Download citation
Download citation
link to html
A novel phosphate, sodium zinc aluminium bis­(phosphate), NaZnAl(PO4)2, was obtained under mild-temperature hydro­thermal conditions at 553 K. The crystal structure has been studied using single-crystal X-ray experimental data. The pseudo-hexa­gonal phase NaZnAl(PO4)2 crystallizes in the monoclinic space group P21/c. Its unique crystal structure is based on a three-dimensional (3D) framework built by Zn-, Al- and P-centred tetra­hedra sharing vertices. Channels parallel to the [101] and [\overline{1}01] directions are limited by six- and eight-membered windows, and incorporate Na atoms. The new compound is discussed as a member of the morphotropic series AMM′PO4, where A = Na, K, Rb or NH4, M = Cu, Ni, Co, Fe, Zn or Mg and M′ = Fe, Al or Ga. The title compound is the first Na representative within the series and is characterized by a 3D architecture of tetra­hedra populated in an ordered manner by Zn2+, Al3+ and P5+ ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619004327/fn3303sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619004327/fn3303Isup2.hkl
Contains datablock I

CCDC reference: 1906642

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a) and WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b) and WinGX (Farrugia, 2012); molecular graphics: DIMOND (Brandenburg, 2006).

Sodium zinc aluminium bis(phosphate) top
Crystal data top
NaZnAl(PO4)2F(000) = 592
Mr = 305.28Dx = 2.947 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5199 (3) ÅCell parameters from 4763 reflections
b = 8.6700 (2) Åθ = 3.4–32.0°
c = 9.5471 (3) ŵ = 4.24 mm1
β = 119.158 (5)°T = 293 K
V = 688.14 (5) Å3Plate, colorless
Z = 40.11 × 0.08 × 0.07 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
2010 independent reflections
Radiation source: Enhance (Mo) X-ray Source1805 reflections with I > 2σ(I)
Detector resolution: 16.0630 pixels mm-1Rint = 0.048
ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2012)
h = 1313
Tmin = 0.705, Tmax = 0.806k = 1212
12993 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.037Secondary atom site location: difference Fourier map
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.019P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
2010 reflectionsΔρmax = 0.53 e Å3
121 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.09651 (4)0.64275 (4)0.76296 (4)0.01057 (9)0.94
Al10.09651 (4)0.64275 (4)0.76296 (4)0.01057 (9)0.06
P10.21870 (9)0.32876 (8)0.91619 (8)0.00857 (14)
P20.28563 (9)0.66472 (8)0.56712 (8)0.00920 (15)
Al20.41408 (9)0.35512 (9)0.73167 (9)0.01034 (16)0.94
Zn20.41408 (9)0.35512 (9)0.73167 (9)0.01034 (16)0.06
Na10.1986 (2)0.51018 (17)0.19444 (19)0.0216 (3)0.92
Na20.274 (2)0.494 (2)0.259 (2)0.0216 (3)0.08
O10.1306 (2)0.1870 (2)0.8206 (3)0.0140 (4)
O20.1066 (2)0.4643 (2)0.8921 (2)0.0140 (4)
O30.3807 (2)0.8083 (2)0.6644 (2)0.0124 (4)
O40.4017 (3)0.5256 (2)0.6298 (2)0.0152 (4)
O50.3055 (3)0.2937 (2)1.0978 (2)0.0146 (4)
O60.2351 (3)0.6892 (2)0.3914 (2)0.0151 (4)
O70.3458 (3)0.3773 (3)0.8696 (3)0.0167 (4)
O80.1404 (3)0.6420 (3)0.5891 (3)0.0207 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01090 (17)0.01047 (17)0.01171 (17)0.00007 (13)0.00658 (14)0.00124 (13)
Al10.01090 (17)0.01047 (17)0.01171 (17)0.00007 (13)0.00658 (14)0.00124 (13)
P10.0089 (3)0.0085 (3)0.0087 (3)0.0001 (2)0.0045 (3)0.0001 (2)
P20.0103 (3)0.0091 (3)0.0089 (3)0.0008 (3)0.0052 (3)0.0004 (3)
Al20.0111 (4)0.0099 (4)0.0110 (4)0.0006 (3)0.0061 (3)0.0003 (3)
Zn20.0111 (4)0.0099 (4)0.0110 (4)0.0006 (3)0.0061 (3)0.0003 (3)
Na10.0326 (9)0.0162 (7)0.0244 (8)0.0059 (7)0.0204 (7)0.0046 (6)
Na20.0326 (9)0.0162 (7)0.0244 (8)0.0059 (7)0.0204 (7)0.0046 (6)
O10.0129 (10)0.0117 (10)0.0167 (10)0.0035 (8)0.0067 (9)0.0058 (8)
O20.0153 (10)0.0110 (10)0.0157 (10)0.0032 (8)0.0074 (9)0.0012 (8)
O30.0112 (10)0.0107 (9)0.0143 (10)0.0010 (7)0.0054 (8)0.0024 (8)
O40.0179 (11)0.0117 (10)0.0161 (10)0.0017 (8)0.0084 (9)0.0019 (8)
O50.0177 (11)0.0137 (10)0.0115 (10)0.0019 (8)0.0063 (9)0.0016 (8)
O60.0188 (11)0.0157 (10)0.0103 (10)0.0031 (8)0.0067 (9)0.0015 (8)
O70.0174 (11)0.0212 (11)0.0171 (10)0.0058 (9)0.0127 (9)0.0048 (9)
O80.0153 (11)0.0327 (13)0.0179 (11)0.0063 (10)0.0110 (10)0.0043 (10)
Geometric parameters (Å, º) top
Zn1—O81.899 (2)P2—Na1ii3.3303 (16)
Zn1—O1i1.943 (2)Al2—O71.740 (2)
Zn1—O6ii1.947 (2)Al2—O41.742 (2)
Zn1—O21.951 (2)Al2—O3vi1.754 (2)
Zn1—Na1iii3.3056 (15)Al2—O5vii1.754 (2)
Zn1—Na1ii3.3236 (15)Al2—Na2viii3.210 (19)
Zn1—Na2ii3.580 (19)Al2—Na2v3.372 (19)
Zn1—Na2iii3.625 (19)Al2—Na1viii3.5951 (17)
P1—O11.517 (2)Na1—Na20.69 (2)
P1—O21.528 (2)Na1—O62.330 (3)
P1—O71.537 (2)Na1—O1vii2.356 (2)
P1—O51.545 (2)Na1—O3ix2.459 (2)
P1—Na1iv3.1724 (16)Na1—O5x2.515 (3)
P1—Na2v3.334 (19)Na1—O2x2.606 (3)
P1—Na2iv3.374 (18)Na1—O2iii2.614 (3)
P2—O81.509 (2)Na2—O62.245 (18)
P2—O61.518 (2)Na2—O1vii2.332 (18)
P2—O41.546 (2)Na2—O3ix2.386 (18)
P2—O31.553 (2)Na2—O5x2.437 (18)
P2—Na23.243 (18)Na2—O4viii2.74 (2)
O8—Zn1—O1i108.46 (9)O2x—Na1—Zn1ix112.54 (7)
O8—Zn1—O6ii100.55 (9)O2iii—Na1—Zn1ix66.37 (6)
O1i—Zn1—O6ii112.79 (9)P1x—Na1—Zn1ix139.15 (5)
O8—Zn1—O2125.84 (10)Zn1iii—Na1—Zn1ix89.51 (4)
O1i—Zn1—O296.80 (9)Na2—Na1—P2ix99.5 (16)
O6ii—Zn1—O2112.69 (9)O6—Na1—P2ix76.41 (6)
O8—Zn1—Na1iii131.93 (7)O1vii—Na1—P2ix168.49 (8)
O1i—Zn1—Na1iii44.58 (7)O3ix—Na1—P2ix25.96 (5)
O6ii—Zn1—Na1iii125.33 (7)O5x—Na1—P2ix106.30 (7)
O2—Zn1—Na1iii52.22 (7)O2x—Na1—P2ix74.57 (6)
O8—Zn1—Na1ii67.74 (8)O2iii—Na1—P2ix104.41 (7)
O1i—Zn1—Na1ii96.53 (7)P1x—Na1—P2ix89.24 (4)
O6ii—Zn1—Na1ii43.37 (7)Zn1iii—Na1—P2ix139.63 (5)
O2—Zn1—Na1ii155.94 (7)Zn1ix—Na1—P2ix56.92 (3)
Na1iii—Zn1—Na1ii137.29 (4)Na2—Na1—Al2viii51.6 (16)
O8—Zn1—Na2ii71.9 (3)O6—Na1—Al2viii83.67 (7)
O1i—Zn1—Na2ii104.9 (3)O1vii—Na1—Al2viii130.27 (8)
O6ii—Zn1—Na2ii33.9 (3)O3ix—Na1—Al2viii25.99 (5)
O2—Zn1—Na2ii145.6 (3)O5x—Na1—Al2viii75.80 (6)
Na1iii—Zn1—Na2ii141.9 (3)O2x—Na1—Al2viii91.49 (6)
Na1ii—Zn1—Na2ii10.7 (3)O2iii—Na1—Al2viii155.55 (7)
O8—Zn1—Na2iii124.7 (3)P1x—Na1—Al2viii81.41 (4)
O1i—Zn1—Na2iii35.5 (3)Zn1iii—Na1—Al2viii163.34 (6)
O6ii—Zn1—Na2iii128.5 (3)Zn1ix—Na1—Al2viii92.15 (4)
O2—Zn1—Na2iii61.6 (3)P2ix—Na1—Al2viii51.89 (3)
Na1iii—Zn1—Na2iii10.2 (3)Na1—Na2—O688.3 (16)
Na1ii—Zn1—Na2iii130.8 (3)Na1—Na2—O1vii83.5 (16)
Na2ii—Zn1—Na2iii137.4 (4)O6—Na2—O1vii95.2 (7)
O1—P1—O2113.05 (12)Na1—Na2—O3ix87.8 (16)
O1—P1—O7109.27 (12)O6—Na2—O3ix83.6 (6)
O2—P1—O7109.68 (12)O1vii—Na2—O3ix171.3 (10)
O1—P1—O5110.65 (12)Na1—Na2—O5x88.4 (16)
O2—P1—O5105.83 (12)O6—Na2—O5x175.8 (10)
O7—P1—O5108.22 (12)O1vii—Na2—O5x86.9 (6)
O1—P1—Na1iv131.63 (9)O3ix—Na2—O5x93.7 (6)
O2—P1—Na1iv54.68 (9)Na1—Na2—O4viii146.5 (19)
O7—P1—Na1iv118.93 (9)O6—Na2—O4viii107.0 (7)
O5—P1—Na1iv51.32 (9)O1vii—Na2—O4viii123.2 (8)
O1—P1—Na2v37.9 (4)O3ix—Na2—O4viii65.3 (5)
O2—P1—Na2v146.0 (4)O5x—Na2—O4viii74.7 (5)
O7—P1—Na2v77.4 (3)Na1—Na2—Al2viii118.7 (17)
O5—P1—Na2v103.0 (3)O6—Na2—Al2viii94.6 (6)
Na1iv—P1—Na2v151.6 (3)O1vii—Na2—Al2viii156.0 (8)
O1—P1—Na2iv135.0 (3)O3ix—Na2—Al2viii32.5 (3)
O2—P1—Na2iv65.5 (4)O5x—Na2—Al2viii84.7 (5)
O7—P1—Na2iv113.1 (3)O4viii—Na2—Al2viii32.8 (2)
O5—P1—Na2iv41.3 (3)Na1—Na2—P2106.4 (17)
Na1iv—P1—Na2iv11.6 (3)O6—Na2—P224.5 (2)
Na2v—P1—Na2iv144.0 (5)O1vii—Na2—P281.2 (5)
O8—P2—O6110.69 (13)O3ix—Na2—P2100.6 (6)
O8—P2—O4112.01 (13)O5x—Na2—P2159.7 (8)
O6—P2—O4108.58 (12)O4viii—Na2—P298.2 (6)
O8—P2—O3109.14 (12)Al2viii—Na2—P299.6 (5)
O6—P2—O3109.13 (12)Na1—Na2—P1vii104.5 (17)
O4—P2—O3107.19 (12)O6—Na2—P1vii106.0 (6)
O8—P2—Na2115.9 (4)O1vii—Na2—P1vii23.6 (2)
O6—P2—Na237.8 (4)O3ix—Na2—P1vii164.3 (8)
O4—P2—Na272.4 (4)O5x—Na2—P1vii77.3 (5)
O3—P2—Na2131.4 (3)O4viii—Na2—P1vii99.7 (6)
O8—P2—Na1ii69.64 (10)Al2viii—Na2—P1vii132.5 (7)
O6—P2—Na1ii106.49 (9)P2—Na2—P1vii85.4 (4)
O4—P2—Na1ii141.00 (9)Na1—Na2—Al2vii112.7 (17)
O3—P2—Na1ii43.89 (8)O6—Na2—Al2vii154.2 (8)
Na2—P2—Na1ii144.3 (4)O1vii—Na2—Al2vii73.6 (5)
O7—Al2—O4112.36 (11)O3ix—Na2—Al2vii110.9 (6)
O7—Al2—O3vi108.74 (11)O5x—Na2—Al2vii30.0 (2)
O4—Al2—O3vi105.42 (10)O4viii—Na2—Al2vii63.8 (4)
O7—Al2—O5vii109.12 (11)Al2viii—Na2—Al2vii88.3 (5)
O4—Al2—O5vii111.21 (11)P2—Na2—Al2vii129.8 (6)
O3vi—Al2—O5vii109.90 (10)P1vii—Na2—Al2vii55.7 (3)
O7—Al2—Na2viii128.1 (3)Na1—Na2—P1x67.4 (15)
O4—Al2—Na2viii58.6 (4)O6—Na2—P1x151.1 (8)
O3vi—Al2—Na2viii46.9 (4)O1vii—Na2—P1x97.1 (6)
O5vii—Al2—Na2viii121.9 (3)O3ix—Na2—P1x80.2 (5)
O7—Al2—Na2v74.4 (3)O5x—Na2—P1x24.7 (2)
O4—Al2—Na2v152.2 (4)O4viii—Na2—P1x87.8 (5)
O3vi—Al2—Na2v97.1 (3)Al2viii—Na2—P1x84.4 (4)
O5vii—Al2—Na2v44.0 (3)P2—Na2—P1x173.8 (7)
Na2viii—Al2—Na2v139.5 (5)P1vii—Na2—P1x95.5 (5)
O7—Al2—Na1viii122.77 (8)Al2vii—Na2—P1x54.7 (3)
O4—Al2—Na1viii67.52 (8)Na1—Na2—Zn1ix63.1 (15)
O3vi—Al2—Na1viii37.90 (7)O6—Na2—Zn1ix29.0 (3)
O5vii—Al2—Na1viii124.46 (8)O1vii—Na2—Zn1ix104.7 (6)
Na2viii—Al2—Na1viii9.7 (4)O3ix—Na2—Zn1ix70.3 (5)
Na2v—Al2—Na1viii133.2 (3)O5x—Na2—Zn1ix146.9 (8)
Na2—Na1—O674.4 (16)O4viii—Na2—Zn1ix119.9 (6)
Na2—Na1—O1vii79.5 (16)Al2viii—Na2—Zn1ix94.4 (5)
O6—Na1—O1vii92.35 (9)P2—Na2—Zn1ix53.0 (3)
Na2—Na1—O3ix75.8 (16)P1vii—Na2—Zn1ix123.8 (5)
O6—Na1—O3ix80.28 (8)Al2vii—Na2—Zn1ix175.7 (7)
O1vii—Na1—O3ix155.32 (11)P1x—Na2—Zn1ix122.2 (6)
Na2—Na1—O5x75.6 (16)P1—O1—Zn1xi125.84 (12)
O6—Na1—O5x149.91 (11)P1—O1—Na2v118.5 (5)
O1vii—Na1—O5x84.65 (8)Zn1xi—O1—Na2v115.6 (5)
O3ix—Na1—O5x90.04 (8)P1—O1—Na1v133.34 (13)
Na2—Na1—O2x126.9 (16)Zn1xi—O1—Na1v100.05 (9)
O6—Na1—O2x146.40 (10)Na2v—O1—Na1v17.0 (5)
O1vii—Na1—O2x115.31 (9)P1—O2—Zn1121.37 (12)
O3ix—Na1—O2x81.04 (8)P1—O2—Na1iv96.75 (10)
O5x—Na1—O2x57.16 (7)Zn1—O2—Na1iv117.73 (10)
Na2—Na1—O2iii143.3 (16)P1—O2—Na1iii134.43 (12)
O6—Na1—O2iii84.53 (8)Zn1—O2—Na1iii91.62 (8)
O1vii—Na1—O2iii71.53 (8)Na1iv—O2—Na1iii93.39 (8)
O3ix—Na1—O2iii130.31 (9)P2—O3—Al2xii133.43 (13)
O5x—Na1—O2iii122.23 (9)P2—O3—Na2ii124.8 (5)
O2x—Na1—O2iii86.61 (8)Al2xii—O3—Na2ii100.6 (5)
Na2—Na1—P1x101.0 (15)P2—O3—Na1ii110.14 (11)
O6—Na1—P1x163.73 (8)Al2xii—O3—Na1ii116.11 (10)
O1vii—Na1—P1x102.23 (7)Na2ii—O3—Na1ii16.4 (5)
O3ix—Na1—P1x83.46 (6)P2—O4—Al2136.01 (14)
O5x—Na1—P1x28.65 (5)P2—O4—Na2viii131.1 (4)
O2x—Na1—P1x28.57 (5)Al2—O4—Na2viii88.5 (4)
O2iii—Na1—P1x106.77 (7)P1—O5—Al2v139.94 (14)
Na2—Na1—Zn1iii112.2 (16)P1—O5—Na2iv113.9 (5)
O6—Na1—Zn1iii88.25 (7)Al2v—O5—Na2iv105.9 (5)
O1vii—Na1—Zn1iii35.37 (5)P1—O5—Na1iv100.02 (11)
O3ix—Na1—Zn1iii163.84 (8)Al2v—O5—Na1iv118.81 (10)
O5x—Na1—Zn1iii105.41 (7)Na2iv—O5—Na1iv16.0 (5)
O2x—Na1—Zn1iii103.17 (7)P2—O6—Zn1ix123.60 (12)
O2iii—Na1—Zn1iii36.16 (5)P2—O6—Na2117.7 (5)
P1x—Na1—Zn1iii107.81 (5)Zn1ix—O6—Na2117.1 (5)
Na2—Na1—Zn1ix106.2 (16)P2—O6—Na1129.88 (13)
O6—Na1—Zn1ix35.02 (6)Zn1ix—O6—Na1101.61 (10)
O1vii—Na1—Zn1ix112.15 (7)Na2—O6—Na117.3 (5)
O3ix—Na1—Zn1ix74.56 (6)P1—O7—Al2145.65 (15)
O5x—Na1—Zn1ix163.20 (7)P2—O8—Zn1136.70 (14)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x, y+1/2, z+1/2; (vi) x+1, y1/2, z+3/2; (vii) x, y+1/2, z1/2; (viii) x+1, y+1, z+1; (ix) x, y+3/2, z1/2; (x) x, y, z1; (xi) x, y1/2, z+3/2; (xii) x+1, y+1/2, z+3/2.
Bond valence data for KZnAl(PO4)2 top
AtomNaZnAlP1P2Σ
O10.2240.5241.3102.06
O20.114 0.1120.5131.2722.01
O30.1790.7571.1892.12
O40.7821.2121.99
O50.1460.7571.2152.12
O60.2410.5191.3072.07
O70.7861.2412.03
O80.5901.3391.93
Σ1.012.153.085.045.05
The calculation is made without considering the splitting of the Na position and `dilution' of the positions of Zn and Al.
Composition, crystal characteristics, selected distances and physical properties of members of the AMM'(PO4)2 morphotropic series (A+ = Rb, K, NH4 or Na; M2+ = Cu, Ni, Co, Fe, Zn or Mg; M'3+ = Fe, Al or Ga) top
FormulaUnit-cell parameters a, b, c (Å) and β (°)V3), ρ (Mg m-3) and V/Z3)<M—O> (Å) <M'–O> (Å)Physical propertiesReference
1. The KNiFe(PO4)2 structure type, space group P21/c, Z = 4
3D framework built by M'3+O5 bipyramids and PO4 tetrahedra sharing oxygen vertices. Channels in the [100] and [001] directions accommodate A+ cations and chains of M2+O6 octahedra sharing edges
K(Ni,Fe)Fe(PO4)25.102 (1)658.42.090 (1) (M = Ni2+, Fe2+)No information availableStrutynska et al. (2014)
14.464 (3)3.461.937 (1) (M' = Fe3+)
9.226 (2)164.6
104.74 (3)
KNiFe(PO4)25.101 (2)657.32.090 (2) (M = Ni2+)The thermal study showed a congruent melting of the compound at 941 °CBadri et al. (2015)
14.456 (2)3.47
9.216 (1)164.3
104.73 (2)
KMgFe(PO4)2-LT5.171 (3)665.92.105 (2) (M = Mg2+)The DTA analysis demonstrated an irreversible phase transition from the low- to the high-temperature stable phases at 778 °CBadri et al. (2015)
14.479 (2)3.081.939 (1) (M' = Fe3+)
9.209 (2)166.5
105.02 (1)
KCoFe(PO4)2-LT5.148 (1)663.32.122 (2) (M = Co2+)An irreversible phase transition from the low- to the high-temperature stable phases at 840 °CBadri et al. (2015)
14.403 (2)3.441.934 (1) (M' = Fe3+)
9.256 (1)165.8
104.87 (2)
RbCuAl(PO4)25.0723 (8)656.42.136 (2) (M = Cu2+)The compound orders antiferromagnetically at TN = 10.5 K and exhibits spontaneous magnetization in the magnetically ordered stateYakubovich et al. (2016)
14.070 (2)3.701.837 (2) (M' = Al3+)
9.352 (1)164.1
100.41 (1)
2. The KFe2+Fe3+(PO4)2 structure type, space group P21/c, Z = 4
3D framework built by MO5 bipyramids, M'O6 octahedra and PO4 tetrahedra sharing oxygen edges and vertices. Channels along the [001] direction accommodate A+ cations
KFe2+Fe3+(PO4)27.846 (3)646.42.024 (5) (M = Fe2+)No information availableYakubovich et al. (1986)
10.032 (3)3.502.021 (4) (M' = Fe3+)
9.127 (4)161.6
115.87 (3)
K(Fe2+,Fe3+)(Fe3+,Fe2+,Mg)(PO4)27.8444 (3)643.52.006 (3) (M = Fe2+,Fe3+)No information availableYatskin et al. (2012)
10.0033 (3)3.492.014 (3) (M' = Fe3+,Fe2+,Mg)
9.1459 (4)160.9
116.272 (5)
KCuFe(PO4)27.958 (3)644.32.005 (2) (M = Cu2+)The compound is antiferromagnetic. Electrical measurements revealed the activation energy (1.22 eV) and the conductivity evaluation suggested the potassium cations as the charge carriersBadri et al. (2011)
9.931 (2)3.592.015 (2) (M' = Fe3+)
9.105 (2)161.1
116.44 (3)
3. The (NH4)Fe2+Fe3+(PO4)2 structure type, space group C2/c, Z = 16
Chains of edge-sharing Fe2+O6 octahedra, chains of corner-sharing Fe3+O6 octahedra and PO4 tetrahedra form 3D framework with tunnels in the [221], [221] and [001] directions, in which NH4+ cations are located
(NH4)Fe2+Fe3+(PO4)220.007 (1)2585.72.014 (2) (M' = Fe3+)No information availableBoudin & Lii (1998)
14.832 (1)3.292.145 (2) (M = Fe2+)
9.990 (1)161.6
119.28 (1)
4. The celsian, BaAl2[SiO4]2 structure type, space group C2/c, Z = 8
3D framework built by corner-sharing (M/M')O4 and PO4 tetrahedra with the A+ ions in the framework tunnels
K(Co,Al)2(PO4)213.318 (2)1496.91.826 (19) (M = 0.5Co2+,0.5Al3+)No information availableChen et al. (1997)
13.152 (1)2.801.829 (13) (M' = 0.5Co2+,0.5Al3+)
8.683 (1)187.1
100.19 (1)
K(Zn,Fe)2(PO4)213.514 (4)1543.91.884 (2) (M = 0.5Zn2+,0.5Fe3+)The magnetic measuring revealed an antiferromagnetic behaviour with TN = 8.5 KBadri et al. (2014)
13.273 (6)3.011.891 (3) (M' = 0.5Zn2+,0.5Fe3+)
8.742 (3)193.0
100.07 (2)
(NH4)(Co,Al)2(PO4)213.474 (1)1571.41.839 (4) (M = 0.5Co2+,0.5Al3+)The framework density is 20.4Bu et al. (1998)
13.257 (1)2.481.854 (4) (M' = 0.5Co2+,0.5Al3+)
8.960 (1)196.4
100.92 (1)
(NH4)(Zn,Ga)2(PO4)213.370 (3)1560.41.863 (2) (M = 0.5Zn2+,0.5Ga3+)No information availableMrak et al. (2002)
13.190 (3)2.921.870 (2) (M' = 0.5Zn2+,0.5Ga3+)
8.998 (2)195.1
100.46 (3)
(NH4)0.83(Zn0.83Al1.17)(PO4)213.533 (8)1617.21.846 (5) (M = Zn2+,Al3+)The compound has a potential usage as adsorbent or catalytic material at low temperatureMa et al. (2006)
13.392 (8)2.391.862 (5) (M' = Zn2+,Al3+)
9.072 (5)202.1
100.87 (8)
5. The paracelsian, BaAl2[SiO4]2 structure type, space group P21/a*, Z = 4
3D framework built from alternating corner-sharing MO4 and TO4 tetrahedra with eight-membered ring channels with the A+ions incorporated
(NH4)(Zn,Ga)2(PO4)29.406 (1)800.41.872 (2) (M = 0.5Zn2+,0.5Ga3+)The compound has a potential for high ion-exchange capacityLogar et al. (2001)
9.881 (1)2.851.877 (2) (M' = 0.5Zn2+,0.5Ga3+)
8.612 (1)200.1
90.58 (1)
6. The KMgFe(PO4)2 structure type, space group C2/c, Z = 4
2D layers built by corner-sharing (M/M')O4 and PO4 tetrahedra with the K atoms in the interlayer space
K(Mg,Fe)2(PO4)2-HT18.529 (7)807.31.878 (2) (M = 0.5Mg2+,0.5Fe3+)This material behaves as a 2D ionic conductor with low activation energy of 0.51 eVBadri et al. (2009)
5.402 (3)3.49
9.374 (9)201.8
120.64 (5)
7. The NaZnAl(PO4)2 structure type, space group P21/c, Z = 4
3D framework built by M2+O4, M'3+O4 and PO4 tetrahedra sharing oxygen vertices. The Na atoms are statistically distributed in two sites in the structure tunnels
NaZnAl(PO4)29.520 (1)688.11.935 (2) (M = Zn2+)The compound presents a possible candidate for the ionic conductivityPresent work
8.670 (1)2.951.748 (2) (M' = Al3+)
9.547 (1)172.0
119.16 (1)
Note: (*) crystal characteristics are given in nonstandard setting of the space group C2h5 = P21/c for consistency of data.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds