Download citation
Download citation
link to html
In the title compound, (H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2O, the La atom is bonded to seven O atoms (arising from two O,O′-bidentate biuret mol­ecules and three water mol­ecules) and two chloride ions in an irregular arrangement. A network of N—H...O, N—H...Cl, O—H...O and O—H...Cl hydrogen bonds helps to establish the packing, leading to a three-dimensional network. The La atom, one Cl atom and four O atoms lie on a crystallographic mirror plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808010349/fj2113sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808010349/fj2113Isup2.hkl
Contains datablock I

CCDC reference: 688833

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](N-C) = 0.003 Å
  • R factor = 0.017
  • wR factor = 0.042
  • Data-to-parameter ratio = 31.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for La1 PLAT313_ALERT_2_C Oxygen with three covalent bonds (rare) ........ O6 PLAT323_ALERT_2_C Check Hybridisation of O6 in Solvent/Ion ? PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1 ... ? PLAT420_ALERT_2_C D-H Without Acceptor N1 - H2 ... ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H1 .. CL2 .. 2.94 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 32.49 From the CIF: _reflns_number_total 3793 Count of symmetry unique reflns 1988 Completeness (_total/calc) 190.79% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1805 Fraction of Friedel pairs measured 0.908 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

No complexes of lanthanum(III) with biuret (biur), H2N—CO—NH—CO—NH2 (or C2H5N3O2) have been structurally characterized. The structures of two samarium-biuret complexes, Sm(biur)4.(NO3)3 (Haddad, 1987) and Sm(biur)4.(ClO4)3 (Haddad, 1988) have been described. In both cases, an SmO8 square antiprismatic coordination arises for the metal ion. Based on X-ray photographs, it was suggested that all the Ln(biur)4.(NO3)3 and Ln(biur)4.(ClO4)3 compounds are isostructural with their samarium prototypes. In this paper, we describe the synthesis and structure of the title compound, (I), in which three different ligands are bonded to the trivalent cation.

Compound (I) is an ionic salt containing a new [La(biur)2(H2O)5Cl2]+ complex ion. The complete cation is generated by crystallographic mirror symmetry, with La and the three water O atoms lying on the reflecting plane. A hydroxonium cation (with its O6 atom with site symmetry m), an uncoordinated chloride ion (Cl2) and an uncoordinated water molecule (O7) complete the structure (Fig. 1) of (I).

The resulting LaO7Cl2 polyhedral geometry in (I) (Table 1) can only be described as irregular. The Brese & O'Keeffe (1991) bond-valence sum for La1 in (I) of 3.29 is significantly larger than the expected value of 3.00. A local LaO7Cl2 grouping has been seen in various other compounds, including [LaCl2(H2O)(C12H24O6)]+.Cl- (Rogers et al., 1993) and [La(H2O)4Cl(C3H7O3]2+.2Cl-.H2O (Su et al., 2006), but otherwise these phases have no similarity to (I).

The O,O-bidenate coordination of the biuret molecule to the lanthanum ion in (I) results in a six-membered chelate ring that is non-planar. As noted previously (Carugo et al., 1992), the biuret molecule can be regarded as two planar amide fragments linked by the NH bridge. Here, the dihedral angle betwen the N1/C1/O1/N2 and N2/C2/O2/N3 units is 5.06 (10)°. The lanthanum cation deviates from the N1/C1/O1/N2 and N2/C2/O2/N3 mean planes by 0.894 (4)Å and 0.606 (4) Å, respectively.

The component species in (I) are linked by a dense array of N—H···O, N—H···Cl, O—H···Cl and O—H···O hydrogen bonds (Table 2) resulting in a three-dimensional network. Of note are the [001] chains resulting from the O—H···O hydrogen bonds involving the complex cation, H3O6 and H2O7 (Fig. 2).

The structure of (I) is different to those of the recently reported (Harrison, 2008a,b) M(biur)2(H2)4.Cl3 (M = Gd, Y) phases, perhaps because the larger La3+ cation can accommodate nine atoms in its coordination sphere.

Related literature top

For related structures, see: Carugo et al. (1992); Rogers et al. (1993); Su et al. (2006); Haddad (1987, 1988); Harrison (2008a,b)

For related literature, see: Brese & O'Keeffe (1991).

Experimental top

0.1 M Aqueous solutions of LaCl3 (10 ml) and biuret (10 ml) were mixed and a small quantity of dilute hydrochloric acid was added, to result in a colourless solution. Colourless blocks of (I) grew over several days as the water slowly evaporated.

Refinement top

The N-bound hydrogen atoms were geometrically placed (N—H = 0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(N). The water and hydroxonium H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O). Although a plausible hydrogen bonding scheme results, some of the peaks were barely above the noise level of the data, and thus the positions of the O-bonded H atoms should be regarded as less certain.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) -x, y, z.
[Figure 2] Fig. 2. Fragment of the packing for (I) displaying the hydrogen bonds (shows an double dashed lines) leading to chains arising from the complex cation, the hydroxonium ion and the uncoordinated water molecule. Symmetry code: (i) 1/2 - x, 1/2 + y, z.
Hydroxonium triaquabis(biuret-κ2O,O')dichloridolanthanum(III) dichloride dihydrate top
Crystal data top
(H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2OF(000) = 1176
Mr = 596.00Dx = 1.913 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 4771 reflections
a = 17.6252 (7) Åθ = 2.3–32.5°
b = 6.8868 (3) ŵ = 2.63 mm1
c = 17.0447 (7) ÅT = 293 K
V = 2068.91 (15) Å3Block, colourless
Z = 40.30 × 0.23 × 0.17 mm
Data collection top
Bruker SMART1000 CCD
diffractometer
3793 independent reflections
Radiation source: fine-focus sealed tube3716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2626
Tmin = 0.486, Tmax = 0.636k = 109
11912 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0242P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3793 reflectionsΔρmax = 0.70 e Å3
121 parametersΔρmin = 0.67 e Å3
1 restraintAbsolute structure: Flack (1983), 1805 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (9)
Crystal data top
(H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2OV = 2068.91 (15) Å3
Mr = 596.00Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 17.6252 (7) ŵ = 2.63 mm1
b = 6.8868 (3) ÅT = 293 K
c = 17.0447 (7) Å0.30 × 0.23 × 0.17 mm
Data collection top
Bruker SMART1000 CCD
diffractometer
3793 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3716 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.636Rint = 0.018
11912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.042Δρmax = 0.70 e Å3
S = 1.09Δρmin = 0.67 e Å3
3793 reflectionsAbsolute structure: Flack (1983), 1805 Friedel pairs
121 parametersAbsolute structure parameter: 0.001 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.00000.234447 (14)0.341713 (14)0.01947 (3)
Cl10.10789 (2)0.09170 (6)0.32281 (3)0.03634 (12)
C10.18755 (10)0.3315 (3)0.40149 (12)0.0293 (4)
C20.17044 (10)0.4278 (3)0.26382 (12)0.0290 (3)
N10.24102 (12)0.2964 (3)0.45518 (14)0.0459 (5)
H10.22830.26500.50220.055*
H20.28820.30520.44270.055*
N20.21433 (7)0.3826 (2)0.32868 (11)0.0344 (4)
H30.26280.38700.32290.041*
N30.20884 (11)0.4877 (3)0.20138 (13)0.0445 (4)
H40.18510.51810.15910.053*
H50.25750.49630.20320.053*
O10.11900 (8)0.3202 (3)0.41736 (8)0.0333 (3)
O20.10047 (7)0.41314 (19)0.26393 (8)0.0298 (3)
O30.00000.0881 (4)0.47616 (14)0.0488 (7)
H60.04060.07290.50260.059*
O40.00000.1452 (4)0.19698 (13)0.0384 (5)
H70.03770.09350.17500.046*
O50.00000.5850 (3)0.39200 (13)0.0388 (5)
H80.03230.65270.38430.047*
Cl20.36579 (3)0.51610 (15)0.08766 (5)0.04627 (14)
O60.50000.1924 (5)0.17243 (18)0.0617 (7)
H90.46860.14720.20810.074*
H100.50000.13630.12730.074*
O70.39583 (14)0.0187 (4)0.06811 (12)0.0695 (6)
H110.39600.14040.05600.083*
H120.39760.04760.02650.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01375 (4)0.02565 (5)0.01902 (5)0.0000.0000.00102 (8)
Cl10.01972 (15)0.03484 (19)0.0545 (3)0.00363 (13)0.00053 (17)0.00126 (18)
C10.0219 (8)0.0309 (9)0.0351 (9)0.0001 (6)0.0063 (7)0.0041 (7)
C20.0240 (7)0.0303 (8)0.0325 (9)0.0042 (6)0.0059 (7)0.0006 (7)
N10.0305 (9)0.0593 (11)0.0479 (11)0.0024 (8)0.0163 (9)0.0009 (10)
N20.0164 (5)0.0455 (7)0.0412 (11)0.0021 (5)0.0022 (6)0.0039 (7)
N30.0322 (9)0.0584 (11)0.0430 (10)0.0067 (8)0.0141 (8)0.0071 (9)
O10.0228 (6)0.0510 (8)0.0260 (6)0.0028 (6)0.0025 (5)0.0012 (6)
O20.0211 (6)0.0395 (7)0.0288 (6)0.0032 (5)0.0006 (5)0.0062 (6)
O30.0248 (10)0.086 (2)0.0352 (13)0.0000.0000.0282 (12)
O40.0265 (10)0.0609 (15)0.0279 (10)0.0000.0000.0113 (10)
O50.0301 (10)0.0299 (9)0.0564 (14)0.0000.0000.0004 (9)
Cl20.03018 (19)0.0726 (4)0.0360 (2)0.0037 (3)0.0008 (3)0.0124 (2)
O60.076 (2)0.0640 (16)0.0453 (16)0.0000.0000.0068 (14)
O70.0972 (16)0.0730 (12)0.0384 (10)0.0050 (13)0.0051 (10)0.0115 (10)
Geometric parameters (Å, º) top
La1—O32.503 (2)C2—N21.385 (3)
La1—O22.5313 (13)N1—H10.8600
La1—O2i2.5313 (12)N1—H20.8600
La1—O12.5318 (14)N2—H30.8600
La1—O1i2.5318 (14)N3—H40.8600
La1—O42.542 (2)N3—H50.8600
La1—O52.562 (2)O3—H60.8522
La1—Cl1i2.9606 (4)O4—H70.8418
La1—Cl12.9606 (4)O5—H80.7477
C1—O11.241 (2)O6—H90.8786
C1—N11.336 (3)O6—H100.8615
C1—N21.374 (3)O7—H110.8631
C2—O21.237 (2)O7—H120.8446
C2—N31.327 (3)
O3—La1—O2132.46 (4)O2—La1—Cl182.10 (3)
O3—La1—O2i132.46 (4)O2i—La1—Cl1139.57 (4)
O2—La1—O2i88.78 (6)O1—La1—Cl172.56 (4)
O3—La1—O168.14 (5)O1i—La1—Cl1139.86 (4)
O2—La1—O164.78 (4)O4—La1—Cl173.20 (5)
O2i—La1—O1137.12 (5)O5—La1—Cl1138.709 (15)
O3—La1—O1i68.14 (5)Cl1i—La1—Cl179.930 (17)
O2—La1—O1i137.12 (5)O1—C1—N1121.8 (2)
O2i—La1—O1i64.78 (4)O1—C1—N2123.21 (16)
O1—La1—O1i111.87 (7)N1—C1—N2115.01 (18)
O3—La1—O4142.27 (9)O2—C2—N3122.33 (19)
O2—La1—O467.01 (5)O2—C2—N2122.51 (17)
O2i—La1—O467.01 (5)N3—C2—N2115.16 (17)
O1—La1—O4123.41 (3)C1—N1—H1120.0
O1i—La1—O4123.41 (3)C1—N1—H2120.0
O3—La1—O594.19 (9)H1—N1—H2120.0
O2—La1—O573.56 (5)C1—N2—C2125.93 (14)
O2i—La1—O573.56 (5)C1—N2—H3117.0
O1—La1—O567.03 (4)C2—N2—H3117.0
O1i—La1—O567.03 (4)C2—N3—H4120.0
O4—La1—O5123.54 (8)C2—N3—H5120.0
O3—La1—Cl1i78.13 (5)H4—N3—H5120.0
O2—La1—Cl1i139.57 (4)C1—O1—La1135.26 (12)
O2i—La1—Cl1i82.10 (3)C2—O2—La1137.53 (12)
O1—La1—Cl1i139.86 (4)La1—O3—H6122.3
O1i—La1—Cl1i72.56 (4)La1—O4—H7122.3
O4—La1—Cl1i73.20 (5)La1—O5—H8121.9
O5—La1—Cl1i138.709 (15)H9—O6—H10117.3
O3—La1—Cl178.13 (5)H11—O7—H12108.9
O1—C1—N2—C20.1 (3)Cl1i—La1—O1—C1103.6 (2)
N1—C1—N2—C2179.32 (19)Cl1—La1—O1—C154.6 (2)
O2—C2—N2—C15.1 (3)N3—C2—O2—La1159.25 (15)
N3—C2—N2—C1174.93 (19)N2—C2—O2—La120.7 (3)
N1—C1—O1—La1149.81 (17)O3—La1—O2—C221.4 (2)
N2—C1—O1—La131.0 (3)O2i—La1—O2—C2175.02 (16)
O3—La1—O1—C1138.5 (2)O1—La1—O2—C229.91 (18)
O2—La1—O1—C134.7 (2)O1i—La1—O2—C2125.52 (18)
O2i—La1—O1—C191.9 (2)O4—La1—O2—C2119.5 (2)
O1i—La1—O1—C1167.88 (17)O5—La1—O2—C2101.81 (19)
O4—La1—O1—C10.6 (2)Cl1i—La1—O2—C2108.69 (18)
O5—La1—O1—C1116.7 (2)Cl1—La1—O2—C244.48 (18)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2ii0.862.943.643 (3)141
N1—H2···Cl1iii0.862.833.574 (3)145
N2—H3···Cl1iii0.862.283.1399 (14)173
N3—H4···O7iii0.862.122.927 (3)156
N3—H5···Cl20.862.753.3835 (18)132
O3—H6···Cl2ii0.852.283.1181 (16)168
O4—H7···Cl2iv0.842.323.1396 (17)164
O5—H8···Cl1v0.752.443.1566 (17)160
O6—H9···O2iv0.882.233.044 (3)153
O6—H10···O70.862.352.941 (3)126
O6—H10···O7vi0.862.352.941 (3)126
O7—H11···Cl2vii0.862.483.264 (3)151
O7—H12···O1viii0.842.092.922 (2)168
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x, y+1, z; (vi) x+1, y, z; (vii) x, y1, z; (viii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2O
Mr596.00
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)293
a, b, c (Å)17.6252 (7), 6.8868 (3), 17.0447 (7)
V3)2068.91 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.30 × 0.23 × 0.17
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.486, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
11912, 3793, 3716
Rint0.018
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.09
No. of reflections3793
No. of parameters121
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.67
Absolute structureFlack (1983), 1805 Friedel pairs
Absolute structure parameter0.001 (9)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
La1—O32.503 (2)La1—O42.542 (2)
La1—O22.5313 (13)La1—O52.562 (2)
La1—O12.5318 (14)La1—Cl12.9606 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.862.943.643 (3)141
N1—H2···Cl1ii0.862.833.574 (3)145
N2—H3···Cl1ii0.862.283.1399 (14)173
N3—H4···O7ii0.862.122.927 (3)156
N3—H5···Cl20.862.753.3835 (18)132
O3—H6···Cl2i0.852.283.1181 (16)168
O4—H7···Cl2iii0.842.323.1396 (17)164
O5—H8···Cl1iv0.752.443.1566 (17)160
O6—H9···O2iii0.882.233.044 (3)153
O6—H10···O70.862.352.941 (3)126
O6—H10···O7v0.862.352.941 (3)126
O7—H11···Cl2vi0.862.483.264 (3)151
O7—H12···O1vii0.842.092.922 (2)168
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y1, z; (vii) x+1/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds