. 519 K). Analysis, found: C 69.9, H 3.7, N 4.4%; C36H22Cl2N2O4 requires: C 70.0, H 3.6, N 4.5%.

Refinement top

For (I), the space group I41/a was uniquely assigned from the systematic absences and the cell setting having the origin at a centre of inversion was employed. From an early stage in the refinement of (I) it was apparent that the Cl substituent on one of the aryl rings was distributed over two positions, corresponding to the presence of the two geometric isomers, (Ia) and (Ib) (Fig. 1), the molecules of which occupy very similar positions in the unit cell. This disorder was handled by restraining the bonded distances and the one-angle nonbonded distances in the minor isomer, (Ib), with the exception of those involving atom Cl22, to be equal to the corresponding distances in the major isomer, (Ia), subject to s.u. values of 0.005 and 0.01 Å, respectively. The C114—Cl14 and C212—Cl22 bond distances were restrained to the common value 1.74 (2) Å. In addition, the values of the anisotropic displacement parameter (ADP) components for the pairs of the corresponding atoms in the two isomers which occupy essentially the same physical space in different unit cells were constrained to be equal. Subject to these conditions, the refinement of (I) converged smoothly to give occupancy factors for the major and minor isomers of 0.840 (2) and 0.160 (2), respectively, in the crystal selected for data collection. Examination of the refined structure of (I) using PLATON (Spek, 2009) revealed the presence of a number of small voids at the special positions of 4 symmetry, each of volume ca 34 Å3, too small to accommodate even the smallest of solvent molecules.

For (II) the reference molecule was selected as one having the R configuration at atoms C9 and C10. Conventional refinement converged at R = 0.162 for 7841 unique data, of which 5685 were labelled observed, from a total of 43906 measured reflections having Rint = 0.0413. Examination of this structure using PLATON (Spek, 2009) identified apparent void space around the origin (volume ca 274 Å3) and around (1/2, 0, 1/2) (volume ca 126 Å3). In addition, the difference map contained a number of substantial peaks, but it proved impossible to develop from these any sensible model for any plausible solvent species. It is possible both that more than one solvent species is present and that the solvent molecules are disordered over a number of sites, or even mobile. Accordingly, the data were subjected to the SQUEEZE procedure in PLATON, which indicated a total of ca 60 additional electrons per unit cell, and the refinement was then continued using the modified data set.

All H atoms in (Ia) and (II) were located in difference maps, while those in (Ib) were added in calculated positions. Subsequently, all H atoms were treated as riding in geometrically idealized positions, with C—H = 0.95 (aromatic), 0.99 (CH2) or 1.00 Å (aliphatic CH), and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SIR2004 (Burla et al., 2005) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) the major isomer, (Ia), and (b) the minor isomer, (Ib), of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of the (9R,10E) enantiomer of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The major component, (Ia) (solid lines), and the minor component, (Ib) (dashed lines), of (I), showing the similarity in orientation and conformation of the two components.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded C(5) chain along (3/4, 1/2, z). For the sake of clarity, only the major isomer is included and H atoms not involved in the motif shown have been omitted.
[Figure 5] Fig. 5. Part of the crystal structure of (I), showing the formation of a centrosymmetric R22(8) dimer. For the sake of clarity, only the major isomer is included and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x + 1, -y + 1, -z + 1).
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded ribbon along [100] consisting of alternating R22(18) and R44(24) rings. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 7] Fig. 7. A space-filling view, approximately along [100], of part of the crystal structure of (II), showing the channels between the hydrogen-bonded ribbons.
(I) 1,5-Bis(4-chlorophenyl)-3-(2-oxo-1,2-dihydroquinolin-3-yl)pentane-1,5-dione– 1,5-bis(2-chlorophenyl)-3-(2-oxo-1,2-dihydroquinolin-3-yl)pentane-1,5-dione (84/16) top
Crystal data top
0.84C26H19Cl2NO3·0.16C26H19Cl2NO3Dx = 1.352 Mg m3
Mr = 464.32Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 5197 reflections
Hall symbol: -I 4adθ = 2.6–27.5°
a = 22.268 (4) ŵ = 0.31 mm1
c = 18.398 (5) ÅT = 120 K
V = 9123 (4) Å3Block, colourless
Z = 160.34 × 0.34 × 0.26 mm
F(000) = 3840
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5197 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ and ω scansh = 2326
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2828
Tmin = 0.902, Tmax = 0.923l = 2321
32275 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.075P)2 + 12.591P]
where P = (Fo2 + 2Fc2)/3
5197 reflections(Δ/σ)max = 0.001
392 parametersΔρmax = 0.45 e Å3
85 restraintsΔρmin = 0.33 e Å3
Crystal data top
0.84C26H19Cl2NO3·0.16C26H19Cl2NO3Z = 16
Mr = 464.32Mo Kα radiation
Tetragonal, I41/aµ = 0.31 mm1
a = 22.268 (4) ÅT = 120 K
c = 18.398 (5) Å0.34 × 0.34 × 0.26 mm
V = 9123 (4) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5197 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3789 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.923Rint = 0.047
32275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05485 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.075P)2 + 12.591P]
where P = (Fo2 + 2Fc2)/3
5197 reflectionsΔρmax = 0.45 e Å3
392 parametersΔρmin = 0.33 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.7514 (2)0.4056 (3)0.61806 (19)0.0300 (8)0.840 (2)
O110.77632 (15)0.4039 (2)0.55915 (16)0.0372 (9)0.840 (2)
C120.69777 (16)0.44558 (19)0.6325 (2)0.0297 (7)0.840 (2)
H12A0.70070.46090.68290.036*0.840 (2)
H12B0.66090.42090.62940.036*0.840 (2)
C130.69102 (15)0.49932 (14)0.58104 (18)0.0273 (6)0.840 (2)
H130.68900.48430.52990.033*0.840 (2)
C140.74499 (19)0.5419 (2)0.5882 (3)0.0299 (7)0.840 (2)
H14A0.74650.55760.63850.036*0.840 (2)
H14B0.78240.51890.57960.036*0.840 (2)
C150.7426 (4)0.5942 (3)0.5357 (3)0.0296 (9)0.840 (2)
O150.7085 (6)0.5941 (3)0.4840 (5)0.0401 (7)0.840 (2)
C1110.77137 (14)0.3661 (2)0.67935 (19)0.0323 (8)0.840 (2)
C1120.82614 (16)0.3371 (3)0.6750 (2)0.0422 (11)0.840 (2)
H1120.85020.34170.63270.051*0.840 (2)
C1130.84636 (16)0.3011 (2)0.7318 (2)0.0480 (11)0.840 (2)
H1130.88400.28120.72880.058*0.840 (2)
C1140.81046 (16)0.2950 (2)0.7926 (2)0.0424 (9)0.840 (2)
C1150.75567 (19)0.32306 (18)0.7990 (2)0.0416 (8)0.840 (2)
H1150.73200.31830.84160.050*0.840 (2)
C1160.73583 (16)0.3584 (2)0.7418 (2)0.0359 (8)0.840 (2)
H1160.69780.37760.74490.043*0.840 (2)
N1310.5267 (2)0.5420 (4)0.5766 (4)0.0290 (13)0.840 (2)
H1310.49430.53340.55130.035*0.840 (2)
C1320.5789 (2)0.5143 (3)0.5571 (3)0.0272 (12)0.840 (2)
O1320.5797 (2)0.4781 (2)0.5050 (2)0.0337 (10)0.840 (2)
C1330.63221 (14)0.53015 (14)0.59962 (16)0.0246 (7)0.840 (2)
C1340.62657 (17)0.5675 (3)0.6574 (3)0.0309 (14)0.840 (2)
H1340.66080.57500.68680.037*0.840 (2)
C14A0.57127 (15)0.59616 (17)0.67576 (18)0.0282 (10)0.840 (2)
C1350.56578 (15)0.63917 (13)0.73190 (16)0.0332 (8)0.840 (2)
H1350.59950.64880.76140.040*0.840 (2)
C1360.51164 (16)0.66706 (14)0.74379 (17)0.0372 (8)0.840 (2)
H1360.50830.69670.78070.045*0.840 (2)
C1370.46149 (16)0.65204 (15)0.7019 (2)0.0408 (11)0.840 (2)
H1370.42420.67130.71110.049*0.840 (2)
C1380.4654 (3)0.6098 (5)0.6476 (5)0.0364 (17)0.840 (2)
H1380.43090.59920.62000.044*0.840 (2)
C18A0.52081 (16)0.5826 (2)0.6332 (2)0.0275 (11)0.840 (2)
C1510.7830 (4)0.6468 (3)0.5492 (4)0.0292 (13)0.840 (2)
C1520.7732 (4)0.6995 (2)0.5086 (3)0.0339 (11)0.840 (2)
H1520.74100.70090.47480.041*0.840 (2)
C1530.8099 (4)0.7492 (2)0.5171 (3)0.0371 (10)0.840 (2)
H1530.80330.78470.48970.045*0.840 (2)
C1540.8567 (2)0.7455 (2)0.5670 (4)0.0354 (9)0.840 (2)
Cl150.90456 (14)0.80724 (13)0.57680 (12)0.0470 (4)0.840 (2)
C1550.86584 (15)0.69545 (17)0.6098 (2)0.0384 (11)0.840 (2)
H1550.89730.69490.64460.046*0.840 (2)
C1560.82853 (15)0.64589 (16)0.6015 (2)0.0335 (10)0.840 (2)
H1560.83390.61150.63130.040*0.840 (2)
Cl140.83734 (5)0.25127 (4)0.86443 (5)0.0547 (3)0.840 (2)
C210.7602 (14)0.4038 (14)0.6271 (10)0.0300 (8)0.160 (2)
O210.7868 (10)0.4085 (13)0.5694 (10)0.0372 (9)0.160 (2)
C220.7056 (9)0.4417 (9)0.6445 (13)0.0297 (7)0.160 (2)
H22A0.71040.45810.69420.036*0.160 (2)
H22B0.66990.41520.64490.036*0.160 (2)
C230.6933 (7)0.4940 (6)0.5926 (10)0.0273 (6)0.160 (2)
H230.69130.47810.54180.033*0.160 (2)
C240.7441 (9)0.5406 (9)0.5968 (18)0.0299 (7)0.160 (2)
H24A0.74500.55790.64640.036*0.160 (2)
H24B0.78290.52020.58850.036*0.160 (2)
C250.737 (3)0.5912 (16)0.542 (2)0.0296 (9)0.160 (2)
O250.707 (3)0.585 (2)0.488 (3)0.0401 (7)0.160 (2)
C2110.7851 (9)0.3666 (13)0.6879 (12)0.0323 (8)0.160 (2)
C2120.8406 (10)0.3396 (17)0.6811 (14)0.0422 (11)0.160 (2)
C2130.8641 (9)0.3038 (15)0.7362 (14)0.0480 (11)0.160 (2)
H2130.90360.28790.73290.058*0.160 (2)
C2140.8282 (10)0.2920 (14)0.7959 (12)0.0424 (9)0.160 (2)
H2140.84430.26930.83500.051*0.160 (2)
C2150.7700 (10)0.3122 (13)0.8004 (12)0.0416 (8)0.160 (2)
H2150.74380.29790.83730.050*0.160 (2)
C2160.7504 (9)0.3540 (14)0.7500 (13)0.0359 (8)0.160 (2)
H2160.71330.37420.75730.043*0.160 (2)
N2310.5288 (11)0.535 (3)0.582 (3)0.0290 (13)0.160 (2)
H2310.49790.52800.55310.035*0.160 (2)
C2320.5816 (9)0.507 (2)0.565 (2)0.0272 (12)0.160 (2)
O2320.5839 (12)0.4699 (15)0.5140 (16)0.0337 (10)0.160 (2)
C2330.6327 (7)0.5207 (8)0.6122 (10)0.0246 (7)0.160 (2)
C2340.6258 (8)0.561 (2)0.666 (2)0.0309 (14)0.160 (2)
H2340.66020.57370.69300.037*0.160 (2)
C24A0.5689 (7)0.5864 (13)0.6855 (13)0.0282 (10)0.160 (2)
C2350.5594 (7)0.6238 (8)0.7465 (9)0.0332 (8)0.160 (2)
H2350.59140.63130.77940.040*0.160 (2)
C2360.5041 (8)0.6493 (8)0.7584 (10)0.0372 (8)0.160 (2)
H2360.49810.67500.79890.045*0.160 (2)
C2370.4566 (8)0.6375 (12)0.7109 (13)0.0408 (11)0.160 (2)
H2370.41810.65430.72040.049*0.160 (2)
C2380.4647 (14)0.602 (3)0.651 (3)0.0364 (17)0.160 (2)
H2380.43310.59680.61630.044*0.160 (2)
C28A0.5200 (8)0.5733 (17)0.6400 (16)0.0275 (11)0.160 (2)
C2510.775 (2)0.6463 (16)0.553 (3)0.0292 (13)0.160 (2)
C2520.773 (2)0.6915 (14)0.499 (2)0.0339 (11)0.160 (2)
H2520.74710.68650.45840.041*0.160 (2)
C2530.8066 (19)0.7432 (14)0.506 (2)0.0371 (10)0.160 (2)
H2530.80300.77490.47140.045*0.160 (2)
C2540.8464 (17)0.7476 (13)0.5639 (19)0.0354 (9)0.160 (2)
Cl250.8984 (8)0.8065 (8)0.5641 (9)0.0470 (4)0.160 (2)
C2550.8522 (11)0.7025 (10)0.6150 (13)0.0384 (11)0.160 (2)
H2550.88030.70630.65350.046*0.160 (2)
C2560.8165 (12)0.6516 (9)0.6096 (14)0.0335 (10)0.160 (2)
H2560.82020.62030.64440.040*0.160 (2)
Cl220.8947 (3)0.3519 (3)0.6176 (3)0.0690 (19)0.160 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.031 (2)0.0329 (12)0.0259 (15)0.0002 (12)0.0011 (14)0.0022 (12)
O110.0361 (17)0.0468 (14)0.0286 (13)0.0066 (13)0.0035 (11)0.0023 (12)
C120.0338 (15)0.0322 (13)0.0231 (19)0.0026 (10)0.0013 (13)0.0013 (11)
C130.0305 (12)0.0298 (12)0.0217 (15)0.0013 (9)0.0003 (10)0.0007 (10)
C140.0285 (11)0.0359 (12)0.025 (2)0.0014 (9)0.0004 (10)0.0001 (11)
C150.029 (2)0.0372 (15)0.0223 (17)0.0004 (9)0.0003 (18)0.0018 (11)
O150.0486 (13)0.042 (3)0.0298 (15)0.009 (2)0.0143 (13)0.0038 (15)
C1110.039 (2)0.0298 (12)0.0281 (15)0.0047 (16)0.0045 (14)0.0029 (12)
C1120.044 (2)0.0457 (17)0.0367 (17)0.009 (2)0.0038 (18)0.0049 (14)
C1130.043 (2)0.0515 (18)0.0495 (19)0.022 (2)0.001 (2)0.0030 (15)
C1140.048 (3)0.0431 (16)0.0362 (15)0.022 (2)0.0056 (18)0.0019 (12)
C1150.052 (2)0.037 (2)0.0360 (15)0.0212 (14)0.0068 (16)0.0023 (14)
C1160.038 (2)0.0346 (15)0.0348 (17)0.0109 (16)0.0007 (17)0.0014 (12)
N1310.0268 (10)0.028 (3)0.0327 (17)0.0015 (8)0.0060 (8)0.004 (2)
C1320.0303 (12)0.024 (2)0.027 (2)0.0012 (9)0.0014 (10)0.001 (2)
O1320.0328 (11)0.033 (2)0.0354 (17)0.0021 (9)0.0079 (9)0.0108 (17)
C1330.0289 (11)0.0257 (15)0.0193 (15)0.0005 (10)0.0012 (10)0.0050 (12)
C1340.0317 (12)0.034 (2)0.027 (2)0.0014 (10)0.0037 (11)0.000 (2)
C14A0.0350 (12)0.027 (2)0.0229 (16)0.0007 (11)0.0009 (11)0.0029 (15)
C1350.0439 (15)0.0324 (18)0.0231 (15)0.0007 (13)0.0007 (12)0.0007 (12)
C1360.0518 (18)0.0318 (18)0.0281 (17)0.0069 (14)0.0032 (13)0.0009 (13)
C1370.0445 (16)0.037 (2)0.0409 (19)0.0123 (14)0.0041 (13)0.0009 (17)
C1380.0343 (13)0.036 (4)0.0390 (17)0.0037 (14)0.0009 (11)0.002 (2)
C18A0.0322 (12)0.023 (2)0.0275 (16)0.0015 (10)0.0014 (10)0.0025 (17)
C1510.026 (3)0.0386 (12)0.0230 (14)0.0013 (13)0.0020 (19)0.0010 (10)
C1520.0374 (13)0.040 (2)0.024 (2)0.0026 (16)0.0044 (15)0.0006 (18)
C1530.0433 (17)0.0399 (18)0.028 (3)0.0019 (12)0.0034 (15)0.0026 (19)
C1540.031 (3)0.0378 (14)0.0372 (15)0.0070 (15)0.0004 (14)0.0024 (11)
Cl150.0488 (9)0.0455 (4)0.0468 (11)0.0157 (5)0.0068 (7)0.0045 (7)
C1550.029 (2)0.0474 (18)0.0392 (16)0.0030 (15)0.0100 (16)0.0018 (14)
C1560.029 (2)0.0408 (15)0.0308 (16)0.0014 (13)0.0038 (15)0.0042 (13)
Cl140.0732 (6)0.0551 (5)0.0359 (5)0.0348 (4)0.0045 (4)0.0033 (4)
C210.031 (2)0.0329 (12)0.0259 (15)0.0002 (12)0.0011 (14)0.0022 (12)
O210.0361 (17)0.0468 (14)0.0286 (13)0.0066 (13)0.0035 (11)0.0023 (12)
C220.0338 (15)0.0322 (13)0.0231 (19)0.0026 (10)0.0013 (13)0.0013 (11)
C230.0305 (12)0.0298 (12)0.0217 (15)0.0013 (9)0.0003 (10)0.0007 (10)
C240.0285 (11)0.0359 (12)0.025 (2)0.0014 (9)0.0004 (10)0.0001 (11)
C250.029 (2)0.0372 (15)0.0223 (17)0.0004 (9)0.0003 (18)0.0018 (11)
O250.0486 (13)0.042 (3)0.0298 (15)0.009 (2)0.0143 (13)0.0038 (15)
C2110.039 (2)0.0298 (12)0.0281 (15)0.0047 (16)0.0045 (14)0.0029 (12)
C2120.044 (2)0.0457 (17)0.0367 (17)0.009 (2)0.0038 (18)0.0049 (14)
C2130.043 (2)0.0515 (18)0.0495 (19)0.022 (2)0.001 (2)0.0030 (15)
C2140.048 (3)0.0431 (16)0.0362 (15)0.022 (2)0.0056 (18)0.0019 (12)
C2150.052 (2)0.037 (2)0.0360 (15)0.0212 (14)0.0068 (16)0.0023 (14)
C2160.038 (2)0.0346 (15)0.0348 (17)0.0109 (16)0.0007 (17)0.0014 (12)
N2310.0268 (10)0.028 (3)0.0327 (17)0.0015 (8)0.0060 (8)0.004 (2)
C2320.0303 (12)0.024 (2)0.027 (2)0.0012 (9)0.0014 (10)0.001 (2)
O2320.0328 (11)0.033 (2)0.0354 (17)0.0021 (9)0.0079 (9)0.0108 (17)
C2330.0289 (11)0.0257 (15)0.0193 (15)0.0005 (10)0.0012 (10)0.0050 (12)
C2340.0317 (12)0.034 (2)0.027 (2)0.0014 (10)0.0037 (11)0.000 (2)
C24A0.0350 (12)0.027 (2)0.0229 (16)0.0007 (11)0.0009 (11)0.0029 (15)
C2350.0439 (15)0.0324 (18)0.0231 (15)0.0007 (13)0.0007 (12)0.0007 (12)
C2360.0518 (18)0.0318 (18)0.0281 (17)0.0069 (14)0.0032 (13)0.0009 (13)
C2370.0445 (16)0.037 (2)0.0409 (19)0.0123 (14)0.0041 (13)0.0009 (17)
C2380.0343 (13)0.036 (4)0.0390 (17)0.0037 (14)0.0009 (11)0.002 (2)
C28A0.0322 (12)0.023 (2)0.0275 (16)0.0015 (10)0.0014 (10)0.0025 (17)
C2510.026 (3)0.0386 (12)0.0230 (14)0.0013 (13)0.0020 (19)0.0010 (10)
C2520.0374 (13)0.040 (2)0.024 (2)0.0026 (16)0.0044 (15)0.0006 (18)
C2530.0433 (17)0.0399 (18)0.028 (3)0.0019 (12)0.0034 (15)0.0026 (19)
C2540.031 (3)0.0378 (14)0.0372 (15)0.0070 (15)0.0004 (14)0.0024 (11)
Cl250.0488 (9)0.0455 (4)0.0468 (11)0.0157 (5)0.0068 (7)0.0045 (7)
C2550.029 (2)0.0474 (18)0.0392 (16)0.0030 (15)0.0100 (16)0.0018 (14)
C2560.029 (2)0.0408 (15)0.0308 (16)0.0014 (13)0.0038 (15)0.0042 (13)
Cl220.062 (3)0.071 (4)0.074 (4)0.007 (3)0.004 (3)0.003 (3)
Geometric parameters (Å, º) top
C11—O111.219 (3)C21—O211.219 (5)
C11—C1111.498 (4)C21—C2111.498 (6)
C11—C121.512 (3)C21—C221.514 (5)
C12—C131.534 (3)C22—C231.532 (6)
C12—H12A0.9900C22—H22A0.9900
C12—H12B0.9900C22—H22B0.9900
C13—C1331.518 (3)C23—C2331.518 (5)
C13—C141.536 (3)C23—C241.536 (5)
C13—H131.0000C23—H231.0000
C14—C151.515 (3)C24—C251.515 (5)
C14—H14A0.9900C24—H24A0.9900
C14—H14B0.9900C24—H24B0.9900
C15—O151.216 (3)C25—O251.216 (6)
C15—C1511.498 (3)C25—C2511.499 (5)
C111—C1121.383 (4)C211—C2121.381 (6)
C111—C1161.406 (4)C211—C2161.408 (6)
C112—C1131.391 (4)C212—C2131.392 (6)
C112—H1120.9500C212—Cl221.700 (14)
C113—C1141.382 (5)C213—C2141.384 (6)
C113—H1130.9500C213—H2130.9500
C114—C1151.376 (4)C214—C2151.374 (6)
C114—Cl141.747 (3)C214—H2140.9500
C115—C1161.385 (4)C215—C2161.384 (6)
C115—H1150.9500C215—H2150.9500
C116—H1160.9500C216—H2160.9500
N131—C1321.363 (3)N231—C2321.363 (5)
N131—C18A1.386 (3)N231—C28A1.385 (5)
N131—H1310.8800N231—H2310.8800
C132—O1321.251 (3)C232—O2321.252 (5)
C132—C1331.466 (3)C232—C2331.467 (5)
C133—C1341.356 (3)C233—C2341.357 (5)
C134—C14A1.427 (3)C234—C24A1.427 (5)
C134—H1340.9500C234—H2340.9500
C14A—C18A1.402 (3)C24A—C28A1.403 (5)
C14A—C1351.414 (4)C24A—C2351.413 (5)
C135—C1361.374 (4)C235—C2361.374 (6)
C135—H1350.9500C235—H2350.9500
C136—C1371.397 (4)C236—C2371.397 (6)
C136—H1360.9500C236—H2360.9500
C137—C1381.376 (4)C237—C2381.376 (6)
C137—H1370.9500C237—H2370.9500
C138—C18A1.400 (4)C238—C28A1.400 (6)
C138—H1380.9500C238—H2380.9500
C151—C1561.398 (4)C251—C2561.399 (5)
C151—C1521.408 (5)C251—C2521.408 (6)
C152—C1531.384 (4)C252—C2531.384 (6)
C152—H1520.9500C252—H2520.9500
C153—C1541.392 (5)C253—C2541.392 (6)
C153—H1530.9500C253—H2530.9500
C154—C1551.380 (4)C254—C2551.381 (6)
C154—Cl151.748 (3)C254—Cl251.749 (5)
C155—C1561.390 (4)C255—C2561.389 (6)
C155—H1550.9500C255—H2550.9500
C156—H1560.9500C256—H2560.9500
O11—C11—C111121.1 (3)O21—C21—C211121.2 (8)
O11—C11—C12122.3 (3)O21—C21—C22121.7 (7)
C111—C11—C12116.6 (2)C211—C21—C22116.6 (7)
C11—C12—C13115.3 (2)C21—C22—C23115.8 (7)
C11—C12—H12A108.4C21—C22—H22A108.3
C13—C12—H12A108.4C23—C22—H22A108.3
C11—C12—H12B108.4C21—C22—H22B108.3
C13—C12—H12B108.4C23—C22—H22B108.3
H12A—C12—H12B107.5H22A—C22—H22B107.4
C133—C13—C12107.4 (2)C233—C23—C22107.9 (7)
C133—C13—C14112.1 (2)C233—C23—C24112.2 (7)
C12—C13—C14110.6 (2)C22—C23—C24110.5 (7)
C133—C13—H13108.9C233—C23—H23108.7
C12—C13—H13108.9C22—C23—H23108.7
C14—C13—H13108.9C24—C23—H23108.7
C15—C14—C13113.1 (2)C25—C24—C23113.3 (7)
C15—C14—H14A109.0C25—C24—H24A108.9
C13—C14—H14A109.0C23—C24—H24A108.9
C15—C14—H14B109.0C25—C24—H24B108.9
C13—C14—H14B109.0C23—C24—H24B108.9
H14A—C14—H14B107.8H24A—C24—H24B107.7
O15—C15—C151120.4 (3)O25—C25—C251120.4 (8)
O15—C15—C14121.3 (2)O25—C25—C24121.2 (8)
C151—C15—C14118.3 (2)C251—C25—C24118.0 (6)
C112—C111—C116119.1 (3)C212—C211—C216118.5 (6)
C112—C111—C11119.5 (3)C212—C211—C21120.3 (6)
C116—C111—C11121.3 (3)C216—C211—C21120.9 (7)
C111—C112—C113120.7 (3)C211—C212—C213121.3 (6)
C111—C112—H112119.6C211—C212—Cl22128.8 (11)
C113—C112—H112119.6C213—C212—Cl22109.1 (11)
C114—C113—C112118.5 (3)C214—C213—C212118.0 (7)
C114—C113—H113120.7C214—C213—H213121.0
C112—C113—H113120.7C212—C213—H213121.0
C115—C114—C113122.5 (3)C215—C214—C213122.1 (7)
C115—C114—Cl14119.5 (3)C215—C214—H214118.9
C113—C114—Cl14118.0 (2)C213—C214—H214118.9
C114—C115—C116118.4 (3)C214—C215—C216118.5 (7)
C114—C115—H115120.8C214—C215—H215120.8
C116—C115—H115120.8C216—C215—H215120.8
C115—C116—C111120.7 (3)C215—C216—C211120.3 (7)
C115—C116—H116119.7C215—C216—H216119.8
C111—C116—H116119.7C211—C216—H216119.8
C132—N131—C18A125.1 (2)C232—N231—C28A125.3 (6)
C132—N131—H131117.5C232—N231—H231117.3
C18A—N131—H131117.5C28A—N231—H231117.3
O132—C132—N131120.4 (3)O232—C232—N231120.4 (7)
O132—C132—C133123.5 (2)O232—C232—C233123.3 (8)
N131—C132—C133116.1 (2)N231—C232—C233116.1 (5)
C134—C133—C132119.4 (2)C234—C233—C232119.1 (6)
C134—C133—C13122.3 (2)C234—C233—C23122.6 (6)
C132—C133—C13118.0 (2)C232—C233—C23117.9 (6)
C133—C134—C14A122.7 (2)C233—C234—C24A122.8 (6)
C133—C134—H134118.7C233—C234—H234118.6
C14A—C134—H134118.7C24A—C234—H234117.0
C18A—C14A—C135119.0 (2)C28A—C24A—C235118.7 (5)
C18A—C14A—C134117.6 (2)C28A—C24A—C234117.4 (5)
C135—C14A—C134123.4 (2)C235—C24A—C234123.8 (6)
C136—C135—C14A119.9 (3)C236—C235—C24A120.2 (6)
C136—C135—H135120.0C236—C235—H235119.9
C14A—C135—H135120.0C24A—C235—H235119.9
C135—C136—C137120.3 (3)C235—C236—C237120.1 (6)
C135—C136—H136119.8C235—C236—H236119.9
C137—C136—H136119.8C237—C236—H236119.9
C138—C137—C136120.9 (3)C238—C237—C236120.9 (6)
C138—C137—H137119.5C238—C237—H237119.6
C136—C137—H137119.5C236—C237—H237119.6
C137—C138—C18A119.2 (3)C237—C238—C28A119.3 (7)
C137—C138—H138120.4C237—C238—H238120.4
C18A—C138—H138120.4C28A—C238—H238120.4
N131—C18A—C138120.5 (2)N231—C28A—C238120.8 (6)
N131—C18A—C14A119.0 (2)N231—C28A—C24A118.7 (5)
C138—C18A—C14A120.5 (2)C238—C28A—C24A120.3 (6)
C156—C151—C152119.3 (3)C256—C251—C252119.2 (6)
C156—C151—C15122.6 (3)C256—C251—C25122.2 (6)
C152—C151—C15118.0 (3)C252—C251—C25118.3 (7)
C153—C152—C151121.0 (3)C253—C252—C251121.0 (7)
C153—C152—H152119.5C253—C252—H252119.5
C151—C152—H152119.5C251—C252—H252119.5
C152—C153—C154118.0 (3)C252—C253—C254118.2 (6)
C152—C153—H153121.0C252—C253—H253120.9
C154—C153—H153121.0C254—C253—H253120.9
C155—C154—C153122.3 (3)C255—C254—C253122.0 (6)
C155—C154—Cl15119.1 (2)C255—C254—Cl25118.8 (7)
C153—C154—Cl15118.6 (2)C253—C254—Cl25118.4 (8)
C154—C155—C156119.4 (3)C254—C255—C256119.5 (6)
C154—C155—H155120.3C254—C255—H255120.3
C156—C155—H155120.3C256—C255—H255120.3
C155—C156—C151119.8 (3)C255—C256—C251119.9 (6)
C155—C156—H156120.1C255—C256—H256120.0
C151—C156—H156120.1C251—C256—H256120.0
O11—C11—C12—C1321.8 (8)C211—C21—C22—C23160 (3)
C111—C11—C12—C13160.3 (4)C21—C22—C23—C233172 (2)
C11—C12—C13—C133174.8 (4)C21—C22—C23—C2465 (3)
C11—C12—C13—C1462.6 (4)C233—C23—C24—C2564 (4)
C133—C13—C14—C1563.3 (6)C22—C23—C24—C25175 (3)
C12—C13—C14—C15176.9 (6)C23—C24—C25—O2521 (8)
C13—C14—C15—O1514.9 (14)C23—C24—C25—C251166 (4)
C13—C14—C15—C151164.6 (7)O21—C21—C211—C2124 (6)
O11—C11—C111—C11214.1 (8)C22—C21—C211—C212168 (4)
C12—C11—C111—C112167.9 (5)O21—C21—C211—C216170 (4)
O11—C11—C111—C116166.6 (6)C22—C21—C211—C21618 (5)
C12—C11—C111—C11611.4 (8)C216—C211—C212—C2134 (6)
C116—C111—C112—C1130.6 (8)C21—C211—C212—C213179 (4)
C11—C111—C112—C113178.7 (6)C216—C211—C212—Cl22173 (3)
C111—C112—C113—C1140.1 (9)C21—C211—C212—Cl2213 (6)
C112—C113—C114—C1150.1 (9)C211—C212—C213—C2145 (6)
C112—C113—C114—Cl14178.4 (5)Cl22—C212—C213—C214176 (3)
C113—C114—C115—C1160.4 (9)C212—C213—C214—C2153 (6)
Cl14—C114—C115—C116178.8 (4)C213—C214—C215—C21611 (5)
C114—C115—C116—C1111.0 (8)C214—C215—C216—C21112 (5)
C112—C111—C116—C1151.1 (8)C212—C211—C216—C2154 (5)
C11—C111—C116—C115178.2 (5)C21—C211—C216—C215170 (3)
C18A—N131—C132—O132179.9 (9)C28A—N231—C232—O232174 (6)
C18A—N131—C132—C1330.8 (15)C28A—N231—C232—C2331 (10)
O132—C132—C133—C134176.7 (8)O232—C232—C233—C234179 (5)
N131—C132—C133—C1344.0 (11)N231—C232—C233—C2344 (7)
O132—C132—C133—C132.2 (10)O232—C232—C233—C238 (7)
N131—C132—C133—C13178.5 (7)N231—C232—C233—C23176 (5)
C12—C13—C133—C13478.9 (6)C22—C23—C233—C23483 (4)
C14—C13—C133—C13442.8 (6)C24—C23—C233—C23439 (4)
C12—C13—C133—C13295.5 (5)C22—C23—C233—C232105 (3)
C14—C13—C133—C132142.8 (5)C24—C23—C233—C232133 (3)
C132—C133—C134—C14A4.9 (10)C232—C233—C234—C24A8 (7)
C13—C133—C134—C14A179.3 (5)C23—C233—C234—C24A180 (4)
C133—C134—C14A—C18A2.5 (10)C233—C234—C24A—C28A8 (7)
C133—C134—C14A—C135174.4 (5)C233—C234—C24A—C235173 (4)
C18A—C14A—C135—C1360.3 (5)C28A—C24A—C235—C2364 (4)
C134—C14A—C135—C136176.6 (5)C234—C24A—C235—C236176 (4)
C14A—C135—C136—C1371.6 (5)C24A—C235—C236—C2371 (4)
C135—C136—C137—C1380.8 (9)C235—C236—C237—C2382 (6)
C136—C137—C138—C18A1.4 (15)C236—C237—C238—C28A5 (10)
C132—N131—C18A—C138178.2 (11)C232—N231—C28A—C238177 (7)
C132—N131—C18A—C14A1.5 (15)C232—N231—C28A—C24A1 (10)
C137—C138—C18A—N131176.9 (10)C237—C238—C28A—N231177 (6)
C137—C138—C18A—C14A2.7 (15)C237—C238—C28A—C24A8 (10)
C135—C14A—C18A—N131177.8 (7)C235—C24A—C28A—N231178 (5)
C134—C14A—C18A—N1310.7 (9)C234—C24A—C28A—N2313 (7)
C135—C14A—C18A—C1381.9 (9)C235—C24A—C28A—C2387 (7)
C134—C14A—C18A—C138179.0 (9)C234—C24A—C28A—C238172 (6)
O15—C15—C151—C156171.0 (13)O25—C25—C251—C256172 (8)
C14—C15—C151—C1569.5 (14)C24—C25—C251—C2561 (9)
O15—C15—C151—C15210.8 (16)O25—C25—C251—C2522 (10)
C14—C15—C151—C152168.8 (9)C24—C25—C251—C252175 (6)
C156—C151—C152—C1533.3 (15)C256—C251—C252—C2536 (10)
C15—C151—C152—C153178.4 (9)C25—C251—C252—C253180 (6)
C151—C152—C153—C1540.0 (13)C251—C252—C253—C2544 (9)
C152—C153—C154—C1552.9 (12)C252—C253—C254—C2551 (8)
C152—C153—C154—Cl15178.5 (8)C252—C253—C254—Cl25169 (5)
C153—C154—C155—C1562.3 (10)C253—C254—C255—C2561 (6)
Cl15—C154—C155—C156179.0 (4)Cl25—C254—C255—C256171 (3)
C154—C155—C156—C1511.1 (8)C254—C255—C256—C2510 (6)
C152—C151—C156—C1553.9 (12)C252—C251—C256—C2553 (8)
C15—C151—C156—C155177.9 (7)C25—C251—C256—C255177 (5)
O21—C21—C22—C2311 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N131—H131···O132i0.881.962.840 (7)175
C156—H156···O15ii0.952.463.386 (12)165
C12—H12A···O11ii0.992.563.451 (5)149
N231—H231···O232i0.882.203.07 (5)168
C256—H256···O25ii0.952.463.41 (7)176
C22—H22A···O21ii0.992.583.42 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) y+1/4, x+5/4, z+1/4.
(II) (9RS,10RS)-8,9-bis(4-chlorobenzyl)- 10-(2-oxo-1,2-dihydroquinolin-3-yl)-5,6,9,10-tetrahydrophenanthridine top
Crystal data top
C36H22Cl2N2O4Z = 2
Mr = 617.46F(000) = 636
Triclinic, P1Dx = 1.195 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6771 (19) ÅCell parameters from 7841 reflections
b = 11.5208 (15) Åθ = 2.7–27.5°
c = 15.7275 (13) ŵ = 0.23 mm1
α = 83.956 (11)°T = 120 K
β = 72.795 (13)°Block, pale yellow
γ = 68.204 (14)°0.34 × 0.31 × 0.18 mm
V = 1715.9 (5) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
7841 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode5593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.932, Tmax = 0.960l = 020
7841 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0973P)2]
where P = (Fo2 + 2Fc2)/3
7841 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C36H22Cl2N2O4γ = 68.204 (14)°
Mr = 617.46V = 1715.9 (5) Å3
Triclinic, P1Z = 2
a = 10.6771 (19) ÅMo Kα radiation
b = 11.5208 (15) ŵ = 0.23 mm1
c = 15.7275 (13) ÅT = 120 K
α = 83.956 (11)°0.34 × 0.31 × 0.18 mm
β = 72.795 (13)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
7841 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5593 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.960Rint = 0.000
7841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.12Δρmax = 0.34 e Å3
7841 reflectionsΔρmin = 0.48 e Å3
397 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.75955 (19)0.42859 (18)0.02159 (12)0.0271 (4)
H10.80650.46620.04630.033*
C20.8076 (2)0.39849 (19)0.06735 (12)0.0308 (4)
H20.88690.41610.10390.037*
C30.7399 (2)0.3419 (2)0.10447 (13)0.0323 (5)
H30.77400.32070.16600.039*
C40.6246 (2)0.31674 (19)0.05245 (12)0.0298 (4)
H40.57940.27820.07800.036*
C4A0.57403 (18)0.34781 (17)0.03778 (12)0.0239 (4)
N50.45736 (15)0.32377 (14)0.08975 (10)0.0246 (3)
H50.41940.28690.06370.030*
C60.39607 (18)0.35195 (17)0.17742 (11)0.0225 (4)
O60.29007 (13)0.32697 (13)0.21880 (8)0.0294 (3)
C6A0.46398 (18)0.41083 (16)0.21851 (11)0.0220 (4)
C70.40159 (18)0.44173 (17)0.31270 (11)0.0227 (4)
H70.32990.41150.34590.027*
C80.44237 (18)0.51195 (17)0.35428 (12)0.0242 (4)
C90.54800 (18)0.56927 (17)0.30186 (12)0.0244 (4)
H90.60340.57570.34130.029*
C100.65236 (18)0.49052 (17)0.21735 (12)0.0234 (4)
H100.68940.54840.17440.028*
C10A0.58135 (17)0.43499 (16)0.17088 (11)0.0210 (4)
C10B0.64060 (18)0.40407 (17)0.07699 (12)0.0231 (4)
C870.36718 (19)0.55639 (19)0.44707 (12)0.0286 (4)
O870.38155 (15)0.64457 (15)0.47544 (10)0.0399 (4)
C810.2682 (2)0.4957 (2)0.50289 (12)0.0289 (4)
C820.1319 (2)0.5728 (2)0.54833 (12)0.0323 (5)
H820.10640.66110.54510.039*
C830.0348 (2)0.5218 (2)0.59758 (13)0.0334 (5)
H830.05760.57420.62760.040*
C840.0740 (2)0.3937 (2)0.60257 (12)0.0352 (5)
Cl840.04932 (6)0.32789 (6)0.66187 (4)0.04772 (18)
C850.2093 (2)0.3147 (2)0.56020 (13)0.0361 (5)
H850.23530.22650.56570.043*
C860.3055 (2)0.3671 (2)0.50985 (13)0.0326 (5)
H860.39770.31440.47990.039*
C970.47088 (19)0.70125 (18)0.27227 (12)0.0265 (4)
O970.35032 (14)0.73178 (13)0.26828 (10)0.0359 (3)
C910.54745 (19)0.79065 (17)0.24530 (12)0.0252 (4)
C920.4770 (2)0.90752 (19)0.21449 (14)0.0342 (5)
H920.38370.92700.21160.041*
C930.5395 (2)0.9955 (2)0.18806 (15)0.0376 (5)
H930.49001.07500.16750.045*
C940.6748 (2)0.96637 (19)0.19185 (13)0.0321 (4)
Cl940.75451 (6)1.07734 (5)0.15721 (4)0.04727 (18)
C950.7491 (2)0.85151 (19)0.22133 (14)0.0334 (5)
H950.84260.83310.22350.040*
C960.6855 (2)0.76338 (18)0.24783 (13)0.0298 (4)
H960.73590.68380.26790.036*
N1011.02403 (15)0.31428 (14)0.23040 (10)0.0254 (3)
H1011.10700.32150.21030.030*
C1020.91336 (19)0.40625 (17)0.20727 (12)0.0258 (4)
O1020.93055 (14)0.49608 (13)0.16202 (10)0.0379 (4)
C1030.77753 (18)0.38800 (17)0.23959 (12)0.0226 (4)
C1040.76772 (19)0.28607 (18)0.28794 (12)0.0257 (4)
H1040.67970.27500.30680.031*
C14A0.88584 (19)0.19385 (18)0.31180 (12)0.0269 (4)
C1050.8776 (2)0.0889 (2)0.36401 (14)0.0374 (5)
H1050.79120.07520.38370.045*
C1060.9940 (2)0.0057 (2)0.38701 (16)0.0446 (6)
H1060.98760.06530.42220.053*
C1071.1204 (2)0.0257 (2)0.35868 (15)0.0418 (5)
H1071.19980.03200.37500.050*
C1081.1331 (2)0.1276 (2)0.30735 (13)0.0332 (5)
H1081.22000.14050.28910.040*
C18A1.01583 (19)0.21189 (18)0.28235 (12)0.0250 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (9)0.0297 (10)0.0290 (10)0.0120 (8)0.0048 (8)0.0041 (8)
C20.0226 (9)0.0389 (11)0.0273 (10)0.0137 (9)0.0001 (8)0.0048 (8)
C30.0301 (10)0.0399 (12)0.0223 (9)0.0122 (9)0.0015 (8)0.0011 (8)
C40.0274 (10)0.0376 (11)0.0273 (10)0.0133 (9)0.0101 (8)0.0016 (8)
C4A0.0182 (8)0.0256 (9)0.0265 (9)0.0079 (7)0.0054 (7)0.0035 (7)
N50.0205 (8)0.0305 (9)0.0251 (8)0.0116 (7)0.0056 (6)0.0021 (6)
C60.0169 (8)0.0251 (9)0.0251 (9)0.0066 (7)0.0077 (7)0.0033 (7)
O60.0213 (7)0.0415 (8)0.0295 (7)0.0182 (6)0.0037 (5)0.0013 (6)
C6A0.0183 (9)0.0238 (9)0.0240 (9)0.0086 (7)0.0055 (7)0.0028 (7)
C70.0153 (8)0.0284 (10)0.0238 (9)0.0082 (7)0.0046 (7)0.0019 (7)
C80.0166 (9)0.0271 (10)0.0267 (9)0.0071 (7)0.0036 (7)0.0001 (7)
C90.0200 (9)0.0274 (10)0.0271 (9)0.0112 (8)0.0053 (7)0.0005 (7)
C100.0177 (8)0.0248 (9)0.0289 (9)0.0110 (7)0.0043 (7)0.0018 (7)
C10A0.0159 (8)0.0221 (9)0.0249 (9)0.0071 (7)0.0059 (7)0.0033 (7)
C10B0.0188 (9)0.0230 (9)0.0258 (9)0.0072 (7)0.0050 (7)0.0031 (7)
C870.0209 (9)0.0373 (11)0.0278 (10)0.0109 (8)0.0060 (8)0.0016 (8)
O870.0326 (8)0.0494 (10)0.0412 (8)0.0209 (7)0.0024 (6)0.0146 (7)
C810.0239 (9)0.0456 (12)0.0203 (9)0.0155 (9)0.0050 (7)0.0045 (8)
C820.0250 (10)0.0472 (13)0.0259 (10)0.0142 (9)0.0035 (8)0.0109 (9)
C830.0251 (10)0.0526 (14)0.0232 (9)0.0162 (10)0.0014 (8)0.0089 (9)
C840.0274 (10)0.0594 (15)0.0208 (9)0.0203 (10)0.0046 (8)0.0037 (9)
Cl840.0370 (3)0.0655 (4)0.0386 (3)0.0266 (3)0.0011 (2)0.0130 (3)
C850.0328 (11)0.0443 (13)0.0291 (10)0.0147 (10)0.0067 (9)0.0070 (9)
C860.0239 (10)0.0432 (12)0.0265 (10)0.0093 (9)0.0055 (8)0.0031 (8)
C970.0225 (9)0.0303 (10)0.0252 (9)0.0066 (8)0.0067 (7)0.0038 (7)
O970.0255 (7)0.0344 (8)0.0511 (9)0.0103 (6)0.0168 (6)0.0031 (6)
C910.0248 (9)0.0247 (9)0.0257 (9)0.0087 (8)0.0061 (8)0.0012 (7)
C920.0266 (10)0.0311 (11)0.0409 (11)0.0069 (9)0.0083 (9)0.0011 (9)
C930.0377 (12)0.0271 (11)0.0456 (12)0.0101 (9)0.0115 (10)0.0046 (9)
C940.0381 (11)0.0262 (10)0.0357 (11)0.0164 (9)0.0086 (9)0.0014 (8)
Cl940.0536 (4)0.0356 (3)0.0624 (4)0.0281 (3)0.0170 (3)0.0075 (3)
C950.0332 (11)0.0332 (11)0.0406 (11)0.0165 (9)0.0145 (9)0.0008 (9)
C960.0315 (10)0.0258 (10)0.0359 (11)0.0108 (8)0.0153 (9)0.0027 (8)
N1010.0142 (7)0.0291 (8)0.0337 (8)0.0090 (6)0.0051 (6)0.0032 (7)
C1020.0206 (9)0.0269 (10)0.0312 (10)0.0112 (8)0.0054 (7)0.0012 (8)
O1020.0254 (7)0.0344 (8)0.0557 (9)0.0170 (6)0.0095 (7)0.0112 (7)
C1030.0193 (9)0.0255 (9)0.0257 (9)0.0102 (7)0.0067 (7)0.0013 (7)
C1040.0205 (9)0.0294 (10)0.0291 (9)0.0112 (8)0.0064 (7)0.0003 (8)
C14A0.0233 (9)0.0283 (10)0.0284 (10)0.0090 (8)0.0054 (8)0.0027 (8)
C1050.0325 (11)0.0382 (12)0.0414 (12)0.0152 (10)0.0096 (9)0.0080 (9)
C1060.0439 (13)0.0409 (13)0.0480 (13)0.0159 (11)0.0163 (11)0.0173 (10)
C1070.0326 (12)0.0432 (13)0.0425 (12)0.0038 (10)0.0145 (10)0.0056 (10)
C1080.0232 (10)0.0383 (12)0.0342 (11)0.0065 (9)0.0069 (8)0.0034 (9)
C18A0.0208 (9)0.0283 (10)0.0253 (9)0.0074 (8)0.0054 (7)0.0048 (7)
Geometric parameters (Å, º) top
C1—C21.373 (3)C84—C851.393 (3)
C1—C10B1.418 (2)C84—Cl841.745 (2)
C1—H10.9500C85—C861.388 (3)
C2—C31.403 (3)C85—H850.9500
C2—H20.9500C86—H860.9500
C3—C41.374 (3)C97—O971.221 (2)
C3—H30.9500C97—C911.496 (3)
C4—C4A1.394 (3)C91—C921.393 (3)
C4—H40.9500C91—C961.400 (3)
C4A—N51.379 (2)C92—C931.377 (3)
C4A—C10B1.411 (3)C92—H920.9500
N5—C61.355 (2)C93—C941.374 (3)
N5—H50.8800C93—H930.9500
C6—O61.247 (2)C94—C951.380 (3)
C6—C6A1.462 (3)C94—Cl941.744 (2)
C6A—C10A1.367 (2)C95—C961.386 (3)
C6A—C71.455 (2)C95—H950.9500
C7—C81.346 (3)C96—H960.9500
C7—H70.9500N101—C1021.377 (2)
C8—C871.482 (3)N101—C18A1.378 (2)
C8—C91.509 (2)N101—H1010.8800
C9—C971.534 (3)C102—O1021.233 (2)
C9—C101.568 (3)C102—C1031.474 (2)
C9—H91.0000C103—C1041.351 (3)
C10—C10A1.518 (3)C104—C14A1.436 (3)
C10—C1031.523 (2)C104—H1040.9500
C10—H101.0000C14A—C1051.403 (3)
C10A—C10B1.449 (2)C14A—C18A1.413 (3)
C87—O871.227 (2)C105—C1061.379 (3)
C87—C811.499 (3)C105—H1050.9500
C81—C861.385 (3)C106—C1071.388 (3)
C81—C821.406 (3)C106—H1060.9500
C82—C831.379 (3)C107—C1081.379 (3)
C82—H820.9500C107—H1070.9500
C83—C841.377 (3)C108—C18A1.405 (3)
C83—H830.9500C108—H1080.9500
C2—C1—C10B120.72 (18)C83—C84—C85121.77 (19)
C2—C1—H1119.6C83—C84—Cl84119.37 (16)
C10B—C1—H1119.6C85—C84—Cl84118.86 (18)
C1—C2—C3120.19 (17)C86—C85—C84118.8 (2)
C1—C2—H2119.9C86—C85—H85120.6
C3—C2—H2119.9C84—C85—H85120.6
C4—C3—C2120.42 (18)C81—C86—C85120.58 (19)
C4—C3—H3119.8C81—C86—H86119.7
C2—C3—H3119.8C85—C86—H86119.7
C3—C4—C4A119.98 (18)O97—C97—C91120.43 (17)
C3—C4—H4120.0O97—C97—C9120.64 (17)
C4A—C4—H4120.0C91—C97—C9118.90 (15)
N5—C4A—C4119.93 (17)C92—C91—C96118.33 (18)
N5—C4A—C10B119.26 (16)C92—C91—C97117.51 (17)
C4—C4A—C10B120.81 (16)C96—C91—C97124.15 (17)
C6—N5—C4A125.69 (16)C93—C92—C91121.42 (19)
C6—N5—H5117.2C93—C92—H92119.3
C4A—N5—H5117.2C91—C92—H92119.3
O6—C6—N5121.03 (16)C94—C93—C92118.94 (19)
O6—C6—C6A123.56 (16)C94—C93—H93120.5
N5—C6—C6A115.41 (15)C92—C93—H93120.5
C10A—C6A—C7121.42 (16)C93—C94—C95121.69 (19)
C10A—C6A—C6121.62 (16)C93—C94—Cl94118.85 (16)
C7—C6A—C6116.96 (15)C95—C94—Cl94119.46 (16)
C8—C7—C6A121.96 (16)C94—C95—C96119.07 (19)
C8—C7—H7119.0C94—C95—H95120.5
C6A—C7—H7119.0C96—C95—H95120.5
C7—C8—C87121.85 (16)C95—C96—C91120.55 (18)
C7—C8—C9120.10 (16)C95—C96—H96119.7
C87—C8—C9116.95 (16)C91—C96—H96119.7
C8—C9—C97109.56 (15)C102—N101—C18A125.47 (15)
C8—C9—C10112.83 (15)C102—N101—H101117.3
C97—C9—C10108.67 (14)C18A—N101—H101117.3
C8—C9—H9108.6O102—C102—N101120.72 (16)
C97—C9—H9108.6O102—C102—C103123.87 (17)
C10—C9—H9108.6N101—C102—C103115.41 (16)
C10A—C10—C103110.19 (14)C104—C103—C102120.28 (17)
C10A—C10—C9112.59 (14)C104—C103—C10123.25 (16)
C103—C10—C9111.59 (15)C102—C103—C10116.45 (15)
C10A—C10—H10107.4C103—C104—C14A122.19 (17)
C103—C10—H10107.4C103—C104—H104118.9
C9—C10—H10107.4C14A—C104—H104118.9
C6A—C10A—C10B120.23 (16)C105—C14A—C18A118.83 (18)
C6A—C10A—C10119.77 (15)C105—C14A—C104123.34 (18)
C10B—C10A—C10119.97 (15)C18A—C14A—C104117.82 (17)
C4A—C10B—C1117.88 (16)C106—C105—C14A120.6 (2)
C4A—C10B—C10A117.77 (15)C106—C105—H105119.7
C1—C10B—C10A124.34 (16)C14A—C105—H105119.7
O87—C87—C8120.21 (17)C105—C106—C107119.9 (2)
O87—C87—C81121.36 (17)C105—C106—H106120.1
C8—C87—C81118.35 (17)C107—C106—H106120.1
C86—C81—C82119.19 (18)C108—C107—C106121.5 (2)
C86—C81—C87122.42 (17)C108—C107—H107119.3
C82—C81—C87118.38 (19)C106—C107—H107119.3
C83—C82—C81120.8 (2)C107—C108—C18A119.10 (19)
C83—C82—H82119.6C107—C108—H108120.4
C81—C82—H82119.6C18A—C108—H108120.4
C84—C83—C82118.90 (19)N101—C18A—C108121.13 (17)
C84—C83—H83120.6N101—C18A—C14A118.76 (16)
C82—C83—H83120.6C108—C18A—C14A120.10 (18)
C10B—C1—C2—C30.6 (3)C81—C82—C83—C840.8 (3)
C1—C2—C3—C40.4 (3)C82—C83—C84—C850.8 (3)
C2—C3—C4—C4A0.1 (3)C82—C83—C84—Cl84178.06 (14)
C3—C4—C4A—N5179.31 (18)C83—C84—C85—C861.7 (3)
C3—C4—C4A—C10B0.6 (3)Cl84—C84—C85—C86177.21 (15)
C4—C4A—N5—C6178.39 (17)C82—C81—C86—C850.7 (3)
C10B—C4A—N5—C61.5 (3)C87—C81—C86—C85178.10 (17)
C4A—N5—C6—O6179.65 (17)C84—C85—C86—C810.9 (3)
C4A—N5—C6—C6A1.2 (3)C8—C9—C97—O9721.2 (2)
O6—C6—C6A—C10A179.07 (17)C10—C9—C97—O97102.45 (19)
N5—C6—C6A—C10A0.1 (2)C8—C9—C97—C91160.87 (15)
O6—C6—C6A—C70.5 (3)C10—C9—C97—C9175.44 (19)
N5—C6—C6A—C7179.64 (15)O97—C97—C91—C921.1 (3)
C10A—C6A—C7—C810.3 (3)C9—C97—C91—C92176.81 (16)
C6—C6A—C7—C8170.20 (16)O97—C97—C91—C96179.97 (18)
C6A—C7—C8—C87172.30 (17)C9—C97—C91—C962.1 (3)
C6A—C7—C8—C94.6 (3)C96—C91—C92—C930.8 (3)
C7—C8—C9—C9792.2 (2)C97—C91—C92—C93179.85 (18)
C87—C8—C9—C9776.08 (19)C91—C92—C93—C940.4 (3)
C7—C8—C9—C1029.0 (2)C92—C93—C94—C950.0 (3)
C87—C8—C9—C10162.71 (15)C92—C93—C94—Cl94179.31 (16)
C8—C9—C10—C10A38.5 (2)C93—C94—C95—C960.0 (3)
C97—C9—C10—C10A83.17 (18)Cl94—C94—C95—C96179.30 (15)
C8—C9—C10—C10385.97 (18)C94—C95—C96—C910.4 (3)
C97—C9—C10—C103152.31 (15)C92—C91—C96—C950.8 (3)
C7—C6A—C10A—C10B179.53 (16)C97—C91—C96—C95179.78 (18)
C6—C6A—C10A—C10B1.0 (3)C18A—N101—C102—O102178.31 (17)
C7—C6A—C10A—C102.5 (3)C18A—N101—C102—C1032.2 (3)
C6—C6A—C10A—C10177.06 (16)O102—C102—C103—C104179.14 (19)
C103—C10—C10A—C6A98.56 (19)N101—C102—C103—C1040.4 (3)
C9—C10—C10A—C6A26.7 (2)O102—C102—C103—C102.3 (3)
C103—C10—C10A—C10B79.45 (19)N101—C102—C103—C10178.15 (15)
C9—C10—C10A—C10B155.26 (15)C10A—C10—C103—C10455.6 (2)
N5—C4A—C10B—C1179.45 (16)C9—C10—C103—C10470.3 (2)
C4—C4A—C10B—C10.4 (3)C10A—C10—C103—C102125.93 (16)
N5—C4A—C10B—C10A0.5 (3)C9—C10—C103—C102108.22 (17)
C4—C4A—C10B—C10A179.36 (16)C102—C103—C104—C14A1.6 (3)
C2—C1—C10B—C4A0.1 (3)C10—C103—C104—C14A176.80 (16)
C2—C1—C10B—C10A178.72 (17)C103—C104—C14A—C105178.19 (19)
C6A—C10A—C10B—C4A0.6 (3)C103—C104—C14A—C18A0.5 (3)
C10—C10A—C10B—C4A177.37 (16)C18A—C14A—C105—C1060.7 (3)
C6A—C10A—C10B—C1178.22 (17)C104—C14A—C105—C106178.0 (2)
C10—C10A—C10B—C13.8 (3)C14A—C105—C106—C1070.3 (4)
C7—C8—C87—O87161.00 (19)C105—C106—C107—C1080.2 (4)
C9—C8—C87—O877.1 (3)C106—C107—C108—C18A0.8 (3)
C7—C8—C87—C8115.7 (3)C102—N101—C18A—C108175.55 (17)
C9—C8—C87—C81176.21 (16)C102—N101—C18A—C14A3.3 (3)
O87—C87—C81—C86134.3 (2)C107—C108—C18A—N101179.37 (18)
C8—C87—C81—C8649.0 (3)C107—C108—C18A—C14A1.8 (3)
O87—C87—C81—C8246.9 (3)C105—C14A—C18A—N101179.39 (17)
C8—C87—C81—C82129.76 (19)C104—C14A—C18A—N1011.9 (3)
C86—C81—C82—C831.6 (3)C105—C14A—C18A—C1081.7 (3)
C87—C81—C82—C83177.26 (17)C104—C14A—C18A—C108177.01 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N101—H101···O6i0.882.022.850 (2)156
C2—H2···O102ii0.952.423.345 (3)163
C108—H108···O6i0.952.573.291 (3)133
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula0.84C26H19Cl2NO3·0.16C26H19Cl2NO3C36H22Cl2N2O4
Mr464.32617.46
Crystal system, space groupTetragonal, I41/aTriclinic, P1
Temperature (K)120120
a, b, c (Å)22.268 (4), 22.268 (4), 18.398 (5)10.6771 (19), 11.5208 (15), 15.7275 (13)
α, β, γ (°)90, 90, 9083.956 (11), 72.795 (13), 68.204 (14)
V3)9123 (4)1715.9 (5)
Z162
Radiation typeMo KαMo Kα
µ (mm1)0.310.23
Crystal size (mm)0.34 × 0.34 × 0.260.34 × 0.31 × 0.18
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.902, 0.9230.932, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
32275, 5197, 3789 7841, 7841, 5593
Rint0.0470.000
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.159, 1.09 0.051, 0.161, 1.12
No. of reflections51977841
No. of parameters392397
No. of restraints850
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.075P)2 + 12.591P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0973P)2]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.45, 0.330.34, 0.48

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected torsion angles (°) for isomers (Ia) and (Ib) top
(Ia)(Ib)
C112—C111—C11—C12-167.9 (5)C212—C211—C21—C22-168 (4)
C111—C11—C12—C13160.3 (4)C211—C21—C22—C23160 (3)
C11—C12—C13—C14-62.6 (4)C21—C22—C23—C24-65 (3)
C12—C13—C14—C15176.9 (6)C22—C23—C24—C25175 (3)
C13—C14—C15—C151164.6 (9)C23—C24—C25—C251166 (4)
C14—C15—C151—C152-168.8 (9)C24—C25—C251—C252175 (6)
C11—C12—C13—C133174.8 (4)C21—C22—C23—C233172 (2)
C12—C13—C133—C132-95.5 (5)C22—C23—C233—C232-105 (3)
Hydrogen bonds and short intramolecular contacts (Å, °) for (I) and (II) top
CompoundD—H···AD—HH···AD···AD—H···A
(Ia)N131-H131···O132i0.881.962.840 (7)175
C156—H156···O15ii0.952.463.386 (12)165
C12—H12A···O11ii0.992.563.451 (5)149
(Ib)N231-H231···O232i0.882.203.07 (5)168
C256—H256···O25ii0.952.463.41 (7)176
C22—H22A···O21ii0.992.583.42 (3)142
(II)N101—H101···O6iii0.882.022.850 (2)156
C2—H2···O102iv0.952.423.345 (3)163
C108—H108···O6iii0.952.573.291 (3)133
Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) y + 1/4, -x + 5/4, z + 1/4; (iii) x + 1, y, z; (iv) -x + 2, -y + 1, -z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds