Download citation
Download citation
link to html
In the solid state, the title mononuclear octahedral rho­dium(III) complex, [RhCl3(C13H15N3)]·H2O, shows a hydrogen bond between the equatorial Cl atom and the solvent water mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018440/fl6053sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018440/fl6053Isup2.hkl
Contains datablock I

CCDC reference: 222827

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.036
  • wR factor = 0.079
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ..... 0.98 PLAT355_ALERT_3_A Long O-H Bond (0.82A) O1 - H1W = 1.21 Ang.
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.798 0.820 Tmin and Tmax expected: 0.725 0.820 RR = 1.101 Please check that your absorption correction is appropriate. PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .. ? PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .. C2 PLAT355_ALERT_3_C Long O-H Bond (0.82A) O1 - H2W = 1.07 Ang.
2 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The tridentate ligand 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine (L; Bernauer & Gretillat, 1989) has been used extensively for the synthesis of mononuclear complexes containing one L (Cabort Therrien et al., 2003) or two L units around a transition metal (Cabort Therrien Stoeckli-Evans et al., 2002; Cabort Michel et al., 2003). To the best of our knowledge, L has never been used as a monodentate, bidentate, or bridging ligand. To investigate these other possible coordination modes, we decided to react L with [RhCp*(µ-Cl)2Cl] (White et al., 1992). However, under the reaction conditions of refluxing MeOH in the presence of NaBF4, the 1,2,3,4,5-pentamethylcyclopentadienyl (Cp*) moiety is removed, and the title mononuclear complex, [RhCl3(L)], (I), is formed. Complex (I) has been reported previously by Cabort et al. (Cabort Therrien Bernauer & Süss-Fink, 2002). Unlike Cabort et al., where compound (I) crystallized with two benzene molecules per asymmetric unit, we obtained crystals of complex (I) with one molecule of water per asymmetric unit, giving rise to a different packing arrangement and to the formation of an intermolecular hydrogen bond between the equatorial Cl atom and the water molecule.

The three N atoms of the tridentate ligand, along with the three Cl atoms, form a distorted octahedral geometry around the metal in (I) (Fig.1, Table 1). The bond distances and angles are similar to those found in other [RhCl3(η3-L)] complexes, where L is bis(oxazolinyl)pyridine (Nishiyama et al., 1991), bis(pyrazolyl)pyridine (Christenson et al., 1995), 2,6-bis(ethylidyneimino)pyridine (Haarman et al., 1997), 2,3,6-tris(2-pyridyl)-1,3,5-triazine (Paul et al., 1998), 2,2':6',2"-terpyridine (Ziegler et al., 1999; Kwong et al., 2001) or 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine (Cabort Therrien Bernauer & Süss-Fink, 2002).

The formation of five-membered chelate rings significantly distorts the geometry around the Rh atom. The N1—Rh1—N2 [78.12 (15)°], N2—Rh1—N3 [78.03 (14)°] and N1—Rh1—N3 [156.08 (15)°] angles are significantly smaller than the values of 90 and 180° expected for an ideal octahedral geometry. The equatorial plane formed by L and atoms Rh1 and Cl1 is planar, with an average deviation of 0.0692 Å; only atoms C3 and C12 of the pyrrol fragment and atom Cl1 are significantly out of this plane, by −0.135 (4), −0.178 (5) and 0.145 (2) Å, respectively. The distance between Rh and the central N2 atom [1.975 (3) Å] is shorter than the other Rh—N bonds [Rh1—N1 2.064 (4) and Rh1—N3 2.071 (4) Å].

In the crystal of (I), a weak intermolecular hydrogen bond is formed between atom Cl1 and the water molecule, with Cl1—O1 3.153 (5) and Cl1···H1W—O1 142.0°.

Experimental top

To a methanol solution (10 ml) of [RhCp*(µ-Cl)2Cl] (30 mg, 0.05 mmol) were added 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine (20 mg, 0.1 mmol) and NaBF4 (11 mg, 0.1 mmol). The orange solution was stirred and refluxed for 12 h. After cooling to room temperature, a brown precipitate was observed. The precipitate was dissolved in a methanol-water solution (Ratio?). Crystals of (I) were observed after two weeks. 1H NMR (200 MHz, CDCl3, δ, p.p.m.): 8.44 (t, 1H), 8.32 (d, 2H), 4.14 (m, 4H), 3.48 (m, 4H), 2.48 (m, 4H). MS (ESI, m/z): 423. [RhCl3(L)] analysis, calculated for C13H15Cl3N3Rh·H2O: C 35.44, H 3.89, N 9.54%; found: C 35.30, H 3.98, N 9.48%.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms using the SHELXL97 (Sheldrick, 1997) default parameters, except for the H atoms of the water molecule, which were located from a Fourier difference map and fixed at their positions.

Computing details top

Data collection: EXPOSE in IPDS (Stoe & Cie, 2000); cell refinement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level.
[2,6-Bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine-κ3N]trichlororhodium(III) monohydrate top
Crystal data top
[RhCl3(C13H15N3)]·H2OF(000) = 1760
Mr = 440.56Dx = 1.776 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6717 reflections
a = 18.682 (4) Åθ = 1.9–25.9°
b = 14.821 (3) ŵ = 1.52 mm1
c = 14.819 (3) ÅT = 153 K
β = 126.57 (3)°Block, red
V = 3295.4 (17) Å30.23 × 0.18 × 0.13 mm
Z = 8
Data collection top
Stoe IPDS
diffractometer
3136 independent reflections
Radiation source: fine-focus sealed tube2127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 0.81Å pixels mm-1θmax = 25.9°, θmin = 1.9°
ϕ oscillation scansh = 2122
Absorption correction: multi-scan
(Blessing, 1995)
k = 1618
Tmin = 0.798, Tmax = 0.820l = 1818
8555 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0406P)2]
where P = (Fo2 + 2Fc2)/3
3136 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[RhCl3(C13H15N3)]·H2OV = 3295.4 (17) Å3
Mr = 440.56Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.682 (4) ŵ = 1.52 mm1
b = 14.821 (3) ÅT = 153 K
c = 14.819 (3) Å0.23 × 0.18 × 0.13 mm
β = 126.57 (3)°
Data collection top
Stoe IPDS
diffractometer
3136 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2127 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.820Rint = 0.052
8555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.47 e Å3
3136 reflectionsΔρmin = 0.44 e Å3
190 parameters
Special details top

Experimental. A crystal was mounted at 153 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, ϕ oscillation scans 0 − 180°, step Δϕ = 1.5°, 10 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1537 (4)0.1416 (3)0.4399 (5)0.0394 (13)
H1A0.12870.18250.37670.047*
H1B0.20390.17070.50670.047*
C20.0837 (4)0.1143 (4)0.4563 (6)0.0561 (16)
H2A0.03080.15140.41030.067*
H2B0.10680.12140.53440.067*
C30.0619 (3)0.0159 (3)0.4212 (4)0.0325 (11)
H3A0.06510.02000.47820.039*
H3B0.00300.00950.35060.039*
C40.1323 (3)0.0101 (3)0.4093 (3)0.0261 (10)
C50.1513 (3)0.0996 (3)0.3850 (3)0.0258 (10)
C60.1109 (3)0.1813 (3)0.3746 (4)0.0306 (11)
H60.06600.18510.38400.037*
C70.1395 (3)0.2573 (3)0.3498 (4)0.0340 (12)
H70.11330.31280.34230.041*
C80.2068 (3)0.2517 (3)0.3358 (4)0.0303 (11)
H80.22570.30280.31910.036*
C90.2445 (3)0.1694 (3)0.3472 (4)0.0261 (10)
C100.3155 (3)0.1463 (3)0.3357 (3)0.0248 (10)
C110.3631 (4)0.2071 (3)0.3082 (4)0.0348 (12)
H11A0.32170.23960.23880.042*
H11B0.40000.25000.36820.042*
C120.4195 (4)0.1416 (3)0.2961 (4)0.0373 (12)
H12A0.39750.13730.21810.045*
H12B0.48110.16150.34060.045*
C130.4120 (3)0.0503 (3)0.3383 (4)0.0332 (11)
H13A0.46780.03440.40920.040*
H13B0.39620.00310.28400.040*
N10.1814 (3)0.0558 (3)0.4178 (3)0.0272 (9)
N20.2167 (2)0.0958 (2)0.3718 (3)0.0215 (8)
N30.3408 (2)0.0632 (2)0.3524 (3)0.0234 (8)
O10.5096 (3)0.1842 (3)0.4181 (4)0.0717 (13)
H1W0.43130.18420.37920.086*
H2W0.52300.12060.39620.086*
Cl10.34436 (9)0.16333 (7)0.42372 (10)0.0354 (3)
Cl20.17228 (8)0.05304 (8)0.20050 (9)0.0340 (3)
Cl30.37853 (8)0.01363 (8)0.58291 (8)0.0311 (3)
Rh10.27517 (3)0.02125 (2)0.39239 (3)0.02457 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (4)0.028 (3)0.049 (3)0.005 (2)0.034 (3)0.003 (2)
C20.060 (5)0.040 (3)0.095 (5)0.004 (3)0.061 (4)0.009 (3)
C30.032 (3)0.040 (3)0.029 (2)0.003 (2)0.020 (2)0.003 (2)
C40.025 (3)0.027 (2)0.025 (2)0.002 (2)0.014 (2)0.0012 (18)
C50.023 (3)0.031 (3)0.020 (2)0.001 (2)0.011 (2)0.0016 (18)
C60.033 (3)0.031 (3)0.030 (2)0.009 (2)0.020 (2)0.0010 (19)
C70.040 (3)0.026 (3)0.033 (3)0.013 (2)0.021 (3)0.001 (2)
C80.034 (3)0.024 (2)0.029 (2)0.002 (2)0.016 (2)0.0029 (18)
C90.030 (3)0.019 (2)0.025 (2)0.0003 (19)0.014 (2)0.0022 (17)
C100.027 (3)0.021 (2)0.023 (2)0.0020 (19)0.012 (2)0.0051 (17)
C110.038 (3)0.030 (3)0.047 (3)0.002 (2)0.031 (3)0.009 (2)
C120.048 (4)0.033 (3)0.045 (3)0.003 (2)0.035 (3)0.003 (2)
C130.036 (3)0.036 (3)0.039 (3)0.007 (2)0.028 (3)0.006 (2)
N10.031 (3)0.025 (2)0.0293 (19)0.0050 (18)0.0198 (19)0.0018 (15)
N20.025 (2)0.0148 (18)0.0217 (17)0.0027 (15)0.0125 (17)0.0006 (13)
N30.028 (2)0.0197 (19)0.0213 (17)0.0007 (16)0.0142 (17)0.0022 (14)
O10.069 (4)0.062 (3)0.090 (3)0.001 (2)0.050 (3)0.010 (2)
Cl10.0424 (8)0.0208 (6)0.0441 (7)0.0052 (5)0.0264 (6)0.0031 (5)
Cl20.0342 (8)0.0294 (6)0.0309 (6)0.0005 (5)0.0155 (6)0.0027 (5)
Cl30.0371 (7)0.0300 (6)0.0269 (5)0.0042 (5)0.0194 (5)0.0027 (5)
Rh10.0296 (2)0.01756 (17)0.02976 (18)0.00054 (17)0.01946 (16)0.00173 (16)
Geometric parameters (Å, º) top
C1—N11.481 (6)C9—C101.474 (7)
C1—C21.519 (7)C10—N31.290 (5)
C1—H1A0.9700C10—C111.483 (6)
C1—H1B0.9700C11—C121.520 (7)
C2—C31.521 (7)C11—H11A0.9700
C2—H2A0.9700C11—H11B0.9700
C2—H2B0.9700C12—C131.533 (6)
C3—C41.478 (6)C12—H12A0.9700
C3—H3A0.9700C12—H12B0.9700
C3—H3B0.9700C13—N31.476 (6)
C4—N11.294 (6)C13—H13A0.9700
C4—C51.472 (6)C13—H13B0.9700
C5—N21.348 (6)N1—Rh12.064 (4)
C5—C61.386 (6)N2—Rh11.975 (3)
C6—C71.386 (7)N3—Rh12.071 (4)
C6—H60.9300O1—H1W1.2117
C7—C81.393 (7)O1—H2W1.0731
C7—H70.9300Cl1—Rh12.3677 (12)
C8—C91.368 (6)Cl2—Rh12.3431 (16)
C8—H80.9300Cl3—Rh12.3389 (15)
C9—N21.349 (5)
N1—C1—C2104.7 (4)C12—C11—H11A111.3
N1—C1—H1A110.8C10—C11—H11B111.3
C2—C1—H1A110.8C12—C11—H11B111.3
N1—C1—H1B110.8H11A—C11—H11B109.2
C2—C1—H1B110.8C11—C12—C13106.1 (4)
H1A—C1—H1B108.9C11—C12—H12A110.5
C1—C2—C3106.3 (4)C13—C12—H12A110.5
C1—C2—H2A110.5C11—C12—H12B110.5
C3—C2—H2A110.5C13—C12—H12B110.5
C1—C2—H2B110.5H12A—C12—H12B108.7
C3—C2—H2B110.5N3—C13—C12104.6 (4)
H2A—C2—H2B108.7N3—C13—H13A110.8
C4—C3—C2102.4 (4)C12—C13—H13A110.8
C4—C3—H3A111.3N3—C13—H13B110.8
C2—C3—H3A111.3C12—C13—H13B110.8
C4—C3—H3B111.3H13A—C13—H13B108.9
C2—C3—H3B111.3C4—N1—C1110.4 (4)
H3A—C3—H3B109.2C4—N1—Rh1115.1 (3)
N1—C4—C5116.3 (4)C1—N1—Rh1134.4 (3)
N1—C4—C3114.9 (4)C5—N2—C9122.3 (4)
C5—C4—C3128.7 (4)C5—N2—Rh1118.7 (3)
N2—C5—C6120.1 (4)C9—N2—Rh1119.0 (3)
N2—C5—C4111.6 (4)C10—N3—C13110.8 (4)
C6—C5—C4128.3 (4)C10—N3—Rh1114.8 (3)
C5—C6—C7117.9 (5)C13—N3—Rh1134.4 (3)
C5—C6—H6121.0H1W—O1—H2W106.8
C7—C6—H6121.0N2—Rh1—N178.12 (15)
C6—C7—C8121.0 (4)N2—Rh1—N378.03 (14)
C6—C7—H7119.5N1—Rh1—N3156.08 (15)
C8—C7—H7119.5N2—Rh1—Cl388.58 (10)
C9—C8—C7118.6 (4)N1—Rh1—Cl390.85 (11)
C9—C8—H8120.7N3—Rh1—Cl390.46 (10)
C7—C8—H8120.7N2—Rh1—Cl290.62 (10)
N2—C9—C8120.1 (4)N1—Rh1—Cl289.98 (11)
N2—C9—C10111.2 (4)N3—Rh1—Cl288.37 (10)
C8—C9—C10128.7 (4)Cl3—Rh1—Cl2178.70 (4)
N3—C10—C9116.9 (4)N2—Rh1—Cl1177.27 (10)
N3—C10—C11114.9 (4)N1—Rh1—Cl199.64 (11)
C9—C10—C11128.3 (4)N3—Rh1—Cl1104.25 (11)
C10—C11—C12102.5 (4)Cl3—Rh1—Cl189.90 (5)
C10—C11—H11A111.3Cl2—Rh1—Cl190.94 (5)
N1—C1—C2—C310.4 (6)C10—C9—N2—Rh12.2 (5)
C1—C2—C3—C410.7 (6)C9—C10—N3—C13179.8 (4)
C2—C3—C4—N17.6 (5)C11—C10—N3—C130.5 (5)
C2—C3—C4—C5174.9 (5)C9—C10—N3—Rh10.0 (5)
N1—C4—C5—N22.3 (5)C11—C10—N3—Rh1179.4 (3)
C3—C4—C5—N2175.2 (4)C12—C13—N3—C106.1 (5)
N1—C4—C5—C6178.2 (4)C12—C13—N3—Rh1174.1 (3)
C3—C4—C5—C64.4 (7)C5—N2—Rh1—N11.5 (3)
N2—C5—C6—C70.4 (6)C9—N2—Rh1—N1179.8 (3)
C4—C5—C6—C7179.1 (4)C5—N2—Rh1—N3179.6 (3)
C5—C6—C7—C80.1 (7)C9—N2—Rh1—N31.7 (3)
C6—C7—C8—C90.1 (7)C5—N2—Rh1—Cl389.7 (3)
C7—C8—C9—N20.2 (7)C9—N2—Rh1—Cl389.0 (3)
C7—C8—C9—C10179.5 (4)C5—N2—Rh1—Cl291.4 (3)
N2—C9—C10—N31.4 (6)C9—N2—Rh1—Cl290.0 (3)
C8—C9—C10—N3178.9 (4)C4—N1—Rh1—N20.1 (3)
N2—C9—C10—C11179.4 (4)C1—N1—Rh1—N2176.9 (5)
C8—C9—C10—C110.3 (8)C4—N1—Rh1—N34.8 (5)
N3—C10—C11—C126.8 (5)C1—N1—Rh1—N3172.2 (4)
C9—C10—C11—C12173.9 (4)C4—N1—Rh1—Cl388.2 (3)
C10—C11—C12—C139.9 (5)C1—N1—Rh1—Cl394.7 (4)
C11—C12—C13—N39.9 (5)C4—N1—Rh1—Cl290.8 (3)
C5—C4—N1—C1178.9 (4)C1—N1—Rh1—Cl286.3 (4)
C3—C4—N1—C11.1 (5)C4—N1—Rh1—Cl1178.3 (3)
C5—C4—N1—Rh11.1 (5)C1—N1—Rh1—Cl14.7 (4)
C3—C4—N1—Rh1176.7 (3)C10—N3—Rh1—N20.9 (3)
C2—C1—N1—C46.1 (6)C13—N3—Rh1—N2179.3 (4)
C2—C1—N1—Rh1176.8 (4)C10—N3—Rh1—N15.6 (5)
C6—C5—N2—C90.7 (6)C13—N3—Rh1—N1174.6 (4)
C4—C5—N2—C9178.9 (4)C10—N3—Rh1—Cl387.6 (3)
C6—C5—N2—Rh1178.0 (3)C13—N3—Rh1—Cl392.3 (4)
C4—C5—N2—Rh12.4 (5)C10—N3—Rh1—Cl291.8 (3)
C8—C9—N2—C50.6 (6)C13—N3—Rh1—Cl288.3 (4)
C10—C9—N2—C5179.2 (4)C10—N3—Rh1—Cl1177.6 (3)
C8—C9—N2—Rh1178.1 (3)C13—N3—Rh1—Cl12.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl11.212.113.153 (5)142

Experimental details

Crystal data
Chemical formula[RhCl3(C13H15N3)]·H2O
Mr440.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)18.682 (4), 14.821 (3), 14.819 (3)
β (°) 126.57 (3)
V3)3295.4 (17)
Z8
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.23 × 0.18 × 0.13
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.798, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
8555, 3136, 2127
Rint0.052
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.079, 0.89
No. of reflections3136
No. of parameters190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.44

Computer programs: EXPOSE in IPDS (Stoe & Cie, 2000), CELL in IPDS, INTEGRATE in IPDS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
N1—Rh12.064 (4)Cl1—Rh12.3677 (12)
N2—Rh11.975 (3)Cl2—Rh12.3431 (16)
N3—Rh12.071 (4)Cl3—Rh12.3389 (15)
N2—Rh1—N178.12 (15)N2—Rh1—Cl1177.27 (10)
N2—Rh1—N378.03 (14)N1—Rh1—Cl199.64 (11)
N1—Rh1—N3156.08 (15)N3—Rh1—Cl1104.25 (11)
Cl3—Rh1—Cl2178.70 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl11.212.113.153 (5)142
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds