Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617001243/fn3229sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229617001243/fn3229Isup2.hkl |
CCDC reference: 1529484
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).
Ce6Cd23Te | Mo Kα radiation, λ = 0.71073 Å |
Mr = 3553.52 | Cell parameters from 787 reflections |
Cubic, Fm3m | θ = 6.4–33.2° |
a = 14.1632 (4) Å | µ = 27.16 mm−1 |
V = 2841.09 (14) Å3 | T = 200 K |
Z = 4 | Irregular, silver |
F(000) = 6016 | 0.06 × 0.06 × 0.04 mm |
Dx = 8.308 Mg m−3 |
Bruker APEXII CCD area detector diffractometer | 322 independent reflections |
Radiation source: fine-focus sealed tube | 304 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 33.2°, θmin = 6.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −19→15 |
Tmin = 0.297, Tmax = 0.450 | k = −21→21 |
2478 measured reflections | l = −12→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0185P)2 + 11.5663P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.042 | (Δ/σ)max = 0.001 |
S = 1.16 | Δρmax = 1.02 e Å−3 |
322 reflections | Δρmin = −1.19 e Å−3 |
16 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.000095 (7) |
Experimental. Crystals selected from a fresh reaction batch were put in a Paratone N oil and cut with a scalpel to the desired dimensions (under an optical microscope). The X-ray absorption coefficient is high, therefore we tried to minimize these effects by working with crystals in the range of 0.06–0.07 mm or smaller. The selected specimens were scooped with micro-loops (obtained from MiTeGen) and transferred immediately to the single-crystal X-ray diffractometer. A stream of cold nitrogen was used to freeze the oil and protect the crystals from the ambient air. Data collection is performed with two batch runs. Frame width was 0.50 ° in ω. Data were merged and treated with multi-scan absorption corrections. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The structure was solved in a straightforward manner using direct methods, which provided all six positions. Subsequent full-matrix least squares/difference Fourier cycles confirmed the model. The isotropic refinement converged smoothly to satisfactory residuals. The temperature factors for all atoms were comparable. In the final least-squares cycles, all atoms were refined anisotropically. Final difference Fourier map is flat and featureless. A small residual peak of slightly over 1 e- Å-3 was located at 0, 0.3384, y, which is ca 1.8 Å away from the Cd3 atom; the deepest hole is -1.2 e- Å-3 (coordinates 0.3946, x, x, which is ca 1.5 Å away from the Cd1 atom). Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ce1 | 0.28073 (4) | 0.0000 | 0.0000 | 0.00895 (13) | |
Cd1 | 0.33294 (2) | 0.33294 (2) | 0.33294 (2) | 0.01114 (15) | |
Cd2 | 0.12339 (3) | 0.12339 (3) | 0.12339 (3) | 0.01144 (14) | |
Cd3 | 0.0000 | 0.2500 | 0.2500 | 0.01013 (15) | |
Cd4 | 0.0000 | 0.0000 | 0.0000 | 0.0167 (4) | |
Te1 | 0.5000 | 0.5000 | 0.5000 | 0.0094 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ce1 | 0.0102 (2) | 0.00832 (16) | 0.00832 (16) | 0.000 | 0.000 | 0.000 |
Cd1 | 0.01114 (15) | 0.01114 (15) | 0.01114 (15) | 0.00183 (13) | 0.00183 (13) | 0.00183 (13) |
Cd2 | 0.01144 (14) | 0.01144 (14) | 0.01144 (14) | 0.00104 (12) | 0.00104 (12) | 0.00104 (12) |
Cd3 | 0.0082 (3) | 0.01110 (19) | 0.01110 (19) | 0.000 | 0.000 | 0.0006 (2) |
Cd4 | 0.0167 (4) | 0.0167 (4) | 0.0167 (4) | 0.000 | 0.000 | 0.000 |
Te1 | 0.0094 (3) | 0.0094 (3) | 0.0094 (3) | 0.000 | 0.000 | 0.000 |
Ce1—Te1i | 3.1056 (6) | Cd2—Cd1xiv | 3.0941 (5) |
Ce1—Cd2ii | 3.3278 (4) | Cd2—Cd1xiii | 3.0941 (5) |
Ce1—Cd2iii | 3.3278 (4) | Cd2—Ce1xviii | 3.3278 (4) |
Ce1—Cd2iv | 3.3278 (4) | Cd2—Ce1x | 3.3278 (4) |
Ce1—Cd2 | 3.3278 (4) | Cd3—Cd1xix | 2.8911 (3) |
Ce1—Cd1v | 3.4269 (4) | Cd3—Cd1xiv | 2.8911 (3) |
Ce1—Cd1i | 3.4269 (4) | Cd3—Cd1xx | 2.8911 (3) |
Ce1—Cd1vi | 3.4269 (4) | Cd3—Cd1xiii | 2.8911 (3) |
Ce1—Cd1vii | 3.4269 (4) | Cd3—Cd2xxi | 3.0798 (2) |
Ce1—Cd3viii | 3.5675 (1) | Cd3—Cd2v | 3.0798 (2) |
Ce1—Cd3ix | 3.5675 (1) | Cd3—Cd2xxii | 3.0798 (2) |
Ce1—Cd3x | 3.5675 (1) | Cd3—Ce1xxiii | 3.5675 (1) |
Cd1—Cd3xi | 2.8911 (3) | Cd3—Ce1x | 3.5675 (1) |
Cd1—Cd3xii | 2.8911 (3) | Cd3—Ce1xxiv | 3.5675 (1) |
Cd1—Cd3xiii | 2.8911 (3) | Cd3—Ce1xviii | 3.5675 (1) |
Cd1—Cd2v | 3.0941 (5) | Cd4—Cd2xxv | 3.0269 (6) |
Cd1—Cd2xiv | 3.0941 (5) | Cd4—Cd2xxi | 3.0269 (6) |
Cd1—Cd2xiii | 3.0941 (5) | Cd4—Cd2xxvi | 3.0269 (6) |
Cd1—Cd1xiii | 3.3225 (10) | Cd4—Cd2iv | 3.0269 (6) |
Cd1—Cd1v | 3.3225 (10) | Cd4—Cd2xxvii | 3.0269 (6) |
Cd1—Cd1xiv | 3.3225 (10) | Cd4—Cd2iii | 3.0269 (6) |
Cd1—Ce1xv | 3.4269 (4) | Cd4—Cd2ii | 3.0269 (6) |
Cd1—Ce1xvi | 3.4269 (4) | Te1—Ce1xxviii | 3.1056 (5) |
Cd1—Ce1xvii | 3.4269 (4) | Te1—Ce1xv | 3.1056 (6) |
Cd2—Cd4 | 3.0269 (6) | Te1—Ce1xxix | 3.1056 (6) |
Cd2—Cd3xviii | 3.0798 (2) | Te1—Ce1xvii | 3.1056 (6) |
Cd2—Cd3 | 3.0798 (2) | Te1—Ce1xxx | 3.1056 (6) |
Cd2—Cd3x | 3.0798 (2) | Te1—Ce1xvi | 3.1056 (6) |
Cd2—Cd1v | 3.0941 (5) | ||
Te1i—Ce1—Cd2ii | 132.040 (13) | Cd3xviii—Cd2—Cd1xiv | 55.844 (7) |
Te1i—Ce1—Cd2iii | 132.040 (13) | Cd3—Cd2—Cd1xiv | 55.844 (7) |
Cd2ii—Ce1—Cd2iii | 63.357 (14) | Cd3x—Cd2—Cd1xiv | 108.15 (2) |
Te1i—Ce1—Cd2iv | 132.040 (13) | Cd1v—Cd2—Cd1xiv | 64.95 (2) |
Cd2ii—Ce1—Cd2iv | 63.357 (14) | Cd4—Cd2—Cd1xiii | 141.686 (13) |
Cd2iii—Ce1—Cd2iv | 95.92 (3) | Cd3xviii—Cd2—Cd1xiii | 108.15 (2) |
Te1i—Ce1—Cd2 | 132.040 (13) | Cd3—Cd2—Cd1xiii | 55.844 (7) |
Cd2ii—Ce1—Cd2 | 95.92 (3) | Cd3x—Cd2—Cd1xiii | 55.844 (7) |
Cd2iii—Ce1—Cd2 | 63.357 (14) | Cd1v—Cd2—Cd1xiii | 64.95 (2) |
Cd2iv—Ce1—Cd2 | 63.357 (14) | Cd1xiv—Cd2—Cd1xiii | 64.95 (2) |
Te1i—Ce1—Cd1v | 77.539 (11) | Cd4—Cd2—Ce1 | 77.304 (13) |
Cd2ii—Ce1—Cd1v | 150.42 (2) | Cd3xviii—Cd2—Ce1 | 67.535 (3) |
Cd2iii—Ce1—Cd1v | 98.308 (7) | Cd3—Cd2—Ce1 | 172.53 (2) |
Cd2iv—Ce1—Cd1v | 98.308 (7) | Cd3x—Cd2—Ce1 | 67.535 (3) |
Cd2—Ce1—Cd1v | 54.501 (13) | Cd1v—Cd2—Ce1 | 64.382 (13) |
Te1i—Ce1—Cd1i | 77.539 (11) | Cd1xiv—Cd2—Ce1 | 118.349 (12) |
Cd2ii—Ce1—Cd1i | 54.501 (13) | Cd1xiii—Cd2—Ce1 | 118.349 (12) |
Cd2iii—Ce1—Cd1i | 98.308 (7) | Cd4—Cd2—Ce1xviii | 77.304 (13) |
Cd2iv—Ce1—Cd1i | 98.308 (7) | Cd3xviii—Cd2—Ce1xviii | 172.53 (2) |
Cd2—Ce1—Cd1i | 150.42 (2) | Cd3—Cd2—Ce1xviii | 67.535 (3) |
Cd1v—Ce1—Cd1i | 155.08 (2) | Cd3x—Cd2—Ce1xviii | 67.535 (3) |
Te1i—Ce1—Cd1vi | 77.539 (11) | Cd1v—Cd2—Ce1xviii | 118.349 (12) |
Cd2ii—Ce1—Cd1vi | 98.308 (7) | Cd1xiv—Cd2—Ce1xviii | 118.349 (12) |
Cd2iii—Ce1—Cd1vi | 150.42 (2) | Cd1xiii—Cd2—Ce1xviii | 64.382 (13) |
Cd2iv—Ce1—Cd1vi | 54.501 (13) | Ce1—Cd2—Ce1xviii | 115.312 (9) |
Cd2—Ce1—Cd1vi | 98.308 (7) | Cd4—Cd2—Ce1x | 77.304 (13) |
Cd1v—Ce1—Cd1vi | 87.331 (5) | Cd3xviii—Cd2—Ce1x | 67.535 (3) |
Cd1i—Ce1—Cd1vi | 87.331 (5) | Cd3—Cd2—Ce1x | 67.535 (3) |
Te1i—Ce1—Cd1vii | 77.539 (11) | Cd3x—Cd2—Ce1x | 172.53 (2) |
Cd2ii—Ce1—Cd1vii | 98.308 (7) | Cd1v—Cd2—Ce1x | 118.349 (12) |
Cd2iii—Ce1—Cd1vii | 54.501 (13) | Cd1xiv—Cd2—Ce1x | 64.382 (13) |
Cd2iv—Ce1—Cd1vii | 150.42 (2) | Cd1xiii—Cd2—Ce1x | 118.349 (12) |
Cd2—Ce1—Cd1vii | 98.308 (7) | Ce1—Cd2—Ce1x | 115.312 (9) |
Cd1v—Ce1—Cd1vii | 87.331 (5) | Ce1xviii—Cd2—Ce1x | 115.312 (9) |
Cd1i—Ce1—Cd1vii | 87.331 (5) | Cd1xix—Cd3—Cd1xiv | 180.0 |
Cd1vi—Ce1—Cd1vii | 155.08 (2) | Cd1xix—Cd3—Cd1xx | 70.15 (2) |
Te1i—Ce1—Cd3viii | 97.008 (9) | Cd1xiv—Cd3—Cd1xx | 109.85 (2) |
Cd2ii—Ce1—Cd3viii | 52.920 (6) | Cd1xix—Cd3—Cd1xiii | 109.85 (2) |
Cd2iii—Ce1—Cd3viii | 52.920 (6) | Cd1xiv—Cd3—Cd1xiii | 70.15 (2) |
Cd2iv—Ce1—Cd3viii | 116.074 (13) | Cd1xx—Cd3—Cd1xiii | 180.000 (13) |
Cd2—Ce1—Cd3viii | 116.074 (13) | Cd1xix—Cd3—Cd2xxi | 62.328 (10) |
Cd1v—Ce1—Cd3viii | 135.367 (2) | Cd1xiv—Cd3—Cd2xxi | 117.672 (10) |
Cd1i—Ce1—Cd3viii | 48.779 (3) | Cd1xx—Cd3—Cd2xxi | 62.328 (10) |
Cd1vi—Ce1—Cd3viii | 135.367 (2) | Cd1xiii—Cd3—Cd2xxi | 117.672 (10) |
Cd1vii—Ce1—Cd3viii | 48.779 (3) | Cd1xix—Cd3—Cd2v | 117.672 (10) |
Te1i—Ce1—Cd3ix | 97.008 (9) | Cd1xiv—Cd3—Cd2v | 62.328 (10) |
Cd2ii—Ce1—Cd3ix | 52.920 (6) | Cd1xx—Cd3—Cd2v | 117.672 (10) |
Cd2iii—Ce1—Cd3ix | 116.074 (13) | Cd1xiii—Cd3—Cd2v | 62.328 (10) |
Cd2iv—Ce1—Cd3ix | 52.920 (6) | Cd2xxi—Cd3—Cd2v | 180.00 (2) |
Cd2—Ce1—Cd3ix | 116.074 (13) | Cd1xix—Cd3—Cd2xxii | 62.328 (10) |
Cd1v—Ce1—Cd3ix | 135.367 (2) | Cd1xiv—Cd3—Cd2xxii | 117.672 (10) |
Cd1i—Ce1—Cd3ix | 48.779 (3) | Cd1xx—Cd3—Cd2xxii | 62.328 (10) |
Cd1vi—Ce1—Cd3ix | 48.779 (3) | Cd1xiii—Cd3—Cd2xxii | 117.672 (10) |
Cd1vii—Ce1—Cd3ix | 135.367 (2) | Cd2xxi—Cd3—Cd2xxii | 110.86 (2) |
Cd3viii—Ce1—Cd3ix | 89.147 (2) | Cd2v—Cd3—Cd2xxii | 69.14 (2) |
Te1i—Ce1—Cd3x | 97.008 (9) | Cd1xix—Cd3—Cd2 | 117.672 (10) |
Cd2ii—Ce1—Cd3x | 116.074 (13) | Cd1xiv—Cd3—Cd2 | 62.328 (10) |
Cd2iii—Ce1—Cd3x | 52.920 (6) | Cd1xx—Cd3—Cd2 | 117.672 (10) |
Cd2iv—Ce1—Cd3x | 116.074 (13) | Cd1xiii—Cd3—Cd2 | 62.328 (10) |
Cd2—Ce1—Cd3x | 52.920 (6) | Cd2xxi—Cd3—Cd2 | 69.14 (2) |
Cd1v—Ce1—Cd3x | 48.779 (3) | Cd2v—Cd3—Cd2 | 110.86 (2) |
Cd1i—Ce1—Cd3x | 135.367 (2) | Cd2xxii—Cd3—Cd2 | 180.0 |
Cd1vi—Ce1—Cd3x | 135.367 (2) | Cd1xix—Cd3—Ce1xxiii | 116.927 (9) |
Cd1vii—Ce1—Cd3x | 48.779 (3) | Cd1xiv—Cd3—Ce1xxiii | 63.073 (9) |
Cd3viii—Ce1—Cd3x | 89.147 (2) | Cd1xx—Cd3—Ce1xxiii | 63.073 (9) |
Cd3ix—Ce1—Cd3x | 165.984 (17) | Cd1xiii—Cd3—Ce1xxiii | 116.927 (9) |
Cd3xi—Cd1—Cd3xii | 120.0 | Cd2xxi—Cd3—Ce1xxiii | 120.455 (8) |
Cd3xi—Cd1—Cd3xiii | 120.0 | Cd2v—Cd3—Ce1xxiii | 59.545 (8) |
Cd3xii—Cd1—Cd3xiii | 120.0 | Cd2xxii—Cd3—Ce1xxiii | 59.545 (8) |
Cd3xi—Cd1—Cd2v | 61.828 (3) | Cd2—Cd3—Ce1xxiii | 120.455 (8) |
Cd3xii—Cd1—Cd2v | 61.828 (3) | Cd1xix—Cd3—Ce1x | 116.927 (9) |
Cd3xiii—Cd1—Cd2v | 161.35 (2) | Cd1xiv—Cd3—Ce1x | 63.073 (9) |
Cd3xi—Cd1—Cd2xiv | 61.828 (3) | Cd1xx—Cd3—Ce1x | 63.073 (9) |
Cd3xii—Cd1—Cd2xiv | 161.35 (2) | Cd1xiii—Cd3—Ce1x | 116.927 (9) |
Cd3xiii—Cd1—Cd2xiv | 61.828 (3) | Cd2xxi—Cd3—Ce1x | 59.545 (8) |
Cd2v—Cd1—Cd2xiv | 110.092 (12) | Cd2v—Cd3—Ce1x | 120.455 (8) |
Cd3xi—Cd1—Cd2xiii | 161.35 (2) | Cd2xxii—Cd3—Ce1x | 120.455 (8) |
Cd3xii—Cd1—Cd2xiii | 61.828 (3) | Cd2—Cd3—Ce1x | 59.545 (8) |
Cd3xiii—Cd1—Cd2xiii | 61.828 (3) | Ce1xxiii—Cd3—Ce1x | 75.984 (17) |
Cd2v—Cd1—Cd2xiii | 110.092 (12) | Cd1xix—Cd3—Ce1xxiv | 63.073 (9) |
Cd2xiv—Cd1—Cd2xiii | 110.092 (12) | Cd1xiv—Cd3—Ce1xxiv | 116.927 (9) |
Cd3xi—Cd1—Cd1xiii | 54.927 (12) | Cd1xx—Cd3—Ce1xxiv | 116.927 (9) |
Cd3xii—Cd1—Cd1xiii | 106.942 (10) | Cd1xiii—Cd3—Ce1xxiv | 63.073 (9) |
Cd3xiii—Cd1—Cd1xiii | 106.942 (10) | Cd2xxi—Cd3—Ce1xxiv | 120.455 (8) |
Cd2v—Cd1—Cd1xiii | 57.526 (10) | Cd2v—Cd3—Ce1xxiv | 59.545 (8) |
Cd2xiv—Cd1—Cd1xiii | 57.526 (10) | Cd2xxii—Cd3—Ce1xxiv | 59.545 (8) |
Cd2xiii—Cd1—Cd1xiii | 106.422 (13) | Cd2—Cd3—Ce1xxiv | 120.455 (8) |
Cd3xi—Cd1—Cd1v | 106.942 (10) | Ce1xxiii—Cd3—Ce1xxiv | 104.016 (17) |
Cd3xii—Cd1—Cd1v | 106.942 (10) | Ce1x—Cd3—Ce1xxiv | 180.0 |
Cd3xiii—Cd1—Cd1v | 54.927 (12) | Cd1xix—Cd3—Ce1xviii | 63.073 (9) |
Cd2v—Cd1—Cd1v | 106.422 (13) | Cd1xiv—Cd3—Ce1xviii | 116.927 (9) |
Cd2xiv—Cd1—Cd1v | 57.526 (10) | Cd1xx—Cd3—Ce1xviii | 116.927 (9) |
Cd2xiii—Cd1—Cd1v | 57.526 (10) | Cd1xiii—Cd3—Ce1xviii | 63.073 (9) |
Cd1xiii—Cd1—Cd1v | 60.0 | Cd2xxi—Cd3—Ce1xviii | 59.545 (8) |
Cd3xi—Cd1—Cd1xiv | 106.942 (10) | Cd2v—Cd3—Ce1xviii | 120.455 (8) |
Cd3xii—Cd1—Cd1xiv | 54.927 (12) | Cd2xxii—Cd3—Ce1xviii | 120.455 (8) |
Cd3xiii—Cd1—Cd1xiv | 106.942 (10) | Cd2—Cd3—Ce1xviii | 59.545 (8) |
Cd2v—Cd1—Cd1xiv | 57.526 (10) | Ce1xxiii—Cd3—Ce1xviii | 180.0 |
Cd2xiv—Cd1—Cd1xiv | 106.422 (13) | Ce1x—Cd3—Ce1xviii | 104.016 (17) |
Cd2xiii—Cd1—Cd1xiv | 57.526 (10) | Ce1xxiv—Cd3—Ce1xviii | 75.984 (17) |
Cd1xiii—Cd1—Cd1xiv | 60.0 | Cd2xxv—Cd4—Cd2 | 180.00 (3) |
Cd1v—Cd1—Cd1xiv | 60.0 | Cd2xxv—Cd4—Cd2xxi | 109.5 |
Cd3xi—Cd1—Ce1xv | 68.148 (7) | Cd2—Cd4—Cd2xxi | 70.5 |
Cd3xii—Cd1—Ce1xv | 68.148 (7) | Cd2xxv—Cd4—Cd2xxvi | 70.5 |
Cd3xiii—Cd1—Ce1xv | 137.53 (2) | Cd2—Cd4—Cd2xxvi | 109.5 |
Cd2v—Cd1—Ce1xv | 61.117 (12) | Cd2xxi—Cd4—Cd2xxvi | 70.5 |
Cd2xiv—Cd1—Ce1xv | 124.569 (8) | Cd2xxv—Cd4—Cd2iv | 109.5 |
Cd2xiii—Cd1—Ce1xv | 124.569 (8) | Cd2—Cd4—Cd2iv | 70.5 |
Cd1xiii—Cd1—Ce1xv | 109.612 (10) | Cd2xxi—Cd4—Cd2iv | 109.5 |
Cd1v—Cd1—Ce1xv | 167.539 (11) | Cd2xxvi—Cd4—Cd2iv | 180.00 (3) |
Cd1xiv—Cd1—Ce1xv | 109.612 (10) | Cd2xxv—Cd4—Cd2xxvii | 70.5 |
Cd3xi—Cd1—Ce1xvi | 137.53 (2) | Cd2—Cd4—Cd2xxvii | 109.5 |
Cd3xii—Cd1—Ce1xvi | 68.148 (7) | Cd2xxi—Cd4—Cd2xxvii | 70.5 |
Cd3xiii—Cd1—Ce1xvi | 68.148 (7) | Cd2xxvi—Cd4—Cd2xxvii | 109.5 |
Cd2v—Cd1—Ce1xvi | 124.569 (8) | Cd2iv—Cd4—Cd2xxvii | 70.5 |
Cd2xiv—Cd1—Ce1xvi | 124.569 (8) | Cd2xxv—Cd4—Cd2iii | 109.5 |
Cd2xiii—Cd1—Ce1xvi | 61.117 (12) | Cd2—Cd4—Cd2iii | 70.5 |
Cd1xiii—Cd1—Ce1xvi | 167.539 (11) | Cd2xxi—Cd4—Cd2iii | 109.5 |
Cd1v—Cd1—Ce1xvi | 109.612 (10) | Cd2xxvi—Cd4—Cd2iii | 70.5 |
Cd1xiv—Cd1—Ce1xvi | 109.612 (10) | Cd2iv—Cd4—Cd2iii | 109.5 |
Ce1xv—Cd1—Ce1xvi | 79.703 (17) | Cd2xxvii—Cd4—Cd2iii | 180.00 (3) |
Cd3xi—Cd1—Ce1xvii | 68.148 (7) | Cd2xxv—Cd4—Cd2ii | 70.5 |
Cd3xii—Cd1—Ce1xvii | 137.53 (2) | Cd2—Cd4—Cd2ii | 109.5 |
Cd3xiii—Cd1—Ce1xvii | 68.148 (7) | Cd2xxi—Cd4—Cd2ii | 180.00 (2) |
Cd2v—Cd1—Ce1xvii | 124.569 (8) | Cd2xxvi—Cd4—Cd2ii | 109.5 |
Cd2xiv—Cd1—Ce1xvii | 61.117 (12) | Cd2iv—Cd4—Cd2ii | 70.5 |
Cd2xiii—Cd1—Ce1xvii | 124.569 (8) | Cd2xxvii—Cd4—Cd2ii | 109.5 |
Cd1xiii—Cd1—Ce1xvii | 109.612 (10) | Cd2iii—Cd4—Cd2ii | 70.5 |
Cd1v—Cd1—Ce1xvii | 109.612 (10) | Ce1xxviii—Te1—Ce1xv | 90.0 |
Cd1xiv—Cd1—Ce1xvii | 167.539 (11) | Ce1xxviii—Te1—Ce1xxix | 90.0 |
Ce1xv—Cd1—Ce1xvii | 79.703 (17) | Ce1xv—Te1—Ce1xxix | 180.0 |
Ce1xvi—Cd1—Ce1xvii | 79.703 (17) | Ce1xxviii—Te1—Ce1xvii | 90.0 |
Cd4—Cd2—Cd3xviii | 110.164 (11) | Ce1xv—Te1—Ce1xvii | 90.0 |
Cd4—Cd2—Cd3 | 110.164 (11) | Ce1xxix—Te1—Ce1xvii | 90.0 |
Cd3xviii—Cd2—Cd3 | 108.770 (11) | Ce1xxviii—Te1—Ce1xxx | 90.0 |
Cd4—Cd2—Cd3x | 110.164 (11) | Ce1xv—Te1—Ce1xxx | 90.0 |
Cd3xviii—Cd2—Cd3x | 108.770 (11) | Ce1xxix—Te1—Ce1xxx | 90.0 |
Cd3—Cd2—Cd3x | 108.770 (11) | Ce1xvii—Te1—Ce1xxx | 180.0 |
Cd4—Cd2—Cd1v | 141.686 (13) | Ce1xxviii—Te1—Ce1xvi | 180.0 |
Cd3xviii—Cd2—Cd1v | 55.844 (7) | Ce1xv—Te1—Ce1xvi | 90.0 |
Cd3—Cd2—Cd1v | 108.15 (2) | Ce1xxix—Te1—Ce1xvi | 90.0 |
Cd3x—Cd2—Cd1v | 55.844 (7) | Ce1xvii—Te1—Ce1xvi | 90.0 |
Cd4—Cd2—Cd1xiv | 141.686 (13) | Ce1xxx—Te1—Ce1xvi | 90.0 |
Symmetry codes: (i) x, y−1/2, z−1/2; (ii) x, −y, −z; (iii) x, −y, z; (iv) x, y, −z; (v) x, −y+1/2, −z+1/2; (vi) x, −y+1/2, z−1/2; (vii) x, y−1/2, −z+1/2; (viii) −y+1/2, z−1/2, −x; (ix) z, −x, −y; (x) z, x, y; (xi) −y+1/2, z, −x+1/2; (xii) z, −x+1/2, −y+1/2; (xiii) −x+1/2, −y+1/2, z; (xiv) −x+1/2, y, −z+1/2; (xv) x, y+1/2, z+1/2; (xvi) y+1/2, z+1/2, x; (xvii) z+1/2, x, y+1/2; (xviii) y, z, x; (xix) x−1/2, −y+1/2, z; (xx) x−1/2, y, −z+1/2; (xxi) −x, y, z; (xxii) −x, −y+1/2, −z+1/2; (xxiii) −y, −z+1/2, −x+1/2; (xxiv) −z, −x+1/2, −y+1/2; (xxv) −x, −y, −z; (xxvi) −x, −y, z; (xxvii) −x, y, −z; (xxviii) −y+1/2, −z+1/2, −x+1; (xxix) −x+1, −y+1/2, −z+1/2; (xxx) −z+1/2, −x+1, −y+1/2. |