Download citation
Download citation
link to html
Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This mol­ecule, which juxtaposes ketonic, hy­droxy­lic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing inter­molecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π–π, C—H...π, or ion–π inter­actions. The organic salt (TrOH·iBA) formed by a facile proton-transfer reaction between tropolone (TrOH) and iso­butyl­amine (iBA), namely iso­butyl­ammonium 7-oxo­cyclo­hepta-1,3,5-trien-1-olate, C4H12N+·C7H5O2, has been investigated by X-ray crystallography, with complementary quantum-chemical and statistical-database analyses serving to elucidate the nature of attendant inter­molecular inter­actions and their synergistic effects upon lattice-packing phenomena. The crystal structure deduced from low-temperature diffraction measurements displays extensive hydrogen-bonding networks, yet shows little evidence of the aryl forces (viz. π–π, C—H...π, and ion–π inter­actions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent inter­actions occurring between the proton-donating and proton-accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven-membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen-bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor–acceptor distances of any troponoid-based complex, combined with unambiguous signatures of enhanced proton-delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616013474/fn3219sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616013474/fn3219Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S2053229616013474/fn3219Isup3.cdx
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229616013474/fn3219sup4.pdf
X-ray Structural Parameters and Optimized Quantum-Chemical Geometries

CCDC reference: 1494859

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CIFTAB (Sheldrick, 2015b).

Isobutylammonium 7-oxocyclohepta-1,3,5-trien-1-olate top
Crystal data top
C4H12N+·C7H5O2F(000) = 424
Mr = 195.25Dx = 1.163 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 6.5770 (2) ÅCell parameters from 26705 reflections
b = 9.5518 (3) Åθ = 2.5–68.0°
c = 17.8425 (13) ŵ = 0.64 mm1
β = 96.026 (5)°T = 93 K
V = 1114.71 (10) Å3Needle, colorless
Z = 40.40 × 0.04 × 0.04 mm
Data collection top
Rigaku Saturn 944+ CCD
diffractometer
2027 independent reflections
Radiation source: Rotating Anode1761 reflections with I > 2σ(I)
Detector resolution: 22.2 pixels mm-1Rint = 0.079
ω scansθmax = 68.1°, θmin = 5.0°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 77
Tmin = 0.773, Tmax = 0.975k = 1111
34893 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1575P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2027 reflectionsΔρmax = 0.14 e Å3
141 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Experimental. Rigaku MicroMax-007HF, Rigaku Saturn 944+ CCD

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95- 0.99 Å and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups. The only exceptions are H1a, H1b, and H1c, which are freely refining. These hydrogen atoms are also a part of refined hydrogen bonds which are reported in the RES file appended to this CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42316 (13)0.39405 (9)0.57684 (5)0.0346 (2)
O20.08069 (12)0.47078 (8)0.62236 (4)0.0280 (2)
N10.78054 (16)0.39758 (10)0.51132 (6)0.0265 (2)
H1A0.868 (2)0.4389 (15)0.5499 (9)0.043 (4)*
H1B0.649 (3)0.3858 (16)0.5340 (9)0.054 (5)*
H1C0.763 (2)0.4608 (17)0.4696 (9)0.050 (4)*
C10.37445 (17)0.33118 (11)0.63515 (6)0.0262 (3)
C20.51098 (18)0.23298 (12)0.67252 (7)0.0312 (3)
H20.63730.22460.65150.037*
C30.4945 (2)0.14685 (12)0.73408 (7)0.0334 (3)
H30.61160.09140.74900.040*
C40.3332 (2)0.12959 (12)0.77701 (7)0.0342 (3)
H40.34970.06110.81580.041*
C50.1501 (2)0.20208 (13)0.76920 (7)0.0340 (3)
H50.05530.17500.80320.041*
C60.08340 (19)0.30809 (12)0.71946 (7)0.0302 (3)
H60.04730.34450.72700.036*
C70.17364 (17)0.37196 (11)0.65968 (6)0.0245 (3)
C80.87004 (18)0.26312 (12)0.48895 (7)0.0285 (3)
H8A0.87410.19680.53170.034*
H8B1.01250.27970.47800.034*
C90.75123 (19)0.19696 (12)0.42037 (7)0.0315 (3)
H90.75390.26280.37690.038*
C100.8596 (2)0.06189 (14)0.40150 (8)0.0430 (4)
H10A1.00350.08200.39620.065*
H10B0.79390.02330.35410.065*
H10C0.85110.00630.44210.065*
C110.5289 (2)0.16975 (14)0.43255 (8)0.0415 (3)
H11A0.52320.11240.47780.062*
H11B0.46090.12020.38880.062*
H11C0.45950.25910.43890.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0344 (5)0.0353 (5)0.0359 (5)0.0059 (3)0.0120 (4)0.0122 (4)
O20.0320 (5)0.0250 (4)0.0268 (4)0.0036 (3)0.0027 (3)0.0004 (3)
N10.0293 (5)0.0231 (5)0.0273 (6)0.0017 (4)0.0033 (4)0.0022 (4)
C10.0297 (6)0.0233 (5)0.0257 (6)0.0021 (4)0.0028 (5)0.0003 (5)
C20.0297 (6)0.0297 (6)0.0342 (7)0.0017 (5)0.0024 (5)0.0018 (5)
C30.0391 (7)0.0273 (6)0.0322 (7)0.0030 (5)0.0047 (5)0.0024 (5)
C40.0506 (8)0.0261 (6)0.0250 (7)0.0012 (5)0.0001 (6)0.0041 (5)
C50.0474 (8)0.0302 (6)0.0256 (6)0.0048 (5)0.0095 (5)0.0011 (5)
C60.0334 (6)0.0294 (6)0.0286 (7)0.0002 (5)0.0066 (5)0.0006 (5)
C70.0302 (6)0.0204 (5)0.0224 (6)0.0015 (4)0.0006 (4)0.0035 (4)
C80.0315 (6)0.0240 (6)0.0296 (6)0.0032 (5)0.0014 (5)0.0002 (5)
C90.0384 (7)0.0272 (6)0.0279 (7)0.0015 (5)0.0005 (5)0.0026 (5)
C100.0547 (9)0.0335 (7)0.0395 (8)0.0012 (6)0.0010 (6)0.0079 (6)
C110.0402 (7)0.0355 (7)0.0471 (8)0.0080 (5)0.0032 (6)0.0050 (6)
Geometric parameters (Å, º) top
O1—C11.2710 (14)C5—H50.9500
O2—C71.2737 (13)C6—C71.4125 (17)
N1—C81.4848 (14)C6—H60.9500
N1—H1A0.938 (16)C8—C91.5187 (16)
N1—H1B1.001 (17)C8—H8A0.9900
N1—H1C0.956 (17)C8—H8B0.9900
C1—C21.4161 (16)C9—C111.5231 (18)
C1—C71.4863 (16)C9—C101.5287 (18)
C2—C31.3856 (18)C9—H91.0000
C2—H20.9500C10—H10A0.9800
C3—C41.3822 (19)C10—H10B0.9800
C3—H30.9500C10—H10C0.9800
C4—C51.3835 (18)C11—H11A0.9800
C4—H40.9500C11—H11B0.9800
C5—C61.3868 (17)C11—H11C0.9800
C8—N1—H1A109.3 (9)C6—C7—C1124.47 (10)
C8—N1—H1B113.3 (9)N1—C8—C9113.05 (9)
H1A—N1—H1B104.2 (13)N1—C8—H8A109.0
C8—N1—H1C110.8 (10)C9—C8—H8A109.0
H1A—N1—H1C108.7 (13)N1—C8—H8B109.0
H1B—N1—H1C110.3 (13)C9—C8—H8B109.0
O1—C1—C2119.77 (11)H8A—C8—H8B107.8
O1—C1—C7115.17 (10)C8—C9—C11112.12 (11)
C2—C1—C7125.04 (10)C8—C9—C10108.44 (10)
C3—C2—C1131.92 (12)C11—C9—C10111.37 (11)
C3—C2—H2114.0C8—C9—H9108.3
C1—C2—H2114.0C11—C9—H9108.3
C4—C3—C2129.69 (12)C10—C9—H9108.3
C4—C3—H3115.2C9—C10—H10A109.5
C2—C3—H3115.2C9—C10—H10B109.5
C3—C4—C5126.53 (12)H10A—C10—H10B109.5
C3—C4—H4116.7C9—C10—H10C109.5
C5—C4—H4116.7H10A—C10—H10C109.5
C4—C5—C6130.04 (12)H10B—C10—H10C109.5
C4—C5—H5115.0C9—C11—H11A109.5
C6—C5—H5115.0C9—C11—H11B109.5
C5—C6—C7131.98 (12)H11A—C11—H11B109.5
C5—C6—H6114.0C9—C11—H11C109.5
C7—C6—H6114.0H11A—C11—H11C109.5
O2—C7—C6119.88 (11)H11B—C11—H11C109.5
O2—C7—C1115.65 (10)
O1—C1—C2—C3177.01 (12)C5—C6—C7—C11.8 (2)
C7—C1—C2—C34.6 (2)O1—C1—C7—O24.22 (14)
C1—C2—C3—C41.5 (2)C2—C1—C7—O2174.21 (10)
C2—C3—C4—C53.1 (2)O1—C1—C7—C6175.13 (10)
C3—C4—C5—C61.2 (2)C2—C1—C7—C66.45 (18)
C4—C5—C6—C73.0 (2)N1—C8—C9—C1157.99 (13)
C5—C6—C7—O2178.90 (12)N1—C8—C9—C10178.63 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.938 (16)1.826 (16)2.7368 (13)163.0 (14)
N1—H1B···O11.001 (17)1.740 (18)2.7330 (13)170.7 (14)
N1—H1C···O1ii0.956 (17)1.974 (17)2.7907 (13)142.1 (14)
N1—H1C···O2ii0.956 (17)2.128 (17)2.9258 (14)140.0 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
Hydrogen-bond parameters (°, Å) for TrOH.iBA top
The distances (in Å) and angles (in °) characterizing noncovalent interactions are tabulated, with results emerging from crystallographic analyses being contrasted with those predicted from various quantum-chemical calculations. 12 parameters are compared, representing three distances and one angle for each N1—H1i···Oj linkage (i = a, b, or c, and j = 1 or 2), as well as their corresponding average values, <N1—H1i···Oj>, in the case of fully relaxed quad complexes (with the two contributing structural parameters also listed). Primes and double primes affixed to labels (cf. Fig. 2) serve to distinguish distinct tropolone anions to which the amine H atoms are bound.
D—H···A linkageX-ray diffraction experimentM06-2X/apVDZM06-2X/apVDZ (CP)HSEH1PBE/pVDZ (PBC)
Fully relaxed1 ConstrainedFully relaxed1 Constrained
(a) D—H distances (Å)
N1—H1a···O2i0.938 (16)1.0605
N1—H1b···O11.001 (17)1.0416, 1.05421.04611.0407, 1.04771.04411.0503
<N1—H1b···O1>(1.0479)(1.0442)
N1—H1c···O1ii0.956 (17)1.0684, 1.08201.07071.0717, 1.08211.07281.0491
<N1—H1c···O1ii>(1.0752)(1.0769)
N1—H1c···O2ii0.956 (17)1.0684, 1.08201.07071.0717, 1.08211.07281.0491
<N1—H1c···O2ii>(1.0752)(1.0769)
(b) H···A distances (Å)
N1—H1a···O2i1.826 (16)1.9170
N1—H1b···O11.740 (18)1.6386, 1.76211.70521.6984, 1.77991.72671.7210
<N1—H1b···O1>(1.7004)(1.7392)
N1—H1c···O1ii1.974 (17)1.6063, 2.26951.60441.5923, 2.24291.59921.8576
<N1—H1c···O1ii>(1.9379)(1.9176)
N1—H1c···O2ii2.128 (17)1.5525, 2.21302.20961.5608, 2.22532.23122.1057
<N1—H1c···O2ii>(1.8828)(1.8930)
N1—H1c···O2ii2.128 (17)1.5525, 2.21302.20961.5608, 2.22532.23122.1057
<N1—H1c···O2ii>(1.8828)(1.8930)
(c) D···A distances (Å)
N1—H1a···O2i2.7368 (13)2.9405
N1—H1b···O12.7330 (13)2.6730, 2.78622.73412.6926, 2.80242.74822.7621
<N1—H1b···O1>(2.7296)(2.7475)
N1—H1c···O1ii2.7907 (13)2.6474, 2.91942.66042.6481, 2.89782.66282.7985
<N1—H1c···O1ii>(2.7834)(2.7729)
N1—H1c···O2ii2.9258 (14)2.5956, 2.74592.71572.5967, 2.72092.70692.9076
<N1—H1c···O2ii>(2.6708)(2.6588)
(d) D—H···A angles (°)
N1—H1a···O2i163.0 (14)161.25
N1—H1b···O1170.7 (14)165.77, 166.71166.79156.66, 166.49164.88170.40
<N1—H1b···O1>(166.24)(161.58)
N1—H1c···O1ii142.1 (14)116.63, 163.25167.71116.89, 167.21170.32147.31
<N1—H1c···O1ii>(139.94)(142.05)
N1—H1c···O2ii140.0 (13)108.51, 159.96106.53105.85, 158.18104.49131.36
<N1—H1c···O2ii>(134.23)(132.02)
Symmetry transformations used to generate equivalent atoms: (') x+1, y, z; ('') -x+1, -y+1, -z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds