Download citation
Download citation
link to html
The title compound, C9H10N4O, was obtained unintentionally by hydrolysis of 4-amino-1-benzyl-5-methyl­sulfanyl-1,2,4-triazolium tetra­fluoro­borate in the presence of sodium azide. In the crystal, alternating layers of polar amino­triazolinone and apolar benzene moieties are observed. N—H...O hydrogen bonds between the amino and carbonyl groups form infinite chains along [010]. These infinite chains are linked by additional C—H...O contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681401931X/fj2680sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681401931X/fj2680Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S160053681401931X/fj2680Isup3.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S160053681401931X/fj2680Isup4.cml
Supplementary material

CCDC reference: 1021229

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.034
  • wR factor = 0.092
  • Data-to-parameter ratio = 12.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 10 Report
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 3 Note PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 2 Note PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 75 % PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) ..... 1 Report PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 3 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

1,2,4-Triazole derivatives possess a wide spectrum of pharmacological activities (Sheng et al., 2011; Singla & Bhat, 2010; Dayan et al., 2009; Li et al., 2003; Todoulou et al., 1994). Only three 1-substituted 4-amino-1,2,4-triazolin-5-ones (Thamotharan et al., 2003; Kaur et al., 2013; Sahin et al., 2014) are found in the Cambridge Structural Database (Groom & Allen, 2014). The molecular structure of 4-amino-1-benzyl-1,2,4-triazolin-5-one is shown in Figure 1. In the crystal structure of the title compound, alternating layers of polar aminotriazolinone and apolar benzene moieties parallel to the bc plane are observed (Figure 2). The triazole rings are arranged parallel to (13 4 3) and (13 4 3) planes, with an interplanar angle of 76° (Figure 3). The amino group donates two hydrogen bonds to two neighbouring molecules, N3—H···O1i and N3—H···O1ii, forming infinite chains (Figure 4). In turn, the O atom receives a hydrogen bond from each of these two molecules. The triazole rings within the chain are parallel, with interplanar distances of 0.730 and 2.558 Å, respectively. These infinite chains are linked by additional C2—H···O1iii contacts. Symmetry operators (i): 1 - x, -1 - y, 2 - z; (ii): 1 - x, -y, 2 - z; (iii): x, -1/2 - y, -1/2 + z. Hydrogen bond geometry is shown in Table 1.

Related literature top

For the pharmacological activity of 1,2,4-triazoles, see: Sheng et al. (2011); Singla & Bhat (2010); Dayan et al. (2009); Li et al. (2003); Todoulou et al. (1994). For related structures, see: Thamotharan et al. (2003); Kaur et al. (2013); Sahin et al. (2014). For details of the synthesis, see: Becker et al. (1973a,b). For a description of the Cambridge Structural Database, see: Groom & Allen (2014).

Experimental top

The title compound was prepared from 4-amino-1-benzyl-5-methylthio-1,2,4- triazolium tetrafluoroborate (the respective iodide has been described by Becker et al., 1973b) which, in turn, was prepared from the corresponding 4-amino-1-benzyl-1,2,4-triazoline-5-thione (Becker et al., 1973a). When the 5-methylthio precursor was treated with NaN3 in MeOH/H2O, MeSH was evolved, and the triazolin-5-one was obtained. It is assumed that the intermediate 5-azido compound is highly prone to hydrolysis and therefore could not be isolated. In contrast, the 5-methylthio precursor could be stirred in H2O for 20 h without any change. Single crystals were obtained from MeOH/H2O. Melting point 119–120 °C. IR (neat): 1680 cm-1. 1H NMR (DMSO-d6, 300 MHz): 4.85 (s, 2H), 5.43 (s, 2H), 7.23–7.33 (m, 5H), 7.93 (s, 1H) p.p.m.. 13C NMR (DMSO-d6, 75 MHz): 48.7, 127.5 (3C), 128.5 (2C), 137.1, 138.4, 152.8 p.p.m..

Refinement top

Positions of hydrogen atoms bonded to carbon were generated in idealized geometries using a riding model with Uiso(H) = 1.2 Ueq(C). The fractional coordinates of the H atoms attached to N3 were identified from difference Fourier maps and refined freely with isotropic thermal displacement parameters.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2002); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Alternating layers of polar aminotriazolinone and apolar benzene moieties.
[Figure 3] Fig. 3. Arrangement of the triazole rings parallel to (13 4 3) and (13 4 3) planes.
[Figure 4] Fig. 4. Hydrogen bonds between the amino and carbonyl groups form infinite chains. Symmetry operators (i): 1 - x, -1 - y, 2 - z; (ii): 1 - x, -y, 2 - z.
4-Amino-1-benzyl-1,2,4-triazolin-5-one top
Crystal data top
C9H10N4OF(000) = 400
Mr = 190.21Dx = 1.396 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 4064 reflections
a = 18.0861 (8) Åθ = 3.7–67.9°
b = 4.1690 (2) ŵ = 0.80 mm1
c = 12.3694 (6) ÅT = 173 K
β = 104.003 (5)°Plate, colourless
V = 904.95 (7) Å30.2 × 0.2 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini ultra)
diffractometer
1613 independent reflections
Graphite monochromator1448 reflections with I > 2σ(I)
Detector resolution: 10.3575 pixels mm-1Rint = 0.030
ω scansθmax = 68.0°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 2121
Tmin = 0.867, Tmax = 1k = 44
7377 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.2066P]
where P = (Fo2 + 2Fc2)/3
1613 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C9H10N4OV = 904.95 (7) Å3
Mr = 190.21Z = 4
Monoclinic, P21/cCu Kα radiation
a = 18.0861 (8) ŵ = 0.80 mm1
b = 4.1690 (2) ÅT = 173 K
c = 12.3694 (6) Å0.2 × 0.2 × 0.08 mm
β = 104.003 (5)°
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini ultra)
diffractometer
1613 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1448 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 1Rint = 0.030
7377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
1613 reflectionsΔρmin = 0.14 e Å3
133 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET) (compiled Oct 25 2010,18:11:34) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41353 (5)0.0910 (2)1.01696 (7)0.0378 (3)
N30.47943 (7)0.4111 (3)0.84565 (10)0.0398 (3)
H310.5197 (9)0.283 (4)0.8730 (13)0.048*
H320.4789 (10)0.550 (4)0.9007 (12)0.048*
N10.32531 (6)0.0899 (3)0.85723 (8)0.0315 (3)
N40.41310 (6)0.2253 (2)0.83245 (8)0.0301 (3)
N20.31212 (6)0.0442 (3)0.74333 (9)0.0376 (3)
C10.38691 (7)0.0749 (3)0.91540 (10)0.0290 (3)
C50.14844 (8)0.0222 (3)0.81353 (11)0.0368 (3)
H50.15790.07110.7430.044*
C40.20132 (7)0.1088 (3)0.91021 (11)0.0322 (3)
C60.08204 (8)0.1351 (4)0.81894 (12)0.0404 (3)
H60.04650.19670.75230.049*
C70.06730 (8)0.2024 (4)0.92066 (13)0.0448 (4)
H70.02150.30820.92430.054*
C90.18659 (8)0.0385 (4)1.01228 (12)0.0417 (3)
H90.22250.09571.07910.05*
C20.36666 (7)0.1467 (3)0.73250 (10)0.0349 (3)
H20.37320.22210.66290.042*
C30.27350 (7)0.2839 (3)0.90400 (12)0.0384 (3)
H3A0.25960.47880.85780.046*
H3B0.30030.35340.97990.046*
C80.11940 (9)0.1154 (4)1.01708 (13)0.0492 (4)
H80.10930.1611.08740.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0376 (5)0.0452 (6)0.0301 (5)0.0017 (4)0.0073 (4)0.0004 (4)
N30.0338 (6)0.0376 (7)0.0490 (7)0.0064 (5)0.0116 (5)0.0002 (5)
N10.0302 (5)0.0293 (6)0.0356 (6)0.0001 (4)0.0094 (4)0.0003 (4)
N40.0291 (5)0.0287 (6)0.0338 (5)0.0001 (4)0.0102 (4)0.0002 (4)
N20.0363 (6)0.0427 (7)0.0332 (6)0.0007 (5)0.0070 (5)0.0045 (5)
C10.0293 (6)0.0255 (6)0.0336 (6)0.0050 (5)0.0101 (5)0.0009 (5)
C50.0363 (7)0.0378 (7)0.0369 (7)0.0016 (6)0.0101 (5)0.0006 (6)
C40.0308 (6)0.0256 (7)0.0406 (7)0.0052 (5)0.0093 (5)0.0033 (5)
C60.0330 (7)0.0420 (8)0.0446 (8)0.0002 (6)0.0060 (6)0.0033 (6)
C70.0363 (7)0.0423 (8)0.0592 (9)0.0018 (6)0.0181 (6)0.0035 (7)
C90.0394 (7)0.0463 (8)0.0379 (7)0.0050 (6)0.0065 (6)0.0040 (6)
C20.0345 (7)0.0402 (8)0.0310 (6)0.0022 (6)0.0097 (5)0.0003 (5)
C30.0345 (7)0.0289 (7)0.0533 (8)0.0005 (5)0.0136 (6)0.0073 (6)
C80.0507 (9)0.0584 (10)0.0428 (8)0.0025 (7)0.0197 (7)0.0076 (7)
Geometric parameters (Å, º) top
O1—C11.2335 (15)C4—C91.383 (2)
N3—N41.4040 (15)C4—C31.5138 (18)
N3—H310.900 (14)C6—C71.377 (2)
N3—H320.895 (14)C6—H60.95
N1—C11.3577 (17)C7—C81.378 (2)
N1—N21.3840 (15)C7—H70.95
N1—C31.4592 (16)C9—C81.388 (2)
N4—C21.3561 (17)C9—H90.95
N4—C11.3803 (16)C2—H20.95
N2—C21.2993 (18)C3—H3A0.99
C5—C61.384 (2)C3—H3B0.99
C5—C41.3861 (19)C8—H80.95
C5—H50.95
N4—N3—H31107.9 (11)C7—C6—H6119.9
N4—N3—H32106.2 (11)C5—C6—H6119.9
H31—N3—H32104.7 (15)C6—C7—C8119.63 (13)
C1—N1—N2112.77 (10)C6—C7—H7120.2
C1—N1—C3126.43 (11)C8—C7—H7120.2
N2—N1—C3120.72 (10)C4—C9—C8120.05 (13)
C2—N4—C1108.65 (10)C4—C9—H9120
C2—N4—N3124.24 (11)C8—C9—H9120
C1—N4—N3126.97 (11)N2—C2—N4111.85 (11)
C2—N2—N1103.95 (10)N2—C2—H2124.1
O1—C1—N1129.42 (12)N4—C2—H2124.1
O1—C1—N4127.80 (12)N1—C3—C4113.40 (11)
N1—C1—N4102.77 (10)N1—C3—H3A108.9
C6—C5—C4120.48 (12)C4—C3—H3A108.9
C6—C5—H5119.8N1—C3—H3B108.9
C4—C5—H5119.8C4—C3—H3B108.9
C9—C4—C5119.16 (13)H3A—C3—H3B107.7
C9—C4—C3120.48 (12)C7—C8—C9120.47 (13)
C5—C4—C3120.35 (12)C7—C8—H8119.8
C7—C6—C5120.20 (13)C9—C8—H8119.8
C1—N1—N2—C20.71 (14)C5—C6—C7—C80.7 (2)
C3—N1—N2—C2177.58 (11)C5—C4—C9—C80.3 (2)
N2—N1—C1—O1178.86 (12)C3—C4—C9—C8178.48 (13)
C3—N1—C1—O12.2 (2)N1—N2—C2—N40.32 (14)
N2—N1—C1—N40.78 (13)C1—N4—C2—N20.15 (15)
C3—N1—C1—N4177.44 (11)N3—N4—C2—N2175.76 (12)
C2—N4—C1—O1179.10 (12)C1—N1—C3—C497.82 (15)
N3—N4—C1—O15.1 (2)N2—N1—C3—C478.60 (15)
C2—N4—C1—N10.55 (13)C9—C4—C3—N1114.42 (14)
N3—N4—C1—N1175.21 (11)C5—C4—C3—N166.81 (16)
C6—C5—C4—C90.6 (2)C6—C7—C8—C90.2 (2)
C6—C5—C4—C3179.35 (12)C4—C9—C8—C70.7 (2)
C4—C5—C6—C71.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H32···O1i0.90 (1)2.47 (2)3.0583 (15)124 (1)
N3—H31···O1ii0.90 (1)2.22 (2)3.0701 (16)156 (2)
C2—H2···O1iii0.952.243.181 (2)168
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z+2; (iii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H32···O1i0.895 (14)2.471 (16)3.0583 (15)123.6 (13)
N3—H31···O1ii0.900 (14)2.224 (15)3.0701 (16)156.2 (15)
C2—H2···O1iii0.9502.2443.181 (2)168.4
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z+2; (iii) x, y1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds