Download citation
Download citation
link to html
The crystal structure of the monoclinic form of the title compound, C25H21N, is influenced by the presence of the alkyl chain, whose trans conformation leads to distortion of the aromatic moiety from planarity, the dihedral angle between the two outer rings being ca 20°. The C-C-C ring angles and C-C ring distances nearest to the n-butyl substituent are perturbed from typical values to minimize the steric effect.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005749/fl6021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005749/fl6021Isup2.hkl
Contains datablock I

CCDC reference: 209969

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.054
  • wR factor = 0.167
  • Data-to-parameter ratio = 19.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Use of alkylated acridine derivatives in molecular recognitions have made enormous strides in recent years (Pan et al., 2000). Regioselective alkylation of polycyclic benz and dibenz acridines not only improves the solubility of these compounds in common organic solvents (Ray et al. 1996), but also provides a simple path for the synthesis of alkylated molecular hosts (Halder et al., 1997).

Molecule (I) is composed of five (A, B, C, D and E) fused six-membered aromatic rings with one n-butyl chain at the para position of the central ring (Fig. 1). The conformation adopted by (I) in the solid state is affected by the presence of the alkyl chain at C3 (Fig. 2). C—C distances in the environment of the alkyl chain (C2—C3, C3—C4 and C4—C9) are rather similar to those found in monoclinic dibenz[a,h]anthracene (Robertson & White, 1956). On the other hand, the C2—C14 distance [1.470 (2) Å] is 0.08 Å larger than equivalent distance in dibenz[a,h]anthracene. All ring angles are reasonably close to ideal geometry, the presence of the alkyl chain increases the C3—C2—C14 angle [to 126.74 (15)°].

Rings A and B are reasonably planar, with mean deviations from planarity of 0.0024 and 0.0075 Å, respectively. On the other hand, rings C, D and E are less planar, the corresponding mean deviations are 0.0283, 0.0396 and 0.0278 Å, respectively, the main deviation from planarity taking place at the D ring. These values and the C1—C2—C3—C4 and C1—C2—C14—C15 torsion angles (Table 1) reflect the distortion of the molecule in order to minimize the steric interaction between ring E and the alkyl chain. As expected on the basis of basic chemical grounds and obtained using molecular mechanics calculations (GAUSSIAN98 suite of programs, UFF force field; Frisch et al., 1998), the parent compound without the alkyl chain should be planar, whereas in this case the dihedral angle between rings A and E is 19.67 (10)°. The value of the C22—C23—C24—C25 torsion angle [−178.93 (18)°] implies a trans conformation for the alkyl chain. The steric interaction between the n-butyl substituent and the E ring moves the C3—C22—C23—C24 torsion angle to 169.42 (16)°.

Relevant changes respect to monoclinic dibenz[a,h]anthracene crystal take place. The presence of the alkyl chain provokes the change of symmetry space group (H—M) from P21 to C2/c, which implies modifications at β cell angle [93.3220 (10) versus 103.5°], cell lengths a [19.5507 (11) versus 6.59 Å] and b [12.7195 (7) versus 7.84 Å], and the number of cell formula units Z increases from 2 to 8. Within the three-dimensional network, it is noticeable that the alkyl chain of the one molecule is directed towards the N atom of the next molecule in the same layer (Fig. 3), thus making the packing more effective.

Experimental top

In an attempt to synthesize monoalkylated polyazaarenes, we heated a mixture of chloroaldehyde with 3-naphthylamine to get dihydrodibenzacridine, which on dehydrogenation with Pd—C (10%) in p-cymene produced dihydrodibenz[a,h]acridine (Halder et al., 1989). The direct alkylation of dibenz[a,h]acridine with three equivalents of n-butyllithium produced the title compound in 70% yield (see Scheme). Single crystals were obtained by slow evaporation from a chloroform–petroleum ether solution.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the title molecule, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Reduced packing diagram of the title compound, showing the orientation of the alkyl chain.
14-n-Butyldibenz[a,h]acridine top
Crystal data top
C25H21NF(000) = 1424
Mr = 335.43Dx = 1.215 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10111 reflections
a = 19.5507 (11) Åθ = 1.4–28.4°
b = 12.7195 (7) ŵ = 0.07 mm1
c = 14.7732 (8) ÅT = 298 K
β = 93.322 (1)°Block, yellow
V = 3667.6 (4) Å30.50 × 0.25 × 0.25 mm
Z = 8
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4539 independent reflections
Radiation source: fine-focus sealed tube2208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2526
Tmin = 0.966, Tmax = 0.983k = 1416
12785 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0845P)2]
where P = (Fo2 + 2Fc2)/3
4539 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C25H21NV = 3667.6 (4) Å3
Mr = 335.43Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.5507 (11) ŵ = 0.07 mm1
b = 12.7195 (7) ÅT = 298 K
c = 14.7732 (8) Å0.50 × 0.25 × 0.25 mm
β = 93.322 (1)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4539 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2208 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.983Rint = 0.035
12785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 0.99Δρmax = 0.17 e Å3
4539 reflectionsΔρmin = 0.16 e Å3
236 parameters
Special details top

Experimental. Data was collected using a Siemens SMART CCD based diffractometer operating at room temperature. Data was measured using omega scans of 0.3 degrees per frame for 60 s. A total of 1271 frames were collected. The first 50 frames were recollected at the end of each set of frames.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20712 (7)0.94371 (11)0.12336 (9)0.0606 (4)
C10.24753 (8)0.97813 (12)0.05954 (10)0.0579 (4)
C20.30655 (8)0.92382 (12)0.03031 (10)0.0548 (4)
C30.31644 (8)0.82032 (12)0.06486 (10)0.0553 (4)
C40.27295 (8)0.78358 (12)0.13108 (10)0.0562 (4)
C50.21998 (8)0.84883 (12)0.16050 (10)0.0560 (4)
C60.17452 (9)0.81306 (13)0.22835 (11)0.0619 (4)
C70.18200 (9)0.71022 (14)0.26268 (11)0.0667 (5)
C80.23510 (10)0.64576 (14)0.23078 (12)0.0728 (5)
H80.24000.57770.25320.087*
C90.27818 (10)0.67897 (13)0.16997 (11)0.0670 (5)
H90.31240.63390.15210.080*
C100.13686 (11)0.67508 (17)0.32735 (13)0.0850 (6)
H100.14110.60690.34980.102*
C110.08733 (12)0.7390 (2)0.35754 (15)0.0969 (7)
H110.05840.71480.40080.116*
C120.08009 (11)0.8407 (2)0.32361 (15)0.0961 (7)
H120.04600.88420.34400.115*
C130.12285 (9)0.87702 (17)0.26036 (13)0.0786 (5)
H130.11750.94520.23840.094*
C140.34738 (8)0.97676 (12)0.03665 (10)0.0586 (4)
C150.32027 (9)1.06796 (13)0.08092 (11)0.0632 (5)
C160.25865 (10)1.11449 (14)0.05257 (12)0.0726 (5)
H160.24111.17370.08260.087*
C170.22571 (9)1.07480 (14)0.01609 (12)0.0705 (5)
H170.18791.11020.03640.085*
C180.35498 (11)1.11460 (16)0.15061 (13)0.0789 (6)
H180.33571.17270.18050.095*
C190.41616 (12)1.07725 (18)0.17583 (14)0.0913 (6)
H190.43751.10700.22430.110*
C200.44616 (11)0.99406 (18)0.12793 (15)0.0924 (6)
H200.48930.97050.14210.111*
C210.41315 (9)0.94612 (15)0.05999 (13)0.0759 (5)
H210.43500.89140.02820.091*
C220.36725 (9)0.74302 (13)0.02976 (10)0.0645 (5)
H220.37950.76600.02980.077*
H22B0.34500.67510.02250.077*
C230.43282 (9)0.72905 (14)0.08958 (12)0.0711 (5)
H230.42110.71820.15180.085*
H23B0.46000.79270.08760.085*
C240.47531 (11)0.63607 (17)0.05943 (14)0.0941 (7)
H240.44730.57310.06000.113*
H24B0.48720.64790.00260.113*
C250.53920 (12)0.6175 (2)0.1164 (2)0.1271 (9)
H250.56110.55470.09650.191*
H25B0.52830.60960.17860.191*
H25C0.56960.67620.11100.191*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0662 (8)0.0527 (8)0.0618 (8)0.0036 (7)0.0049 (7)0.0032 (6)
C10.0640 (10)0.0484 (9)0.0598 (10)0.0018 (8)0.0100 (8)0.0010 (7)
C20.0638 (10)0.0491 (9)0.0497 (9)0.0007 (8)0.0116 (8)0.0021 (7)
C30.0650 (10)0.0490 (9)0.0499 (9)0.0048 (8)0.0126 (8)0.0051 (7)
C40.0696 (10)0.0480 (9)0.0491 (9)0.0006 (8)0.0126 (8)0.0014 (7)
C50.0610 (9)0.0518 (9)0.0535 (9)0.0001 (8)0.0123 (8)0.0021 (7)
C60.0659 (10)0.0620 (11)0.0565 (10)0.0061 (9)0.0074 (8)0.0011 (8)
C70.0769 (12)0.0631 (11)0.0583 (10)0.0089 (9)0.0108 (9)0.0019 (8)
C80.1029 (14)0.0507 (10)0.0635 (11)0.0050 (10)0.0066 (11)0.0079 (8)
C90.0894 (13)0.0511 (10)0.0592 (10)0.0084 (9)0.0069 (10)0.0003 (8)
C100.0969 (15)0.0785 (14)0.0788 (13)0.0207 (12)0.0031 (12)0.0151 (11)
C110.0874 (15)0.1040 (19)0.1008 (16)0.0163 (14)0.0175 (13)0.0124 (14)
C120.0787 (13)0.1072 (19)0.1037 (16)0.0038 (13)0.0173 (13)0.0124 (14)
C130.0721 (12)0.0795 (13)0.0839 (13)0.0068 (11)0.0034 (11)0.0105 (10)
C140.0645 (10)0.0546 (10)0.0554 (9)0.0017 (8)0.0092 (8)0.0021 (8)
C150.0723 (11)0.0556 (10)0.0600 (10)0.0050 (9)0.0098 (9)0.0057 (8)
C160.0825 (12)0.0558 (11)0.0776 (12)0.0090 (9)0.0117 (10)0.0139 (9)
C170.0742 (11)0.0572 (11)0.0794 (12)0.0117 (9)0.0025 (10)0.0099 (9)
C180.0880 (14)0.0700 (12)0.0772 (13)0.0050 (11)0.0092 (11)0.0170 (10)
C190.0969 (16)0.0930 (16)0.0848 (14)0.0069 (13)0.0113 (12)0.0254 (12)
C200.0811 (13)0.0952 (16)0.1022 (15)0.0012 (12)0.0165 (12)0.0165 (13)
C210.0754 (12)0.0724 (12)0.0796 (12)0.0033 (10)0.0017 (10)0.0121 (10)
C220.0826 (11)0.0506 (9)0.0594 (10)0.0057 (9)0.0039 (9)0.0047 (8)
C230.0761 (12)0.0660 (11)0.0705 (11)0.0144 (9)0.0015 (9)0.0022 (9)
C240.0941 (15)0.0865 (15)0.1030 (16)0.0291 (12)0.0155 (13)0.0044 (12)
C250.0955 (17)0.114 (2)0.172 (2)0.0417 (15)0.0036 (17)0.0025 (19)
Geometric parameters (Å, º) top
N1—C11.338 (2)C14—C151.419 (2)
N1—C51.3433 (19)C15—C181.398 (2)
C1—C21.433 (2)C15—C161.427 (2)
C1—C171.440 (2)C16—C171.332 (2)
C2—C31.421 (2)C16—H160.9300
C2—C141.470 (2)C17—H170.9300
C3—C41.412 (2)C18—C191.359 (3)
C3—C221.511 (2)C18—H180.9300
C4—C51.415 (2)C19—C201.384 (3)
C4—C91.451 (2)C19—H190.9300
C5—C61.451 (2)C20—C211.368 (3)
C6—C131.400 (2)C20—H200.9300
C6—C71.407 (2)C21—H210.9300
C7—C101.410 (3)C22—C231.525 (2)
C7—C81.424 (3)C22—H220.9700
C8—C91.335 (2)C22—H22B0.9700
C8—H80.9300C23—C241.526 (3)
C9—H90.9300C23—H230.9700
C10—C111.359 (3)C23—H23B0.9700
C10—H100.9300C24—C251.484 (3)
C11—C121.391 (3)C24—H240.9700
C11—H110.9300C24—H24B0.9700
C12—C131.370 (3)C25—H250.9600
C12—H120.9300C25—H25B0.9600
C13—H130.9300C25—H25C0.9600
C14—C211.406 (2)
C1—N1—C5118.52 (14)C18—C15—C16119.64 (17)
N1—C1—C2124.98 (14)C14—C15—C16120.19 (16)
N1—C1—C17114.94 (15)C17—C16—C15121.33 (16)
C2—C1—C17120.01 (16)C17—C16—H16119.3
C3—C2—C1115.69 (15)C15—C16—H16119.3
C3—C2—C14126.74 (15)C16—C17—C1121.29 (17)
C1—C2—C14117.40 (14)C16—C17—H17119.4
C4—C3—C2118.71 (14)C1—C17—H17119.4
C4—C3—C22117.17 (14)C19—C18—C15121.74 (18)
C2—C3—C22123.93 (15)C19—C18—H18119.1
C3—C4—C5119.96 (14)C15—C18—H18119.1
C3—C4—C9123.12 (15)C18—C19—C20118.7 (2)
C5—C4—C9116.90 (16)C18—C19—H19120.6
N1—C5—C4121.63 (15)C20—C19—H19120.6
N1—C5—C6117.15 (15)C21—C20—C19120.8 (2)
C4—C5—C6121.12 (15)C21—C20—H20119.6
C13—C6—C7118.69 (17)C19—C20—H20119.6
C13—C6—C5122.26 (16)C20—C21—C14122.25 (18)
C7—C6—C5119.04 (16)C20—C21—H21118.9
C6—C7—C10118.85 (18)C14—C21—H21118.9
C6—C7—C8118.58 (17)C3—C22—C23115.11 (13)
C10—C7—C8122.57 (18)C3—C22—H22108.5
C9—C8—C7122.74 (17)C23—C22—H22108.5
C9—C8—H8118.6C3—C22—H22B108.5
C7—C8—H8118.6C23—C22—H22B108.5
C8—C9—C4121.60 (17)H22—C22—H22B107.5
C8—C9—H9119.2C22—C23—C24112.00 (15)
C4—C9—H9119.2C22—C23—H23109.2
C11—C10—C7121.2 (2)C24—C23—H23109.2
C11—C10—H10119.4C22—C23—H23B109.2
C7—C10—H10119.4C24—C23—H23B109.2
C10—C11—C12119.8 (2)H23—C23—H23B107.9
C10—C11—H11120.1C25—C24—C23114.34 (18)
C12—C11—H11120.1C25—C24—H24108.7
C13—C12—C11120.4 (2)C23—C24—H24108.7
C13—C12—H12119.8C25—C24—H24B108.7
C11—C12—H12119.8C23—C24—H24B108.7
C12—C13—C6121.0 (2)H24—C24—H24B107.6
C12—C13—H13119.5C24—C25—H25109.5
C6—C13—H13119.5C24—C25—H25B109.5
C21—C14—C15115.86 (16)H25—C25—H25B109.5
C21—C14—C2125.33 (15)C24—C25—H25C109.5
C15—C14—C2118.79 (15)H25—C25—H25C109.5
C18—C15—C14120.14 (17)H25B—C25—H25C109.5
C5—N1—C1—C23.5 (2)C5—C4—C9—C80.1 (2)
C5—N1—C1—C17173.30 (13)C6—C7—C10—C110.9 (3)
N1—C1—C2—C38.1 (2)C8—C7—C10—C11178.98 (18)
C17—C1—C2—C3168.54 (14)C7—C10—C11—C120.8 (3)
N1—C1—C2—C14176.25 (13)C10—C11—C12—C130.4 (3)
C17—C1—C2—C147.1 (2)C11—C12—C13—C60.1 (3)
C1—C2—C3—C46.52 (19)C7—C6—C13—C120.2 (3)
C14—C2—C3—C4178.33 (13)C5—C6—C13—C12179.14 (17)
C1—C2—C3—C22168.36 (13)C3—C2—C14—C2117.9 (2)
C14—C2—C3—C226.8 (2)C1—C2—C14—C21166.99 (15)
C2—C3—C4—C51.2 (2)C3—C2—C14—C15163.67 (14)
C22—C3—C4—C5174.05 (13)C1—C2—C14—C1511.4 (2)
C2—C3—C4—C9179.29 (14)C21—C14—C15—C187.2 (2)
C22—C3—C4—C94.1 (2)C2—C14—C15—C18174.30 (14)
C1—N1—C5—C42.7 (2)C21—C14—C15—C16170.79 (16)
C1—N1—C5—C6178.96 (13)C2—C14—C15—C167.8 (2)
C3—C4—C5—N13.8 (2)C18—C15—C16—C17177.18 (16)
C9—C4—C5—N1174.45 (13)C14—C15—C16—C170.8 (3)
C3—C4—C5—C6179.93 (13)C15—C16—C17—C15.4 (3)
C9—C4—C5—C61.7 (2)N1—C1—C17—C16175.68 (15)
N1—C5—C6—C135.4 (2)C2—C1—C17—C161.3 (2)
C4—C5—C6—C13178.29 (15)C14—C15—C18—C192.4 (3)
N1—C5—C6—C7173.96 (13)C16—C15—C18—C19175.55 (18)
C4—C5—C6—C72.3 (2)C15—C18—C19—C203.3 (3)
C13—C6—C7—C100.6 (2)C18—C19—C20—C213.8 (3)
C5—C6—C7—C10178.81 (14)C19—C20—C21—C141.3 (3)
C13—C6—C7—C8179.28 (15)C15—C14—C21—C206.7 (3)
C5—C6—C7—C81.3 (2)C2—C14—C21—C20174.86 (16)
C6—C7—C8—C90.3 (2)C4—C3—C22—C2381.85 (18)
C10—C7—C8—C9179.59 (16)C2—C3—C22—C23103.20 (18)
C7—C8—C9—C40.9 (3)C3—C22—C23—C24169.42 (16)
C3—C4—C9—C8178.25 (15)C22—C23—C24—C25178.93 (18)

Experimental details

Crystal data
Chemical formulaC25H21N
Mr335.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)19.5507 (11), 12.7195 (7), 14.7732 (8)
β (°) 93.322 (1)
V3)3667.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12785, 4539, 2208
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.167, 0.99
No. of reflections4539
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
C2—C31.421 (2)C3—C41.412 (2)
C2—C141.470 (2)C4—C91.451 (2)
N1—C1—C2124.98 (14)C21—C14—C15115.86 (16)
C3—C2—C1115.69 (15)C21—C14—C2125.33 (15)
C3—C2—C14126.74 (15)C3—C22—C23115.11 (13)
C5—N1—C1—C23.5 (2)C3—C2—C14—C15163.67 (14)
C5—N1—C1—C17173.30 (13)C1—C2—C14—C1511.4 (2)
N1—C1—C2—C38.1 (2)C4—C3—C22—C2381.85 (18)
C17—C1—C2—C3168.54 (14)C2—C3—C22—C23103.20 (18)
C1—C2—C3—C22168.36 (13)C3—C22—C23—C24169.42 (16)
C3—C2—C14—C2117.9 (2)C22—C23—C24—C25178.93 (18)
C1—C2—C14—C21166.99 (15)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds