The MxHy(AO4)z acid salts (M = Cs, Rb, K, Na, Li, NH4; A = S, Se, As, P) exhibit ferroelectric properties. The solid acids have low conductivity values and are of interest with regard to their thermal properties and proton conductivity. The crystal structure of caesium dihydrogen orthophosphate monohydrogen orthophosphate dihydrate, Cs3(H1.5PO4)2·2H2O, has been solved. The compound crystallizes in the space group Pbca and forms a structure with strong hydrogen bonds connecting phosphate tetrahedra that agrees well with the IR spectra. The dehydration of Cs3(H1.5PO4)2·2H2O with the loss of two water molecules occurs at 348–433 K. Anhydrous Cs3(H1.5PO4)2 is stable up to 548 K and is then converted completely into caesium pyrophosphate (Cs4P2O7) and CsPO3. Anhydrous Cs3(H1.5PO4)2 crystallizes in the monoclinic C2 space group, with the unit-cell parameters a = 11.1693 (4), b = 6.4682 (2), c = 7.7442 (3) Å and β = 71.822 (2)°. The conductivities of both compounds have been measured. In contrast to crystal hydrate Cs3(H1.5PO4)2·2H2O, the dehydrated form has rather low conductivity values of ∼6 × 10−6–10−8 S cm−1 at 373–493 K, with an activation energy of 0.91 eV.
Supporting information
CCDC reference: 1555937
Data collection: CrysAlis PRO (Rigaku OD, 2016); cell refinement: CrysAlis PRO (Rigaku OD, 2016); data reduction: CrysAlis PRO (Rigaku OD, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015) and
ShelXle (Hübschle et al., 2011); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).
Crystal data top
Cs3(H2PO4)(HPO4)·2H2O | Dx = 3.285 Mg m−3 |
Mr = 627.73 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9404 reflections |
a = 7.4721 (5) Å | θ = 2.7–29.2° |
b = 11.4369 (8) Å | µ = 8.85 mm−1 |
c = 14.8509 (11) Å | T = 296 K |
V = 1269.12 (15) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.05 × 0.02 mm |
F(000) = 1128 | |
Data collection top
Agilent Xcalibur Ruby Gemini ultra diffractometer | 1298 independent reflections |
Radiation source: sealed X-ray tube | 1176 reflections with I > 2σ(I) |
Detector resolution: 10.3457 pixels mm-1 | Rint = 0.086 |
ω scan | θmax = 26.4°, θmin = 3.5° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2016) | h = −9→9 |
Tmin = 0.453, Tmax = 1.000 | k = −14→14 |
17880 measured reflections | l = −18→18 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.074 | Only H-atom coordinates refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0383P)2 + 3.3232P] where P = (Fo2 + 2Fc2)/3 |
1298 reflections | (Δ/σ)max = 0.001 |
79 parameters | Δρmax = 0.85 e Å−3 |
1 restraint | Δρmin = −1.14 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cs1 | 0.07728 (4) | 0.82817 (3) | 0.17311 (2) | 0.02937 (14) | |
Cs2 | 0.000000 | 0.500000 | 0.000000 | 0.03806 (17) | |
P1 | 0.99034 (15) | 0.17285 (10) | 0.09057 (8) | 0.0220 (3) | |
O1 | 1.0725 (5) | 0.1525 (4) | 0.1823 (3) | 0.0364 (10) | |
O2 | 0.9101 (5) | 0.0612 (3) | 0.0501 (3) | 0.0389 (9) | |
H2 | 1.000000 | 0.000000 | 0.000000 | 0.047* | |
O3 | 0.8240 (5) | 0.2562 (3) | 0.1086 (2) | 0.0337 (8) | |
H3 | 0.759 (7) | 0.262 (5) | 0.066 (3) | 0.040* | |
O4 | 1.1154 (5) | 0.2333 (4) | 0.0270 (3) | 0.0426 (9) | |
O5 | 0.3745 (7) | 0.0228 (4) | 0.2003 (3) | 0.0423 (10) | |
H5A | 0.282 (10) | 0.061 (6) | 0.198 (5) | 0.051* | |
H5B | 0.445 (9) | 0.066 (6) | 0.237 (5) | 0.051* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cs1 | 0.0299 (2) | 0.0290 (2) | 0.0292 (2) | −0.00062 (11) | 0.00038 (12) | 0.00102 (11) |
Cs2 | 0.0458 (3) | 0.0320 (3) | 0.0363 (3) | 0.00700 (19) | −0.0036 (2) | 0.00316 (18) |
P1 | 0.0209 (6) | 0.0258 (6) | 0.0194 (6) | −0.0006 (4) | 0.0015 (4) | −0.0018 (5) |
O1 | 0.028 (2) | 0.051 (2) | 0.030 (2) | 0.0072 (16) | −0.0026 (14) | 0.0015 (17) |
O2 | 0.037 (2) | 0.0306 (19) | 0.049 (2) | −0.0061 (15) | 0.0049 (17) | −0.0183 (17) |
O3 | 0.0289 (19) | 0.042 (2) | 0.030 (2) | 0.0121 (15) | −0.0054 (15) | −0.0126 (16) |
O4 | 0.049 (2) | 0.046 (2) | 0.033 (2) | −0.0098 (19) | 0.0127 (18) | −0.0004 (18) |
O5 | 0.046 (2) | 0.032 (2) | 0.049 (3) | 0.0103 (19) | −0.017 (2) | −0.0093 (19) |
Geometric parameters (Å, º) top
Cs1—O1i | 3.146 (4) | Cs2—O5viii | 3.130 (5) |
Cs1—O5ii | 3.170 (5) | Cs2—O4vi | 3.194 (4) |
Cs1—O3iii | 3.253 (4) | Cs2—O4ix | 3.194 (4) |
Cs1—O5iv | 3.284 (4) | Cs2—O2iii | 3.230 (4) |
Cs1—O1v | 3.302 (4) | Cs2—O2viii | 3.230 (4) |
Cs1—O4v | 3.341 (4) | Cs2—O3vi | 3.479 (4) |
Cs1—O4vi | 3.376 (4) | Cs2—O3ix | 3.479 (4) |
Cs1—O3i | 3.424 (4) | Cs2—P1vi | 3.9767 (12) |
Cs1—O2vii | 3.465 (4) | Cs2—P1ix | 3.9767 (12) |
Cs1—O5iii | 3.534 (4) | P1—O4 | 1.498 (4) |
Cs1—O2vi | 3.549 (4) | P1—O1 | 1.513 (4) |
Cs1—O1vii | 3.712 (5) | P1—O2 | 1.533 (4) |
Cs2—O5iii | 3.130 (5) | P1—O3 | 1.590 (4) |
| | | |
O1i—Cs1—O5ii | 127.65 (11) | O2viii—Cs2—P1vi | 96.25 (7) |
O1i—Cs1—O3iii | 73.22 (10) | O3vi—Cs2—P1vi | 23.42 (6) |
O5ii—Cs1—O3iii | 149.39 (10) | O3ix—Cs2—P1vi | 156.58 (6) |
O1i—Cs1—O5iv | 83.00 (11) | O5iii—Cs2—P1ix | 76.26 (8) |
O5ii—Cs1—O5iv | 76.96 (9) | O5viii—Cs2—P1ix | 103.74 (8) |
O3iii—Cs1—O5iv | 85.11 (11) | O4vi—Cs2—P1ix | 159.35 (7) |
O1i—Cs1—O1v | 82.24 (11) | O4ix—Cs2—P1ix | 20.65 (7) |
O5ii—Cs1—O1v | 82.35 (10) | O2iii—Cs2—P1ix | 96.25 (7) |
O3iii—Cs1—O1v | 126.06 (10) | O2viii—Cs2—P1ix | 83.75 (7) |
O5iv—Cs1—O1v | 138.97 (11) | O3vi—Cs2—P1ix | 156.58 (6) |
O1i—Cs1—O4v | 118.72 (10) | O3ix—Cs2—P1ix | 23.42 (6) |
O5ii—Cs1—O4v | 80.16 (11) | P1vi—Cs2—P1ix | 180.00 (4) |
O3iii—Cs1—O4v | 111.11 (9) | O5iii—Cs2—Cs1x | 135.51 (9) |
O5iv—Cs1—O4v | 155.38 (11) | O5viii—Cs2—Cs1x | 44.49 (9) |
O1v—Cs1—O4v | 44.33 (9) | O4vi—Cs2—Cs1x | 47.57 (8) |
O1i—Cs1—O4vi | 108.40 (9) | O4ix—Cs2—Cs1x | 132.43 (8) |
O5ii—Cs1—O4vi | 123.86 (11) | O2iii—Cs2—Cs1x | 51.24 (8) |
O3iii—Cs1—O4vi | 45.19 (9) | O2viii—Cs2—Cs1x | 128.76 (8) |
O5iv—Cs1—O4vi | 116.64 (11) | O3vi—Cs2—Cs1x | 69.65 (6) |
O1v—Cs1—O4vi | 104.34 (10) | O3ix—Cs2—Cs1x | 110.35 (6) |
O4v—Cs1—O4vi | 69.74 (3) | P1vi—Cs2—Cs1x | 53.948 (17) |
O1i—Cs1—O3i | 43.73 (9) | P1ix—Cs2—Cs1x | 126.052 (18) |
O5ii—Cs1—O3i | 84.10 (10) | O5iii—Cs2—Cs1xi | 44.49 (9) |
O3iii—Cs1—O3i | 114.61 (10) | O5viii—Cs2—Cs1xi | 135.51 (9) |
O5iv—Cs1—O3i | 73.77 (11) | O4vi—Cs2—Cs1xi | 132.43 (8) |
O1v—Cs1—O3i | 69.13 (9) | O4ix—Cs2—Cs1xi | 47.57 (8) |
O4v—Cs1—O3i | 112.88 (9) | O2iii—Cs2—Cs1xi | 128.76 (8) |
O4vi—Cs1—O3i | 151.03 (9) | O2viii—Cs2—Cs1xi | 51.24 (8) |
O1i—Cs1—O2vii | 136.30 (9) | O3vi—Cs2—Cs1xi | 110.35 (6) |
O5ii—Cs1—O2vii | 77.26 (10) | O3ix—Cs2—Cs1xi | 69.65 (6) |
O3iii—Cs1—O2vii | 72.97 (9) | P1vi—Cs2—Cs1xi | 126.052 (17) |
O5iv—Cs1—O2vii | 67.31 (10) | P1ix—Cs2—Cs1xi | 53.948 (17) |
O1v—Cs1—O2vii | 140.87 (9) | Cs1x—Cs2—Cs1xi | 180.0 |
O4v—Cs1—O2vii | 98.91 (9) | O4—P1—O1 | 112.7 (2) |
O4vi—Cs1—O2vii | 62.76 (9) | O4—P1—O2 | 112.4 (2) |
O3i—Cs1—O2vii | 139.62 (9) | O1—P1—O2 | 112.6 (3) |
O1i—Cs1—O5iii | 47.72 (11) | O4—P1—O3 | 108.5 (2) |
O5ii—Cs1—O5iii | 127.44 (7) | O1—P1—O3 | 104.9 (2) |
O3iii—Cs1—O5iii | 82.97 (11) | O2—P1—O3 | 105.1 (2) |
O5iv—Cs1—O5iii | 130.65 (5) | O4—P1—Cs1xii | 57.93 (16) |
O1v—Cs1—O5iii | 46.61 (10) | O1—P1—Cs1xii | 56.54 (16) |
O4v—Cs1—O5iii | 71.53 (10) | O2—P1—Cs1xii | 146.05 (15) |
O4vi—Cs1—O5iii | 86.45 (11) | O3—P1—Cs1xii | 108.83 (14) |
O3i—Cs1—O5iii | 68.44 (10) | O4—P1—Cs1vi | 57.03 (16) |
O2vii—Cs1—O5iii | 149.01 (10) | O1—P1—Cs1vi | 160.89 (15) |
O1i—Cs1—O2vi | 150.96 (9) | O2—P1—Cs1vi | 63.79 (17) |
O5ii—Cs1—O2vi | 81.37 (10) | O3—P1—Cs1vi | 93.97 (14) |
O3iii—Cs1—O2vi | 80.78 (9) | Cs1xii—P1—Cs1vi | 114.88 (3) |
O5iv—Cs1—O2vi | 107.78 (10) | O4—P1—Cs1xiii | 115.50 (16) |
O1v—Cs1—O2vi | 103.57 (9) | O1—P1—Cs1xiii | 47.43 (16) |
O4v—Cs1—O2vi | 59.38 (9) | O2—P1—Cs1xiii | 132.10 (16) |
O4vi—Cs1—O2vi | 42.57 (9) | O3—P1—Cs1xiii | 58.82 (13) |
O3i—Cs1—O2vi | 164.55 (8) | Cs1xii—P1—Cs1xiii | 67.79 (2) |
O2vii—Cs1—O2vi | 40.78 (11) | Cs1vi—P1—Cs1xiii | 149.62 (3) |
O5iii—Cs1—O2vi | 117.14 (9) | O4—P1—Cs2xiv | 48.76 (16) |
O1i—Cs1—O1vii | 127.56 (6) | O1—P1—Cs2xiv | 116.25 (18) |
O5ii—Cs1—O1vii | 45.60 (9) | O2—P1—Cs2xiv | 131.13 (17) |
O3iii—Cs1—O1vii | 104.76 (9) | O3—P1—Cs2xiv | 60.45 (15) |
O5iv—Cs1—O1vii | 45.34 (10) | Cs1xii—P1—Cs2xiv | 70.21 (2) |
O1v—Cs1—O1vii | 127.89 (7) | Cs1vi—P1—Cs2xiv | 70.71 (2) |
O4v—Cs1—O1vii | 110.79 (9) | Cs1xiii—P1—Cs2xiv | 83.12 (2) |
O4vi—Cs1—O1vii | 103.69 (9) | O4—P1—Cs1xv | 121.58 (17) |
O3i—Cs1—O1vii | 101.96 (9) | O1—P1—Cs1xv | 61.79 (17) |
O2vii—Cs1—O1vii | 41.17 (8) | O2—P1—Cs1xv | 52.45 (16) |
O5iii—Cs1—O1vii | 169.82 (10) | O3—P1—Cs1xv | 129.64 (16) |
O2vi—Cs1—O1vii | 71.25 (8) | Cs1xii—P1—Cs1xv | 102.09 (3) |
O5iii—Cs2—O5viii | 180.00 (15) | Cs1vi—P1—Cs1xv | 107.94 (3) |
O5iii—Cs2—O4vi | 96.92 (11) | Cs1xiii—P1—Cs1xv | 100.53 (3) |
O5viii—Cs2—O4vi | 83.08 (11) | Cs2xiv—P1—Cs1xv | 169.71 (3) |
O5iii—Cs2—O4ix | 83.08 (11) | P1—O1—Cs1xiii | 111.82 (19) |
O5viii—Cs2—O4ix | 96.92 (11) | P1—O1—Cs1xii | 100.98 (19) |
O4vi—Cs2—O4ix | 180.00 (14) | Cs1xiii—O1—Cs1xii | 85.50 (11) |
O5iii—Cs2—O2iii | 92.72 (11) | P1—O1—Cs1xv | 97.16 (19) |
O5viii—Cs2—O2iii | 87.28 (11) | Cs1xiii—O1—Cs1xv | 131.82 (13) |
O4vi—Cs2—O2iii | 64.26 (10) | Cs1xii—O1—Cs1xv | 126.80 (10) |
O4ix—Cs2—O2iii | 115.74 (10) | P1—O2—Cs2xvi | 129.92 (19) |
O5iii—Cs2—O2viii | 87.28 (11) | P1—O2—Cs1xv | 107.01 (19) |
O5viii—Cs2—O2viii | 92.72 (11) | Cs2xvi—O2—Cs1xv | 107.25 (10) |
O4vi—Cs2—O2viii | 115.74 (10) | P1—O2—Cs1vi | 93.40 (18) |
O4ix—Cs2—O2viii | 64.26 (10) | Cs2xvi—O2—Cs1vi | 83.54 (9) |
O2iii—Cs2—O2viii | 180.0 | Cs1xv—O2—Cs1vi | 139.22 (11) |
O5iii—Cs2—O3vi | 105.11 (9) | P1—O3—Cs1xi | 157.2 (2) |
O5viii—Cs2—O3vi | 74.89 (9) | P1—O3—Cs1xiii | 97.79 (15) |
O4vi—Cs2—O3vi | 43.86 (9) | Cs1xi—O3—Cs1xiii | 81.91 (8) |
O4ix—Cs2—O3vi | 136.14 (9) | P1—O3—Cs2xiv | 96.13 (17) |
O2iii—Cs2—O3vi | 106.96 (9) | Cs1xi—O3—Cs2xiv | 106.39 (10) |
O2viii—Cs2—O3vi | 73.04 (9) | Cs1xiii—O3—Cs2xiv | 99.49 (9) |
O5iii—Cs2—O3ix | 74.89 (9) | P1—O4—Cs2xiv | 110.6 (2) |
O5viii—Cs2—O3ix | 105.11 (9) | P1—O4—Cs1xii | 99.74 (19) |
O4vi—Cs2—O3ix | 136.14 (9) | Cs2xiv—O4—Cs1xii | 87.54 (10) |
O4ix—Cs2—O3ix | 43.86 (9) | P1—O4—Cs1vi | 101.11 (19) |
O2iii—Cs2—O3ix | 73.04 (9) | Cs2xiv—O4—Cs1vi | 88.48 (10) |
O2viii—Cs2—O3ix | 106.96 (9) | Cs1xii—O4—Cs1vi | 158.85 (12) |
O3vi—Cs2—O3ix | 180.0 | Cs2xvi—O5—Cs1xvii | 91.74 (11) |
O5iii—Cs2—P1vi | 103.74 (8) | Cs2xvi—O5—Cs1xviii | 110.45 (13) |
O5viii—Cs2—P1vi | 76.26 (8) | Cs1xvii—O5—Cs1xviii | 85.42 (11) |
O4vi—Cs2—P1vi | 20.65 (7) | Cs2xvi—O5—Cs1xi | 86.75 (11) |
O4ix—Cs2—P1vi | 159.35 (7) | Cs1xvii—O5—Cs1xi | 138.66 (14) |
O2iii—Cs2—P1vi | 83.75 (7) | Cs1xviii—O5—Cs1xi | 133.48 (14) |
| | | |
O4—P1—O1—Cs1xiii | 104.4 (2) | O4—P1—O3—Cs1xi | 163.2 (5) |
O2—P1—O1—Cs1xiii | −127.1 (2) | O1—P1—O3—Cs1xi | −76.1 (5) |
O3—P1—O1—Cs1xiii | −13.4 (2) | O2—P1—O3—Cs1xi | 42.8 (5) |
Cs1xii—P1—O1—Cs1xiii | 89.52 (19) | Cs1xii—P1—O3—Cs1xi | −135.3 (4) |
Cs1vi—P1—O1—Cs1xiii | 158.0 (4) | Cs1vi—P1—O3—Cs1xi | 106.7 (5) |
Cs2xiv—P1—O1—Cs1xiii | 50.6 (2) | Cs1xiii—P1—O3—Cs1xi | −87.6 (5) |
Cs1xv—P1—O1—Cs1xiii | −140.7 (2) | Cs2xiv—P1—O3—Cs1xi | 171.9 (5) |
O4—P1—O1—Cs1xii | 14.9 (2) | Cs1xv—P1—O3—Cs1xi | −10.6 (6) |
O2—P1—O1—Cs1xii | 143.33 (17) | O4—P1—O3—Cs1xiii | −109.2 (2) |
O3—P1—O1—Cs1xii | −102.95 (18) | O1—P1—O3—Cs1xiii | 11.5 (2) |
Cs1vi—P1—O1—Cs1xii | 68.5 (6) | O2—P1—O3—Cs1xiii | 130.43 (19) |
Cs1xiii—P1—O1—Cs1xii | −89.52 (19) | Cs1xii—P1—O3—Cs1xiii | −47.68 (13) |
Cs2xiv—P1—O1—Cs1xii | −38.89 (16) | Cs1vi—P1—O3—Cs1xiii | −165.66 (8) |
Cs1xv—P1—O1—Cs1xii | 129.74 (15) | Cs2xiv—P1—O3—Cs1xiii | −100.49 (12) |
O4—P1—O1—Cs1xv | −114.8 (2) | Cs1xv—P1—O3—Cs1xiii | 77.06 (16) |
O2—P1—O1—Cs1xv | 13.6 (2) | O4—P1—O3—Cs2xiv | −8.7 (2) |
O3—P1—O1—Cs1xv | 127.31 (17) | O1—P1—O3—Cs2xiv | 112.02 (19) |
Cs1xii—P1—O1—Cs1xv | −129.74 (15) | O2—P1—O3—Cs2xiv | −129.08 (19) |
Cs1vi—P1—O1—Cs1xv | −61.3 (6) | Cs1xii—P1—O3—Cs2xiv | 52.81 (11) |
Cs1xiii—P1—O1—Cs1xv | 140.7 (2) | Cs1vi—P1—O3—Cs2xiv | −65.17 (8) |
Cs2xiv—P1—O1—Cs1xv | −168.64 (4) | Cs1xiii—P1—O3—Cs2xiv | 100.49 (12) |
O4—P1—O2—Cs2xvi | −115.2 (3) | Cs1xv—P1—O3—Cs2xiv | 177.55 (6) |
O1—P1—O2—Cs2xvi | 116.2 (3) | O1—P1—O4—Cs2xiv | −105.7 (2) |
O3—P1—O2—Cs2xvi | 2.6 (3) | O2—P1—O4—Cs2xiv | 125.8 (2) |
Cs1xii—P1—O2—Cs2xvi | 179.36 (6) | O3—P1—O4—Cs2xiv | 10.0 (2) |
Cs1vi—P1—O2—Cs2xvi | −84.4 (2) | Cs1xii—P1—O4—Cs2xiv | −91.03 (17) |
Cs1xiii—P1—O2—Cs2xvi | 63.9 (3) | Cs1vi—P1—O4—Cs2xiv | 92.57 (19) |
Cs2xiv—P1—O2—Cs2xvi | −61.2 (3) | Cs1xiii—P1—O4—Cs2xiv | −53.5 (2) |
Cs1xv—P1—O2—Cs2xvi | 131.3 (3) | Cs1xv—P1—O4—Cs2xiv | −175.58 (5) |
O4—P1—O2—Cs1xv | 113.4 (2) | O1—P1—O4—Cs1xii | −14.7 (2) |
O1—P1—O2—Cs1xv | −15.1 (2) | O2—P1—O4—Cs1xii | −143.19 (18) |
O3—P1—O2—Cs1xv | −128.78 (17) | O3—P1—O4—Cs1xii | 101.07 (18) |
Cs1xii—P1—O2—Cs1xv | 48.0 (3) | Cs1vi—P1—O4—Cs1xii | −176.4 (2) |
Cs1vi—P1—O2—Cs1xv | 144.24 (16) | Cs1xiii—P1—O4—Cs1xii | 37.52 (18) |
Cs1xiii—P1—O2—Cs1xv | −67.4 (2) | Cs2xiv—P1—O4—Cs1xii | 91.03 (17) |
Cs2xiv—P1—O2—Cs1xv | 167.51 (6) | Cs1xv—P1—O4—Cs1xii | −84.55 (15) |
O4—P1—O2—Cs1vi | −30.8 (2) | O1—P1—O4—Cs1vi | 161.71 (19) |
O1—P1—O2—Cs1vi | −159.38 (16) | O2—P1—O4—Cs1vi | 33.2 (2) |
O3—P1—O2—Cs1vi | 86.98 (17) | O3—P1—O4—Cs1vi | −82.53 (19) |
Cs1xii—P1—O2—Cs1vi | −96.2 (3) | Cs1xii—P1—O4—Cs1vi | 176.4 (2) |
Cs1xiii—P1—O2—Cs1vi | 148.33 (11) | Cs1xiii—P1—O4—Cs1vi | −146.08 (7) |
Cs2xiv—P1—O2—Cs1vi | 23.27 (19) | Cs2xiv—P1—O4—Cs1vi | −92.57 (19) |
Cs1xv—P1—O2—Cs1vi | −144.24 (16) | Cs1xv—P1—O4—Cs1vi | 91.85 (15) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+1/2, y+1/2, z; (iv) x−1/2, y+1, −z+1/2; (v) −x+3/2, y+1/2, z; (vi) −x+1, −y+1, −z; (vii) x−1, y+1, z; (viii) x−1/2, −y+1/2, −z; (ix) x−1, y, z; (x) x−1/2, −y+3/2, −z; (xi) −x+1/2, y−1/2, z; (xii) −x+3/2, y−1/2, z; (xiii) −x+1, y−1/2, −z+1/2; (xiv) x+1, y, z; (xv) x+1, y−1, z; (xvi) x+1/2, −y+1/2, −z; (xvii) x, y−1, z; (xviii) x+1/2, y−1, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O2xix | 1.22 (1) | 1.22 (1) | 2.445 (7) | 180 (1) |
O3—H3···O4viii | 0.80 (2) | 1.75 (2) | 2.549 (5) | 177 (6) |
O5—H5A···O1ix | 0.82 (8) | 1.90 (8) | 2.713 (6) | 175 (7) |
O5—H5B···O1xx | 0.90 (8) | 1.82 (8) | 2.725 (6) | 176 (7) |
Symmetry codes: (viii) x−1/2, −y+1/2, −z; (ix) x−1, y, z; (xix) −x+2, −y, −z; (xx) x−1/2, y, −z+1/2. |