


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808015067/fl2200sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536808015067/fl2200Isup2.hkl |
CCDC reference: 691007
Key indicators
- Single-crystal X-ray study
- T = 130 K
- Mean
(C-C) = 0.003 Å
- Disorder in main residue
- R factor = 0.036
- wR factor = 0.102
- Data-to-parameter ratio = 8.3
checkCIF/PLATON results
No syntax errors found
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.783 1.000 Tmin(prime) and Tmax expected: 0.953 0.993 RR(prime) = 0.816 Please check that your absorption correction is appropriate. PLAT230_ALERT_2_C Hirshfeld Test Diff for C7A -- C8A .. 6.15 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N1A PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C5A PLAT301_ALERT_3_C Main Residue Disorder ......................... 13.00 Perc. PLAT335_ALERT_2_C Large Benzene C-C Range ....... C5A -C10A 0.21 Ang. PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT061_ALERT_4_C Tmax/Tmin Range Test RR' too Large ............. 0.81
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.993 Tmax scaled 0.993 Tmin scaled 0.777 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.36 From the CIF: _reflns_number_total 2929 Count of symmetry unique reflns 2945 Completeness (_total/calc) 99.46% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_4_G Confirm the Absolute Configuration of C3 ... R PLAT791_ALERT_4_G Confirm the Absolute Configuration of C5 ... S PLAT791_ALERT_4_G Confirm the Absolute Configuration of C7 ... R PLAT791_ALERT_4_G Confirm the Absolute Configuration of C8 ... R PLAT791_ALERT_4_G Confirm the Absolute Configuration of C9 ... S PLAT791_ALERT_4_G Confirm the Absolute Configuration of C10 ... S PLAT791_ALERT_4_G Confirm the Absolute Configuration of C12 ... S PLAT791_ALERT_4_G Confirm the Absolute Configuration of C13 ... R PLAT791_ALERT_4_G Confirm the Absolute Configuration of C14 ... S PLAT791_ALERT_4_G Confirm the Absolute Configuration of C17 ... R PLAT791_ALERT_4_G Confirm the Absolute Configuration of C20 ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 13 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 13 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
The title compound was obtained by dissolving cholic acid (0.1 g, 0.24 mmol) in melted quinoxaline (0.7 g, 5.38 mmol) and evaporation of the excess of quinoxaline at 60°C for two days. The resulting colorless plates were stable in air.
In the absence of significant anomalous scattering effects, Friedel pairs were averaged. The absolute configuration of cholic acid was assigned from the known configuration of the starting material. All H atoms were located in electron-density difference maps. For refinement all H atoms were placed at calculated positions, with C—H = 0.96–0.98 Å and O—H = 0.82 Å, and were refined as riding on their carrier atoms with Uĩso(H) = 1.2Ueq(C, O). No restraints were imposed on geometry of the disordered quinoxaline molecules (occupancy factor 1/2).
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
2C24H40O5·C8H6N2 | F(000) = 516 |
Mr = 947.27 | Dx = 1.174 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 6598 reflections |
a = 12.2799 (5) Å | θ = 2.0–27.7° |
b = 7.8968 (3) Å | µ = 0.08 mm−1 |
c = 14.2831 (5) Å | T = 130 K |
β = 104.653 (4)° | Plate, colorless |
V = 1340.01 (9) Å3 | 0.6 × 0.2 × 0.09 mm |
Z = 1 |
Kuma KM-4-CCD κ-geometry diffractometer | 2929 independent reflections |
Radiation source: fine-focus sealed tube | 2548 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 26.4°, θmin = 4.3° |
Absorption correction: multi-scan (SCALE3 ABSPACK scaling algorithm; Oxford Diffraction, 2007) | h = −14→15 |
Tmin = 0.783, Tmax = 1.000 | k = −7→9 |
9593 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0726P)2] where P = (Fo2 + 2Fc2)/3 |
2929 reflections | (Δ/σ)max = 0.004 |
353 parameters | Δρmax = 0.23 e Å−3 |
1 restraint | Δρmin = −0.17 e Å−3 |
2C24H40O5·C8H6N2 | V = 1340.01 (9) Å3 |
Mr = 947.27 | Z = 1 |
Monoclinic, P21 | Mo Kα radiation |
a = 12.2799 (5) Å | µ = 0.08 mm−1 |
b = 7.8968 (3) Å | T = 130 K |
c = 14.2831 (5) Å | 0.6 × 0.2 × 0.09 mm |
β = 104.653 (4)° |
Kuma KM-4-CCD κ-geometry diffractometer | 2929 independent reflections |
Absorption correction: multi-scan (SCALE3 ABSPACK scaling algorithm; Oxford Diffraction, 2007) | 2548 reflections with I > 2σ(I) |
Tmin = 0.783, Tmax = 1.000 | Rint = 0.016 |
9593 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 1 restraint |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.23 e Å−3 |
2929 reflections | Δρmin = −0.17 e Å−3 |
353 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.59222 (14) | 0.4911 (2) | 1.10590 (10) | 0.0314 (4) | |
H1O | 0.6242 | 0.4236 | 1.1475 | 0.038* | |
O2 | 0.42660 (12) | 0.2628 (2) | 0.79071 (10) | 0.0258 (3) | |
H2O | 0.4339 | 0.1702 | 0.8176 | 0.031* | |
O3 | 0.32033 (13) | 0.8075 (2) | 0.72265 (10) | 0.0274 (3) | |
H3O | 0.2725 | 0.8813 | 0.7056 | 0.033* | |
O4 | −0.16441 (14) | 0.5786 (2) | 0.30332 (13) | 0.0426 (5) | |
O5 | −0.20929 (13) | 0.8331 (2) | 0.23696 (11) | 0.0323 (4) | |
H5O | −0.2738 | 0.8000 | 0.2320 | 0.039* | |
C1 | 0.69475 (18) | 0.7038 (3) | 0.90818 (16) | 0.0274 (5) | |
H1A | 0.7753 | 0.6938 | 0.9355 | 0.033* | |
H1B | 0.6802 | 0.8167 | 0.8812 | 0.033* | |
C2 | 0.63568 (19) | 0.6848 (3) | 0.98942 (15) | 0.0255 (5) | |
H2A | 0.6637 | 0.7698 | 1.0386 | 0.031* | |
H2B | 0.5555 | 0.7026 | 0.9640 | 0.031* | |
C3 | 0.65639 (19) | 0.5100 (3) | 1.03418 (15) | 0.0275 (5) | |
H3A | 0.7367 | 0.4957 | 1.0651 | 0.033* | |
C4 | 0.61870 (19) | 0.3768 (3) | 0.95714 (15) | 0.0260 (5) | |
H4A | 0.5376 | 0.3832 | 0.9329 | 0.031* | |
H4B | 0.6368 | 0.2660 | 0.9863 | 0.031* | |
C5 | 0.67282 (18) | 0.3938 (3) | 0.87164 (15) | 0.0254 (5) | |
H5A | 0.7538 | 0.3747 | 0.8972 | 0.030* | |
C6 | 0.62925 (18) | 0.2534 (3) | 0.79734 (15) | 0.0270 (5) | |
H6A | 0.6791 | 0.2449 | 0.7546 | 0.032* | |
H6B | 0.6324 | 0.1465 | 0.8313 | 0.032* | |
C7 | 0.50925 (17) | 0.2804 (3) | 0.73578 (14) | 0.0236 (4) | |
H7A | 0.4935 | 0.1963 | 0.6836 | 0.028* | |
C8 | 0.49507 (17) | 0.4575 (3) | 0.69055 (14) | 0.0208 (4) | |
H8A | 0.5416 | 0.4633 | 0.6441 | 0.025* | |
C9 | 0.53446 (17) | 0.5997 (3) | 0.76600 (14) | 0.0209 (4) | |
H9A | 0.4872 | 0.5932 | 0.8119 | 0.025* | |
C10 | 0.65901 (17) | 0.5734 (3) | 0.82549 (15) | 0.0235 (5) | |
C11 | 0.51251 (17) | 0.7736 (3) | 0.71581 (14) | 0.0236 (4) | |
H11A | 0.5315 | 0.8613 | 0.7648 | 0.028* | |
H11B | 0.5625 | 0.7862 | 0.6734 | 0.028* | |
C12 | 0.39105 (16) | 0.8019 (3) | 0.65640 (14) | 0.0221 (4) | |
H12A | 0.3865 | 0.9109 | 0.6228 | 0.027* | |
C13 | 0.35326 (16) | 0.6593 (3) | 0.58027 (14) | 0.0193 (4) | |
C14 | 0.37382 (17) | 0.4900 (3) | 0.63560 (14) | 0.0192 (4) | |
H14A | 0.3301 | 0.4950 | 0.6842 | 0.023* | |
C15 | 0.31647 (18) | 0.3578 (3) | 0.56138 (15) | 0.0245 (5) | |
H15A | 0.2953 | 0.2588 | 0.5930 | 0.029* | |
H15B | 0.3654 | 0.3231 | 0.5211 | 0.029* | |
C16 | 0.21215 (18) | 0.4509 (3) | 0.50161 (15) | 0.0251 (5) | |
H16A | 0.1445 | 0.4049 | 0.5151 | 0.030* | |
H16B | 0.2067 | 0.4381 | 0.4330 | 0.030* | |
C17 | 0.22533 (16) | 0.6422 (3) | 0.53071 (14) | 0.0194 (4) | |
H17A | 0.1849 | 0.6601 | 0.5809 | 0.023* | |
C18 | 0.41975 (17) | 0.6735 (3) | 0.50303 (15) | 0.0249 (5) | |
H18A | 0.4973 | 0.6463 | 0.5313 | 0.030* | |
H18B | 0.4142 | 0.7870 | 0.4782 | 0.030* | |
H18C | 0.3893 | 0.5960 | 0.4512 | 0.030* | |
C19 | 0.74162 (19) | 0.5929 (4) | 0.76107 (17) | 0.0334 (5) | |
H19A | 0.8157 | 0.5596 | 0.7968 | 0.040* | |
H19B | 0.7430 | 0.7090 | 0.7414 | 0.040* | |
H19C | 0.7177 | 0.5224 | 0.7049 | 0.040* | |
C20 | 0.17040 (17) | 0.7576 (3) | 0.44491 (13) | 0.0224 (4) | |
H20A | 0.2059 | 0.7344 | 0.3920 | 0.027* | |
C21 | 0.18378 (19) | 0.9459 (3) | 0.46903 (16) | 0.0287 (5) | |
H21A | 0.2621 | 0.9756 | 0.4842 | 0.034* | |
H21B | 0.1541 | 0.9698 | 0.5237 | 0.034* | |
H21C | 0.1435 | 1.0109 | 0.4144 | 0.034* | |
C22 | 0.04541 (17) | 0.7089 (3) | 0.41068 (15) | 0.0263 (5) | |
H22A | 0.0403 | 0.5866 | 0.4047 | 0.032* | |
H22B | 0.0085 | 0.7418 | 0.4604 | 0.032* | |
C23 | −0.01830 (19) | 0.7862 (4) | 0.31591 (17) | 0.0382 (6) | |
H23A | −0.0199 | 0.9083 | 0.3227 | 0.046* | |
H23B | 0.0205 | 0.7603 | 0.2663 | 0.046* | |
C24 | −0.1376 (2) | 0.7201 (3) | 0.28483 (15) | 0.0300 (5) | |
N1A | −0.0432 (7) | 1.0289 (10) | 0.9084 (5) | 0.083 (2) | 0.50 |
C2A | −0.0825 (14) | 1.0781 (18) | 0.9829 (10) | 0.080 (2) | 0.50 |
H2Q | −0.1006 | 1.1947 | 0.9906 | 0.095* | 0.50 |
C3A | −0.0749 (6) | 0.9642 (11) | 1.0630 (5) | 0.0547 (16) | 0.50 |
H3Q | −0.1167 | 0.9897 | 1.1097 | 0.066* | 0.50 |
N4A | −0.0260 (5) | 0.8179 (8) | 1.0700 (4) | 0.0596 (14) | 0.50 |
C5A | 0.0703 (14) | 0.6025 (17) | 0.9949 (11) | 0.080 (2) | 0.50 |
H5Q | 0.0778 | 0.5261 | 1.0485 | 0.095* | 0.50 |
C6A | 0.1128 (8) | 0.5634 (13) | 0.9238 (6) | 0.076 (2) | 0.50 |
H6Q | 0.1481 | 0.4559 | 0.9204 | 0.091* | 0.50 |
C7A | 0.1092 (5) | 0.6676 (10) | 0.8484 (5) | 0.0579 (17) | 0.50 |
H7Q | 0.1446 | 0.6350 | 0.7985 | 0.070* | 0.50 |
C8A | 0.0569 (6) | 0.8161 (11) | 0.8407 (5) | 0.066 (2) | 0.50 |
H8Q | 0.0534 | 0.8864 | 0.7852 | 0.079* | 0.50 |
C9A | 0.0065 (5) | 0.8732 (9) | 0.9145 (5) | 0.0532 (16) | 0.50 |
C10A | 0.0145 (4) | 0.7716 (9) | 0.9960 (5) | 0.0493 (14) | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0475 (10) | 0.0242 (9) | 0.0197 (7) | 0.0043 (7) | 0.0034 (7) | 0.0018 (6) |
O2 | 0.0272 (7) | 0.0232 (8) | 0.0249 (7) | 0.0007 (7) | 0.0030 (6) | 0.0045 (6) |
O3 | 0.0317 (8) | 0.0247 (8) | 0.0242 (7) | 0.0083 (7) | 0.0038 (6) | −0.0033 (6) |
O4 | 0.0346 (9) | 0.0363 (11) | 0.0491 (10) | −0.0068 (8) | −0.0037 (8) | 0.0064 (8) |
O5 | 0.0261 (8) | 0.0365 (10) | 0.0328 (8) | 0.0001 (7) | 0.0049 (7) | 0.0009 (7) |
C1 | 0.0243 (11) | 0.0257 (11) | 0.0270 (11) | −0.0035 (9) | −0.0029 (9) | 0.0000 (9) |
C2 | 0.0296 (11) | 0.0238 (12) | 0.0191 (10) | 0.0010 (9) | −0.0012 (8) | −0.0034 (8) |
C3 | 0.0302 (11) | 0.0268 (12) | 0.0212 (10) | 0.0021 (9) | −0.0011 (9) | −0.0029 (9) |
C4 | 0.0310 (11) | 0.0209 (11) | 0.0228 (10) | 0.0039 (9) | 0.0008 (8) | 0.0010 (8) |
C5 | 0.0204 (10) | 0.0278 (12) | 0.0250 (11) | 0.0053 (9) | 0.0005 (8) | −0.0015 (9) |
C6 | 0.0289 (11) | 0.0261 (12) | 0.0249 (10) | 0.0067 (10) | 0.0049 (8) | −0.0003 (9) |
C7 | 0.0276 (10) | 0.0206 (11) | 0.0212 (9) | 0.0013 (9) | 0.0034 (8) | −0.0016 (8) |
C8 | 0.0239 (10) | 0.0185 (10) | 0.0195 (9) | 0.0008 (9) | 0.0045 (8) | −0.0017 (8) |
C9 | 0.0202 (9) | 0.0204 (10) | 0.0207 (9) | −0.0017 (8) | 0.0025 (8) | −0.0025 (8) |
C10 | 0.0218 (10) | 0.0256 (12) | 0.0217 (10) | 0.0006 (9) | 0.0027 (8) | −0.0006 (9) |
C11 | 0.0248 (10) | 0.0221 (11) | 0.0208 (9) | −0.0031 (9) | −0.0003 (8) | 0.0001 (8) |
C12 | 0.0249 (10) | 0.0175 (11) | 0.0216 (9) | −0.0008 (9) | 0.0015 (8) | 0.0006 (8) |
C13 | 0.0213 (10) | 0.0188 (11) | 0.0171 (9) | −0.0018 (8) | 0.0034 (8) | 0.0004 (8) |
C14 | 0.0216 (10) | 0.0163 (10) | 0.0196 (9) | −0.0027 (8) | 0.0048 (8) | 0.0003 (8) |
C15 | 0.0279 (10) | 0.0219 (11) | 0.0228 (10) | −0.0020 (9) | 0.0049 (8) | −0.0035 (8) |
C16 | 0.0251 (11) | 0.0231 (11) | 0.0246 (10) | −0.0043 (9) | 0.0016 (8) | −0.0019 (9) |
C17 | 0.0187 (10) | 0.0212 (10) | 0.0187 (9) | −0.0023 (8) | 0.0055 (8) | −0.0015 (8) |
C18 | 0.0220 (10) | 0.0289 (12) | 0.0241 (10) | −0.0022 (9) | 0.0063 (8) | 0.0036 (9) |
C19 | 0.0232 (10) | 0.0425 (14) | 0.0339 (12) | −0.0033 (11) | 0.0064 (9) | 0.0007 (11) |
C20 | 0.0222 (10) | 0.0271 (11) | 0.0176 (9) | −0.0004 (9) | 0.0047 (8) | 0.0018 (8) |
C21 | 0.0306 (12) | 0.0275 (12) | 0.0248 (11) | 0.0028 (10) | 0.0012 (9) | 0.0030 (9) |
C22 | 0.0234 (10) | 0.0311 (12) | 0.0228 (10) | −0.0009 (9) | 0.0027 (8) | 0.0034 (9) |
C23 | 0.0294 (12) | 0.0474 (16) | 0.0321 (11) | −0.0058 (12) | −0.0028 (9) | 0.0134 (11) |
C24 | 0.0309 (12) | 0.0353 (14) | 0.0209 (10) | −0.0039 (10) | 0.0015 (9) | 0.0003 (9) |
N1A | 0.114 (5) | 0.067 (4) | 0.072 (4) | 0.017 (4) | 0.033 (4) | 0.023 (3) |
C2A | 0.099 (4) | 0.080 (4) | 0.053 (5) | 0.049 (5) | 0.007 (4) | 0.002 (3) |
C3A | 0.052 (4) | 0.064 (5) | 0.047 (3) | 0.006 (4) | 0.009 (3) | 0.002 (3) |
N4A | 0.060 (3) | 0.062 (4) | 0.048 (3) | 0.003 (3) | −0.001 (2) | −0.008 (3) |
C5A | 0.099 (4) | 0.080 (4) | 0.053 (5) | 0.049 (5) | 0.007 (4) | 0.002 (3) |
C6A | 0.073 (5) | 0.063 (6) | 0.081 (6) | 0.021 (5) | −0.003 (5) | −0.027 (5) |
C7A | 0.051 (4) | 0.055 (4) | 0.066 (4) | −0.005 (3) | 0.012 (3) | −0.024 (4) |
C8A | 0.064 (4) | 0.064 (5) | 0.071 (4) | −0.035 (4) | 0.019 (3) | −0.007 (4) |
C9A | 0.046 (3) | 0.045 (4) | 0.070 (4) | −0.012 (3) | 0.018 (3) | −0.013 (3) |
C10A | 0.032 (3) | 0.050 (4) | 0.058 (3) | −0.001 (3) | −0.004 (2) | −0.007 (3) |
O1—C3 | 1.449 (3) | C14—H14A | 0.9800 |
O1—H1O | 0.8200 | C15—C16 | 1.535 (3) |
O2—C7 | 1.438 (2) | C15—H15A | 0.9700 |
O2—H2O | 0.8200 | C15—H15B | 0.9700 |
O3—C12 | 1.438 (2) | C16—C17 | 1.564 (3) |
O3—H3O | 0.8200 | C16—H16A | 0.9700 |
O4—C24 | 1.213 (3) | C16—H16B | 0.9700 |
O5—C24 | 1.317 (3) | C17—C20 | 1.539 (3) |
O5—H5O | 0.8200 | C17—H17A | 0.9800 |
C1—C2 | 1.523 (3) | C18—H18A | 0.9600 |
C1—C10 | 1.545 (3) | C18—H18B | 0.9600 |
C1—H1A | 0.9700 | C18—H18C | 0.9600 |
C1—H1B | 0.9700 | C19—H19A | 0.9600 |
C2—C3 | 1.515 (3) | C19—H19B | 0.9600 |
C2—H2A | 0.9700 | C19—H19C | 0.9600 |
C2—H2B | 0.9700 | C20—C21 | 1.526 (3) |
C3—C4 | 1.508 (3) | C20—C22 | 1.537 (3) |
C3—H3A | 0.9800 | C20—H20A | 0.9800 |
C4—C5 | 1.537 (3) | C21—H21A | 0.9600 |
C4—H4A | 0.9700 | C21—H21B | 0.9600 |
C4—H4B | 0.9700 | C21—H21C | 0.9600 |
C5—C6 | 1.534 (3) | C22—C23 | 1.510 (3) |
C5—C10 | 1.555 (3) | C22—H22A | 0.9700 |
C5—H5A | 0.9800 | C22—H22B | 0.9700 |
C6—C7 | 1.528 (3) | C23—C24 | 1.512 (3) |
C6—H6A | 0.9700 | C23—H23A | 0.9700 |
C6—H6B | 0.9700 | C23—H23B | 0.9700 |
C7—C8 | 1.532 (3) | N1A—C2A | 1.332 (15) |
C7—H7A | 0.9800 | N1A—C9A | 1.366 (10) |
C8—C14 | 1.519 (3) | C2A—C3A | 1.440 (19) |
C8—C9 | 1.547 (3) | C2A—H2Q | 0.9600 |
C8—H8A | 0.9800 | C3A—N4A | 1.294 (11) |
C9—C11 | 1.541 (3) | C3A—H3Q | 0.9600 |
C9—C10 | 1.564 (3) | N4A—C10A | 1.329 (8) |
C9—H9A | 0.9800 | C5A—C6A | 1.292 (18) |
C10—C19 | 1.540 (3) | C5A—C10A | 1.503 (13) |
C11—C12 | 1.534 (3) | C5A—H5Q | 0.9600 |
C11—H11A | 0.9700 | C6A—C7A | 1.346 (13) |
C11—H11B | 0.9700 | C6A—H6Q | 0.9600 |
C12—C13 | 1.552 (3) | C7A—C8A | 1.327 (11) |
C12—H12A | 0.9800 | C7A—H7Q | 0.9600 |
C13—C18 | 1.534 (3) | C8A—C9A | 1.424 (10) |
C13—C14 | 1.541 (3) | C8A—H8Q | 0.9600 |
C13—C17 | 1.557 (3) | C9A—C10A | 1.397 (10) |
C14—C15 | 1.527 (3) | ||
C3—O1—H1O | 109.5 | C15—C14—H14A | 106.3 |
C7—O2—H2O | 109.5 | C13—C14—H14A | 106.3 |
C12—O3—H3O | 109.5 | C14—C15—C16 | 103.41 (17) |
C24—O5—H5O | 109.5 | C14—C15—H15A | 111.0 |
C2—C1—C10 | 114.76 (18) | C16—C15—H15A | 111.2 |
C2—C1—H1A | 108.6 | C14—C15—H15B | 111.0 |
C10—C1—H1A | 108.5 | C16—C15—H15B | 111.1 |
C2—C1—H1B | 108.5 | H15A—C15—H15B | 109.1 |
C10—C1—H1B | 108.7 | C15—C16—C17 | 107.41 (17) |
H1A—C1—H1B | 107.5 | C15—C16—H16A | 110.2 |
C3—C2—C1 | 110.47 (18) | C17—C16—H16A | 110.2 |
C3—C2—H2A | 109.5 | C15—C16—H16B | 110.2 |
C1—C2—H2A | 109.5 | C17—C16—H16B | 110.2 |
C3—C2—H2B | 109.6 | H16A—C16—H16B | 108.5 |
C1—C2—H2B | 109.6 | C20—C17—C13 | 119.94 (16) |
H2A—C2—H2B | 108.1 | C20—C17—C16 | 111.41 (16) |
O1—C3—C4 | 108.80 (18) | C13—C17—C16 | 103.25 (16) |
O1—C3—C2 | 109.21 (18) | C20—C17—H17A | 107.2 |
C4—C3—C2 | 109.87 (16) | C13—C17—H17A | 107.2 |
O1—C3—H3A | 109.6 | C16—C17—H17A | 107.2 |
C4—C3—H3A | 109.6 | C13—C18—H18A | 109.5 |
C2—C3—H3A | 109.7 | C13—C18—H18B | 109.5 |
C3—C4—C5 | 113.84 (18) | H18A—C18—H18B | 109.5 |
C3—C4—H4A | 108.8 | C13—C18—H18C | 109.5 |
C5—C4—H4A | 108.8 | H18A—C18—H18C | 109.5 |
C3—C4—H4B | 108.8 | H18B—C18—H18C | 109.5 |
C5—C4—H4B | 108.8 | C10—C19—H19A | 109.5 |
H4A—C4—H4B | 107.7 | C10—C19—H19B | 109.5 |
C6—C5—C4 | 109.95 (18) | H19A—C19—H19B | 109.5 |
C6—C5—C10 | 112.59 (17) | C10—C19—H19C | 109.5 |
C4—C5—C10 | 113.20 (17) | H19A—C19—H19C | 109.5 |
C6—C5—H5A | 106.8 | H19B—C19—H19C | 109.5 |
C4—C5—H5A | 107.0 | C21—C20—C22 | 110.95 (19) |
C10—C5—H5A | 106.9 | C21—C20—C17 | 113.38 (16) |
C7—C6—C5 | 114.47 (18) | C22—C20—C17 | 107.83 (17) |
C7—C6—H6A | 108.6 | C21—C20—H20A | 108.2 |
C5—C6—H6A | 108.7 | C22—C20—H20A | 108.1 |
C7—C6—H6B | 108.7 | C17—C20—H20A | 108.2 |
C5—C6—H6B | 108.7 | C20—C21—H21A | 109.5 |
H6A—C6—H6B | 107.6 | C20—C21—H21B | 109.5 |
O2—C7—C6 | 112.56 (16) | H21A—C21—H21B | 109.5 |
O2—C7—C8 | 107.32 (16) | C20—C21—H21C | 109.5 |
C6—C7—C8 | 111.10 (18) | H21A—C21—H21C | 109.5 |
O2—C7—H7A | 108.6 | H21B—C21—H21C | 109.5 |
C6—C7—H7A | 108.6 | C23—C22—C20 | 115.66 (19) |
C8—C7—H7A | 108.6 | C23—C22—H22A | 108.4 |
C14—C8—C7 | 111.34 (17) | C20—C22—H22A | 108.4 |
C14—C8—C9 | 109.29 (16) | C23—C22—H22B | 108.4 |
C7—C8—C9 | 112.75 (16) | C20—C22—H22B | 108.3 |
C14—C8—H8A | 107.8 | H22A—C22—H22B | 107.4 |
C7—C8—H8A | 107.7 | C22—C23—C24 | 111.6 (2) |
C9—C8—H8A | 107.7 | C22—C23—H23A | 109.3 |
C11—C9—C8 | 109.61 (16) | C24—C23—H23A | 109.3 |
C11—C9—C10 | 113.74 (17) | C22—C23—H23B | 109.3 |
C8—C9—C10 | 111.89 (16) | C24—C23—H23B | 109.3 |
C11—C9—H9A | 107.1 | H23A—C23—H23B | 108.0 |
C8—C9—H9A | 107.1 | O4—C24—O5 | 123.7 (2) |
C10—C9—H9A | 107.0 | O4—C24—C23 | 123.4 (2) |
C19—C10—C1 | 106.71 (18) | O5—C24—C23 | 112.9 (2) |
C19—C10—C5 | 109.08 (19) | C2A—N1A—C9A | 117.3 (9) |
C1—C10—C5 | 107.73 (16) | N1A—C2A—C3A | 119.3 (10) |
C19—C10—C9 | 111.32 (17) | N1A—C2A—H2Q | 120.8 |
C1—C10—C9 | 112.12 (18) | C3A—C2A—H2Q | 118.6 |
C5—C10—C9 | 109.75 (17) | N4A—C3A—C2A | 123.7 (8) |
C12—C11—C9 | 114.72 (17) | N4A—C3A—H3Q | 116.9 |
C12—C11—H11A | 108.5 | C2A—C3A—H3Q | 118.9 |
C9—C11—H11A | 108.6 | C3A—N4A—C10A | 116.4 (6) |
C12—C11—H11B | 108.7 | C6A—C5A—C10A | 119.7 (10) |
C9—C11—H11B | 108.5 | C6A—C5A—H5Q | 120.0 |
H11A—C11—H11B | 107.6 | C10A—C5A—H5Q | 120.2 |
O3—C12—C11 | 107.76 (15) | C5A—C6A—C7A | 123.0 (8) |
O3—C12—C13 | 111.10 (16) | C5A—C6A—H6Q | 121.9 |
C11—C12—C13 | 110.99 (17) | C7A—C6A—H6Q | 115.1 |
O3—C12—H12A | 109.0 | C8A—C7A—C6A | 121.6 (7) |
C11—C12—H12A | 109.0 | C8A—C7A—H7Q | 118.4 |
C13—C12—H12A | 108.9 | C6A—C7A—H7Q | 120.0 |
C18—C13—C14 | 112.59 (17) | C7A—C8A—C9A | 120.6 (7) |
C18—C13—C12 | 109.39 (16) | C7A—C8A—H8Q | 120.0 |
C14—C13—C12 | 106.79 (15) | C9A—C8A—H8Q | 119.4 |
C18—C13—C17 | 109.80 (15) | N1A—C9A—C10A | 120.4 (6) |
C14—C13—C17 | 99.98 (16) | N1A—C9A—C8A | 120.6 (7) |
C12—C13—C17 | 118.02 (17) | C10A—C9A—C8A | 118.9 (7) |
C8—C14—C15 | 117.58 (17) | N4A—C10A—C9A | 122.9 (6) |
C8—C14—C13 | 115.05 (17) | N4A—C10A—C5A | 121.1 (8) |
C15—C14—C13 | 104.49 (15) | C9A—C10A—C5A | 116.0 (8) |
C8—C14—H14A | 106.4 | ||
C10—C1—C2—C3 | 58.4 (2) | C7—C8—C14—C13 | −175.02 (16) |
C1—C2—C3—O1 | −175.59 (17) | C9—C8—C14—C13 | 59.8 (2) |
C1—C2—C3—C4 | −56.3 (2) | C18—C13—C14—C8 | 60.7 (2) |
O1—C3—C4—C5 | 174.60 (17) | C12—C13—C14—C8 | −59.4 (2) |
C2—C3—C4—C5 | 55.1 (2) | C17—C13—C14—C8 | 177.19 (16) |
C3—C4—C5—C6 | −179.90 (18) | C18—C13—C14—C15 | −69.7 (2) |
C3—C4—C5—C10 | −53.0 (2) | C12—C13—C14—C15 | 170.20 (16) |
C4—C5—C6—C7 | 75.1 (2) | C17—C13—C14—C15 | 46.75 (18) |
C10—C5—C6—C7 | −52.1 (2) | C8—C14—C15—C16 | −164.70 (17) |
C5—C6—C7—O2 | −69.4 (2) | C13—C14—C15—C16 | −35.8 (2) |
C5—C6—C7—C8 | 51.0 (2) | C14—C15—C16—C17 | 10.5 (2) |
O2—C7—C8—C14 | −52.2 (2) | C18—C13—C17—C20 | −44.7 (2) |
C6—C7—C8—C14 | −175.64 (16) | C14—C13—C17—C20 | −163.28 (17) |
O2—C7—C8—C9 | 71.1 (2) | C12—C13—C17—C20 | 81.5 (2) |
C6—C7—C8—C9 | −52.4 (2) | C18—C13—C17—C16 | 79.92 (19) |
C14—C8—C9—C11 | −53.0 (2) | C14—C13—C17—C16 | −38.63 (17) |
C7—C8—C9—C11 | −177.41 (17) | C12—C13—C17—C16 | −153.84 (17) |
C14—C8—C9—C10 | 179.85 (17) | C15—C16—C17—C20 | 147.96 (16) |
C7—C8—C9—C10 | 55.4 (2) | C15—C16—C17—C13 | 17.9 (2) |
C2—C1—C10—C19 | −170.19 (19) | C13—C17—C20—C21 | −57.8 (2) |
C2—C1—C10—C5 | −53.2 (2) | C16—C17—C20—C21 | −178.47 (17) |
C2—C1—C10—C9 | 67.7 (2) | C13—C17—C20—C22 | 178.95 (18) |
C6—C5—C10—C19 | −69.9 (2) | C16—C17—C20—C22 | 58.3 (2) |
C4—C5—C10—C19 | 164.58 (17) | C21—C20—C22—C23 | 65.8 (3) |
C6—C5—C10—C1 | 174.60 (17) | C17—C20—C22—C23 | −169.5 (2) |
C4—C5—C10—C1 | 49.1 (2) | C20—C22—C23—C24 | 175.6 (2) |
C6—C5—C10—C9 | 52.3 (2) | C22—C23—C24—O4 | −31.5 (4) |
C4—C5—C10—C9 | −73.2 (2) | C22—C23—C24—O5 | 147.5 (2) |
C11—C9—C10—C19 | −58.2 (2) | C9A—N1A—C2A—C3A | −2.5 (18) |
C8—C9—C10—C19 | 66.7 (2) | N1A—C2A—C3A—N4A | 4.0 (18) |
C11—C9—C10—C1 | 61.3 (2) | C2A—C3A—N4A—C10A | −2.8 (12) |
C8—C9—C10—C1 | −173.85 (16) | C10A—C5A—C6A—C7A | 0 (2) |
C11—C9—C10—C5 | −179.05 (16) | C5A—C6A—C7A—C8A | −2.9 (16) |
C8—C9—C10—C5 | −54.2 (2) | C6A—C7A—C8A—C9A | 2.5 (10) |
C8—C9—C11—C12 | 53.5 (2) | C2A—N1A—C9A—C10A | 0.2 (13) |
C10—C9—C11—C12 | 179.60 (16) | C2A—N1A—C9A—C8A | −175.9 (10) |
C9—C11—C12—O3 | 66.7 (2) | C7A—C8A—C9A—N1A | 177.3 (7) |
C9—C11—C12—C13 | −55.2 (2) | C7A—C8A—C9A—C10A | 1.1 (9) |
O3—C12—C13—C18 | 172.15 (16) | C3A—N4A—C10A—C9A | 0.3 (9) |
C11—C12—C13—C18 | −68.0 (2) | C3A—N4A—C10A—C5A | −178.4 (10) |
O3—C12—C13—C14 | −65.74 (19) | N1A—C9A—C10A—N4A | 1.0 (10) |
C11—C12—C13—C14 | 54.1 (2) | C8A—C9A—C10A—N4A | 177.2 (6) |
O3—C12—C13—C17 | 45.7 (2) | N1A—C9A—C10A—C5A | 179.8 (10) |
C11—C12—C13—C17 | 165.59 (16) | C8A—C9A—C10A—C5A | −4.0 (11) |
C7—C8—C14—C15 | −51.3 (2) | C6A—C5A—C10A—N4A | −177.4 (11) |
C9—C8—C14—C15 | −176.48 (16) | C6A—C5A—C10A—C9A | 3.8 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O3i | 0.82 | 2.03 | 2.815 (2) | 161 |
O2—H2O···O1i | 0.82 | 1.86 | 2.648 (2) | 160 |
O3—H3O···O4ii | 0.82 | 2.03 | 2.834 (2) | 167 |
O5—H5O···O2ii | 0.82 | 1.85 | 2.656 (2) | 170 |
Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2C24H40O5·C8H6N2 |
Mr | 947.27 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 130 |
a, b, c (Å) | 12.2799 (5), 7.8968 (3), 14.2831 (5) |
β (°) | 104.653 (4) |
V (Å3) | 1340.01 (9) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.6 × 0.2 × 0.09 |
Data collection | |
Diffractometer | Kuma KM-4-CCD κ-geometry diffractometer |
Absorption correction | Multi-scan (SCALE3 ABSPACK scaling algorithm; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.783, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9593, 2929, 2548 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.102, 1.07 |
No. of reflections | 2929 |
No. of parameters | 353 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.17 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O3i | 0.82 | 2.03 | 2.815 (2) | 161 |
O2—H2O···O1i | 0.82 | 1.86 | 2.648 (2) | 160 |
O3—H3O···O4ii | 0.82 | 2.03 | 2.834 (2) | 167 |
O5—H5O···O2ii | 0.82 | 1.85 | 2.656 (2) | 170 |
Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y+1/2, −z+1. |
Cholic acid forms inclusion compounds with a large variety of guest molecules (Miyata & Sada, 1996). The host framework is strongly dependent on the guest but, in most cases, it is constructed from cholic acid bilayers which are lipophilic on the outside and lipophobic on the inside (Nakano et al., 2001, 2006). The type of the host framework and the host:guest ratio are strongly dependent on the volume and shape of the guest (Nakano et al., 2001). In the case of bilayers with an antiparallel arrangement of host molecules, four framework subtypes are generally recognized: α-gauche, α-trans, β-gauche and β-trans (Miyata & Sada, 1996) based on the conformation of the steroidal side chain (gauche/trans) and the stacking mode of the bilayers (α/β). Among numerous guest molecules that have cocrystallized with cholic acid no larger arenes or aromatic azaheterocycles have been reported. This is probably due to the problems with accommodating large molecules of fixed geometry within corrugated host channels. Quinoxaline easily cocrystallized with cholic acid, because as a low melting solid it could be used for cocrystallization without the need for any additional solvent.
In (I) ( Fig. 1), the host molecules are arranged in typical antiparallel bilayers and the framework can be classified as α-trans (Fig. 2). Four molecules of the host generate a cyclic motif of O—H···O hydrogen bonds (Fig. 3, Table 1) that assembles molecules into a two-dimensional polymeric structure (host bilayer). The hydrogen bonds are not completely buried on the inside of the bilayer as they partially line the grooves on the corrugated bilayer surface. The quinoxaline molecules are accommodated in lipophilic channels formed between neighboring bilayers and there are only van der Waals interactions between host and guest. The unit cell contains two molecules of the bile acid and one molecule of quinoxaline. In P21 this implies disorder of the guest and this is the case for (I): the crystallographic symmetry of the empty channel is higher than the symmetry of the guest arrangement within the channel. Neighbouring guests are related by translation along b [7.8968 (3) Å] and not by the crystallographic 21 axis operating along the channel (Fig. 4). There is no long-distance order in the channels because no reflections in addition to the Bragg reflections were detected. Thus, the model of the crystal structure of the title compound reveals superposition of two channels related by the crystallographic twofold screw axis ( Fig. 4).