Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620006439/fn3334sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006439/fn3334Isup2.hkl |
CCDC reference: 2003809
Data collection: SMART (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).
BiIn0.14Li2.56 | Mo Kα radiation, λ = 0.71073 Å |
Mr = 243.34 | Cell parameters from 230 reflections |
Cubic, Fd3m | θ = 5.3–26.1° |
a = 13.337 (4) Å | µ = 60.18 mm−1 |
V = 2373 (2) Å3 | T = 200 K |
Z = 32 | Irregular, black |
F(000) = 3128 | 0.11 × 0.08 × 0.05 mm |
Dx = 5.450 Mg m−3 |
Bruker SMART CCD area detector diffractometer | 144 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.047 |
phi and ω scans | θmax = 28.6°, θmin = 2.7° |
Absorption correction: multi-scan | h = −17→15 |
Tmin = 0.01, Tmax = 0.06 | k = −12→14 |
2306 measured reflections | l = −17→15 |
177 independent reflections |
Refinement on F2 | 14 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0217P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.053 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 1.23 e Å−3 |
177 reflections | Δρmin = −0.76 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The crystal was mounted on a low-background plastic loop and immediately transferred onto a Bruker SMART CCD diffractometer equipped with monochromated Mo Kα radiation (λ = 0.71073 Å), where it was cooled to 200 K in a nitrogen stream. The collected raw data were integrated using the SAINT software (Bruker, 2014). Semiempirical absorption correction was carried out with SADABS (Bruker, 2014). The crystal structure was solved by dual-space methods with SHELXT (Sheldrick, 2015a) and refined by full-matrix least squares methods on F2 with SHELXL (Sheldrick, 2015b). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Li1 | 0.3673 (16) | 0.1250 | 0.1250 | 0.046 (8) | |
Li2 | 0.5000 | 0.5000 | 0.5000 | 0.040 (13) | |
Li3 | 0.0000 | 0.0000 | 0.0000 | 0.040* | 0.63 (12) |
Li4 | 0.3750 | 0.3750 | 0.3750 | 0.040* | 0.57 (13) |
In | 0.1250 | 0.1250 | 0.1250 | 0.0207 (12) | 0.577 (8) |
Li5 | 0.1250 | 0.1250 | 0.1250 | 0.0207 (12) | 0.423 (8) |
Bi | 0.25492 (2) | 0.25492 (2) | 0.25492 (2) | 0.0222 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.021 (13) | 0.058 (12) | 0.058 (12) | 0.000 | 0.000 | −0.020 (13) |
Li2 | 0.040 (13) | 0.040 (13) | 0.040 (13) | 0.011 (14) | 0.011 (14) | 0.011 (14) |
In | 0.0207 (12) | 0.0207 (12) | 0.0207 (12) | 0.000 | 0.000 | 0.000 |
Li5 | 0.0207 (12) | 0.0207 (12) | 0.0207 (12) | 0.000 | 0.000 | 0.000 |
Bi | 0.0222 (2) | 0.0222 (2) | 0.0222 (2) | 0.00327 (14) | 0.00327 (14) | 0.00327 (14) |
Li1—Li3i | 2.830 (12) | Li3—Bii | 3.4013 (3) |
Li1—Li3ii | 2.830 (12) | Li3—Bixxxii | 3.4013 (3) |
Li1—Bi | 2.873 (11) | Li3—Biii | 3.4013 (3) |
Li1—Biiii | 2.873 (11) | Li3—Li3iii | 4.7155 |
Li1—Biiv | 2.915 (13) | Li3—Li3xxxvii | 4.7155 |
Li1—Biv | 2.915 (13) | Li3—Li3xxxviii | 4.7155 (7) |
Li1—Li2vi | 2.948 (13) | Li3—Li3i | 4.7155 (7) |
Li1—Li2vii | 2.948 (13) | Li4—Bivi | 2.7740 (6) |
Li1—In | 3.23 (2) | Li4—Bixxv | 2.7740 (6) |
Li1—Li1viii | 3.3375 (13) | Li4—Bixxvii | 2.7740 (6) |
Li1—Li1ix | 3.3375 (13) | Li4—Bi | 2.7740 (6) |
Li1—Li1x | 3.3375 (13) | Li4—Li2vi | 2.8877 (3) |
Li1—Li1xi | 3.3375 (13) | Li4—Li2xxv | 2.8877 (3) |
Li1—Li4xii | 3.44 (2) | Li4—Li2xxvii | 2.8877 (3) |
Li1—Li1xiii | 4.57 (3) | Li4—Li1xii | 3.44 (2) |
Li1—Li1xiv | 4.57 (3) | Li4—Li1xxxix | 3.44 (2) |
Li1—Li1xv | 4.57 (3) | Li4—Li1viii | 3.44 (2) |
Li1—Li1xvi | 4.57 (3) | Li4—Li1xviii | 3.44 (2) |
Li1—Li4 | 4.7166 (5) | Li4—Li1xxi | 3.44 (2) |
Li2—Li4xvii | 2.8877 (3) | Li4—Li1x | 3.44 (2) |
Li2—Li4 | 2.8877 (3) | Li4—Li1xvi | 4.7166 (9) |
Li2—Li1xviii | 2.948 (13) | Li4—Li1xix | 4.7166 (5) |
Li2—Li1xix | 2.948 (13) | Li4—Li1xv | 4.7166 (9) |
Li2—Li1xii | 2.948 (13) | Li4—Li1xx | 4.7166 (9) |
Li2—Li1xx | 2.948 (13) | Li4—Li1xxii | 4.7166 (9) |
Li2—Li1xxi | 2.948 (13) | In—Li3iii | 2.8877 (3) |
Li2—Li1xxii | 2.948 (13) | In—Li3i | 2.8877 (3) |
Li2—Bixxiii | 3.2701 (11) | In—Li3ii | 2.8877 (3) |
Li2—Bivi | 3.2701 (11) | In—Bi | 3.0013 (6) |
Li2—Bixxiv | 3.2701 (3) | In—Biiii | 3.0013 (6) |
Li2—Bixxv | 3.2701 (3) | In—Bii | 3.0013 (6) |
Li2—Bixxvi | 3.2701 (3) | In—Biii | 3.0013 (6) |
Li2—Bixxvii | 3.2701 (3) | In—Li1ii | 3.23 (2) |
Li2—Li2xxviii | 4.7155 | In—Li1xv | 3.23 (2) |
Li2—Li2vi | 4.7155 | In—Li1xiii | 3.23 (2) |
Li2—Li2xxv | 4.7155 (7) | Bi—Li1xv | 2.873 (11) |
Li2—Li2xxix | 4.7155 (7) | Bi—Li1xvi | 2.873 (11) |
Li2—Li2xxx | 4.7155 (7) | Bi—Li1x | 2.915 (13) |
Li2—Li2xxvii | 4.7155 (7) | Bi—Li1xxxix | 2.915 (13) |
Li3—Li1xxxi | 2.830 (12) | Bi—Li1viii | 2.915 (13) |
Li3—Li1xiv | 2.830 (12) | Bi—Li2xxvii | 3.2701 (3) |
Li3—Li1xxxii | 2.830 (12) | Bi—Li2vi | 3.2701 (11) |
Li3—Li1ii | 2.830 (12) | Bi—Li2xxv | 3.2701 (3) |
Li3—Li1xxxiii | 2.830 (12) | Bi—Li3i | 3.4012 (3) |
Li3—Li1xiii | 2.830 (12) | Bi—Li3iii | 3.4012 (11) |
Li3—Li5xxxiv | 2.8877 (3) | Bi—Li3ii | 3.4012 (3) |
Li3—Inxxxiv | 2.8877 (3) | Bi—Bivi | 4.5299 (9) |
Li3—In | 2.8877 (3) | Bi—Bixxv | 4.5299 (11) |
Li3—Bixxxv | 3.4013 (11) | Bi—Bixxvii | 4.5299 (11) |
Li3—Biiii | 3.4013 (11) | Bi—Bixl | 4.7173 (1) |
Li3—Bixxxvi | 3.4013 (3) | Bi—Biiv | 4.7173 (7) |
Li3i—Li1—Li3ii | 112.9 (7) | Biii—Li3—Li3iii | 46.116 (5) |
Li3i—Li1—Bi | 73.2 (3) | Li1xxxi—Li3—Li3xxxvii | 88.5 (3) |
Li3ii—Li1—Bi | 73.2 (3) | Li1xiv—Li3—Li3xxxvii | 91.5 (3) |
Li3i—Li1—Biiii | 73.2 (3) | Li1xxxii—Li3—Li3xxxvii | 33.6 (4) |
Li3ii—Li1—Biiii | 73.2 (3) | Li1ii—Li3—Li3xxxvii | 146.4 (4) |
Bi—Li1—Biiii | 117.1 (7) | Li1xxxiii—Li3—Li3xxxvii | 88.5 (3) |
Li3i—Li1—Biiv | 174.5 (7) | Li1xiii—Li3—Li3xxxvii | 91.5 (3) |
Li3ii—Li1—Biiv | 72.59 (4) | Li5xxxiv—Li3—Li3xxxvii | 35.264 (8) |
Bi—Li1—Biiv | 109.18 (7) | Inxxxiv—Li3—Li3xxxvii | 35.264 (8) |
Biiii—Li1—Biiv | 109.18 (7) | In—Li3—Li3xxxvii | 144.736 (8) |
Li3i—Li1—Biv | 72.59 (4) | Bixxxv—Li3—Li3xxxvii | 91.564 (7) |
Li3ii—Li1—Biv | 174.5 (7) | Biiii—Li3—Li3xxxvii | 88.436 (7) |
Bi—Li1—Biv | 109.18 (7) | Bixxxvi—Li3—Li3xxxvii | 46.116 (5) |
Biiii—Li1—Biv | 109.18 (7) | Bii—Li3—Li3xxxvii | 133.884 (5) |
Biiv—Li1—Biv | 102.0 (6) | Bixxxii—Li3—Li3xxxvii | 46.116 (5) |
Li3i—Li1—Li2vi | 109.39 (4) | Biii—Li3—Li3xxxvii | 133.884 (5) |
Li3ii—Li1—Li2vi | 109.39 (4) | Li3iii—Li3—Li3xxxvii | 180.0 |
Bi—Li1—Li2vi | 68.35 (4) | Li1xxxi—Li3—Li3xxxviii | 33.6 (4) |
Biiii—Li1—Li2vi | 174.6 (7) | Li1xiv—Li3—Li3xxxviii | 146.4 (4) |
Biiv—Li1—Li2vi | 67.8 (3) | Li1xxxii—Li3—Li3xxxviii | 88.5 (3) |
Biv—Li1—Li2vi | 67.8 (3) | Li1ii—Li3—Li3xxxviii | 91.5 (3) |
Li3i—Li1—Li2vii | 109.39 (4) | Li1xxxiii—Li3—Li3xxxviii | 88.5 (3) |
Li3ii—Li1—Li2vii | 109.39 (4) | Li1xiii—Li3—Li3xxxviii | 91.5 (3) |
Bi—Li1—Li2vii | 174.6 (7) | Li5xxxiv—Li3—Li3xxxviii | 35.264 (5) |
Biiii—Li1—Li2vii | 68.35 (4) | Inxxxiv—Li3—Li3xxxviii | 35.264 (5) |
Biiv—Li1—Li2vii | 67.8 (3) | In—Li3—Li3xxxviii | 144.736 (5) |
Biv—Li1—Li2vii | 67.8 (3) | Bixxxv—Li3—Li3xxxviii | 46.116 (10) |
Li2vi—Li1—Li2vii | 106.2 (7) | Biiii—Li3—Li3xxxviii | 133.884 (11) |
Li3i—Li1—In | 56.4 (4) | Bixxxvi—Li3—Li3xxxviii | 91.564 (7) |
Li3ii—Li1—In | 56.4 (4) | Bii—Li3—Li3xxxviii | 88.436 (7) |
Bi—Li1—In | 58.5 (4) | Bixxxii—Li3—Li3xxxviii | 46.116 (10) |
Biiii—Li1—In | 58.5 (4) | Biii—Li3—Li3xxxviii | 133.884 (10) |
Biiv—Li1—In | 129.0 (3) | Li3iii—Li3—Li3xxxviii | 120.000 (5) |
Biv—Li1—In | 129.0 (3) | Li3xxxvii—Li3—Li3xxxviii | 60.000 (5) |
Li2vi—Li1—In | 126.9 (3) | Li1xxxi—Li3—Li3i | 146.4 (4) |
Li2vii—Li1—In | 126.9 (3) | Li1xiv—Li3—Li3i | 33.6 (4) |
Li3i—Li1—Li1viii | 128.6 (7) | Li1xxxii—Li3—Li3i | 91.5 (3) |
Li3ii—Li1—Li1viii | 53.86 (19) | Li1ii—Li3—Li3i | 88.5 (3) |
Bi—Li1—Li1viii | 55.4 (3) | Li1xxxiii—Li3—Li3i | 91.5 (3) |
Biiii—Li1—Li1viii | 126.88 (9) | Li1xiii—Li3—Li3i | 88.5 (3) |
Biiv—Li1—Li1viii | 54.2 (3) | Li5xxxiv—Li3—Li3i | 144.736 (5) |
Biv—Li1—Li1viii | 123.1 (2) | Inxxxiv—Li3—Li3i | 144.736 (5) |
Li2vi—Li1—Li1viii | 55.53 (15) | In—Li3—Li3i | 35.264 (5) |
Li2vii—Li1—Li1viii | 121.9 (7) | Bixxxv—Li3—Li3i | 133.884 (11) |
In—Li1—Li1viii | 91.8 (4) | Biiii—Li3—Li3i | 46.116 (10) |
Li3i—Li1—Li1ix | 53.86 (19) | Bixxxvi—Li3—Li3i | 88.436 (7) |
Li3ii—Li1—Li1ix | 128.6 (7) | Bii—Li3—Li3i | 91.564 (7) |
Bi—Li1—Li1ix | 126.88 (9) | Bixxxii—Li3—Li3i | 133.884 (10) |
Biiii—Li1—Li1ix | 55.4 (3) | Biii—Li3—Li3i | 46.116 (10) |
Biiv—Li1—Li1ix | 123.1 (2) | Li3iii—Li3—Li3i | 60.000 (5) |
Biv—Li1—Li1ix | 54.2 (3) | Li3xxxvii—Li3—Li3i | 120.000 (5) |
Li2vi—Li1—Li1ix | 121.9 (7) | Li3xxxviii—Li3—Li3i | 180.0 |
Li2vii—Li1—Li1ix | 55.53 (15) | Bivi—Li4—Bixxv | 109.471 (9) |
In—Li1—Li1ix | 91.8 (4) | Bivi—Li4—Bixxvii | 109.471 (9) |
Li1viii—Li1—Li1ix | 176.5 (7) | Bixxv—Li4—Bixxvii | 109.471 (17) |
Li3i—Li1—Li1x | 53.86 (19) | Bivi—Li4—Bi | 109.471 (18) |
Li3ii—Li1—Li1x | 128.6 (7) | Bixxv—Li4—Bi | 109.471 (8) |
Bi—Li1—Li1x | 55.4 (3) | Bixxvii—Li4—Bi | 109.471 (8) |
Biiii—Li1—Li1x | 126.88 (9) | Bivi—Li4—Li2 | 70.529 (17) |
Biiv—Li1—Li1x | 123.1 (2) | Bixxv—Li4—Li2 | 70.529 (8) |
Biv—Li1—Li1x | 54.2 (3) | Bixxvii—Li4—Li2 | 70.529 (8) |
Li2vi—Li1—Li1x | 55.53 (15) | Bi—Li4—Li2 | 180.0 |
Li2vii—Li1—Li1x | 121.9 (7) | Bivi—Li4—Li2vi | 180.0 |
In—Li1—Li1x | 91.8 (4) | Bixxv—Li4—Li2vi | 70.529 (9) |
Li1viii—Li1—Li1x | 93.5 (7) | Bixxvii—Li4—Li2vi | 70.529 (9) |
Li1ix—Li1—Li1x | 86.4 (7) | Bi—Li4—Li2vi | 70.529 (17) |
Li3i—Li1—Li1xi | 128.6 (7) | Li2—Li4—Li2vi | 109.471 (17) |
Li3ii—Li1—Li1xi | 53.86 (19) | Bivi—Li4—Li2xxv | 70.529 (9) |
Bi—Li1—Li1xi | 126.88 (9) | Bixxv—Li4—Li2xxv | 180.0 |
Biiii—Li1—Li1xi | 55.4 (3) | Bixxvii—Li4—Li2xxv | 70.529 (17) |
Biiv—Li1—Li1xi | 54.2 (3) | Bi—Li4—Li2xxv | 70.529 (9) |
Biv—Li1—Li1xi | 123.1 (2) | Li2—Li4—Li2xxv | 109.471 (9) |
Li2vi—Li1—Li1xi | 121.9 (7) | Li2vi—Li4—Li2xxv | 109.471 (8) |
Li2vii—Li1—Li1xi | 55.53 (15) | Bivi—Li4—Li2xxvii | 70.529 (9) |
In—Li1—Li1xi | 91.8 (4) | Bixxv—Li4—Li2xxvii | 70.529 (17) |
Li1viii—Li1—Li1xi | 86.4 (7) | Bixxvii—Li4—Li2xxvii | 180.0 |
Li1ix—Li1—Li1xi | 93.5 (7) | Bi—Li4—Li2xxvii | 70.529 (9) |
Li1x—Li1—Li1xi | 176.5 (7) | Li2—Li4—Li2xxvii | 109.471 (9) |
Li3i—Li1—Li4xii | 123.6 (4) | Li2vi—Li4—Li2xxvii | 109.471 (8) |
Li3ii—Li1—Li4xii | 123.6 (4) | Li2xxv—Li4—Li2xxvii | 109.471 (18) |
Bi—Li1—Li4xii | 121.5 (4) | Bivi—Li4—Li1xii | 125.264 (9) |
Biiii—Li1—Li4xii | 121.5 (4) | Bixxv—Li4—Li1xii | 54.736 (8) |
Biiv—Li1—Li4xii | 51.0 (3) | Bixxvii—Li4—Li1xii | 54.736 (8) |
Biv—Li1—Li4xii | 51.0 (3) | Bi—Li4—Li1xii | 125.264 (9) |
Li2vi—Li1—Li4xii | 53.1 (3) | Li2—Li4—Li1xii | 54.736 (8) |
Li2vii—Li1—Li4xii | 53.1 (3) | Li2vi—Li4—Li1xii | 54.736 (8) |
In—Li1—Li4xii | 180.0 | Li2xxv—Li4—Li1xii | 125.264 (9) |
Li1viii—Li1—Li4xii | 88.2 (4) | Li2xxvii—Li4—Li1xii | 125.264 (9) |
Li1ix—Li1—Li4xii | 88.2 (4) | Bivi—Li4—Li1xxxix | 54.736 (9) |
Li1x—Li1—Li4xii | 88.2 (4) | Bixxv—Li4—Li1xxxix | 125.264 (8) |
Li1xi—Li1—Li4xii | 88.2 (4) | Bixxvii—Li4—Li1xxxix | 125.264 (8) |
Li3i—Li1—Li1xiii | 91.5 (3) | Bi—Li4—Li1xxxix | 54.736 (9) |
Li3ii—Li1—Li1xiii | 36.14 (19) | Li2—Li4—Li1xxxix | 125.264 (8) |
Bi—Li1—Li1xiii | 93.3 (3) | Li2vi—Li4—Li1xxxix | 125.264 (8) |
Biiii—Li1—Li1xiii | 37.3 (2) | Li2xxv—Li4—Li1xxxix | 54.736 (9) |
Biiv—Li1—Li1xiii | 93.3 (3) | Li2xxvii—Li4—Li1xxxix | 54.736 (8) |
Biv—Li1—Li1xiii | 146.48 (14) | Li1xii—Li4—Li1xxxix | 180.0 |
Li2vi—Li1—Li1xiii | 145.53 (15) | Bivi—Li4—Li1viii | 125.264 (4) |
Li2vii—Li1—Li1xiii | 91.4 (3) | Bixxv—Li4—Li1viii | 125.264 (4) |
In—Li1—Li1xiii | 45.000 (10) | Bixxvii—Li4—Li1viii | 54.736 (4) |
Li1viii—Li1—Li1xiii | 90.000 (1) | Bi—Li4—Li1viii | 54.736 (5) |
Li1ix—Li1—Li1xiii | 92.5 (5) | Li2—Li4—Li1viii | 125.264 (4) |
Li1x—Li1—Li1xiii | 136.7 (3) | Li2vi—Li4—Li1viii | 54.736 (5) |
Li1xi—Li1—Li1xiii | 46.8 (4) | Li2xxv—Li4—Li1viii | 54.736 (5) |
Li4xii—Li1—Li1xiii | 135.000 (9) | Li2xxvii—Li4—Li1viii | 125.264 (5) |
Li3i—Li1—Li1xiv | 36.14 (19) | Li1xii—Li4—Li1viii | 90.0 |
Li3ii—Li1—Li1xiv | 91.5 (3) | Li1xxxix—Li4—Li1viii | 90.000 (1) |
Bi—Li1—Li1xiv | 93.3 (3) | Bivi—Li4—Li1xviii | 54.736 (5) |
Biiii—Li1—Li1xiv | 37.3 (2) | Bixxv—Li4—Li1xviii | 54.736 (4) |
Biiv—Li1—Li1xiv | 146.48 (14) | Bixxvii—Li4—Li1xviii | 125.264 (5) |
Biv—Li1—Li1xiv | 93.3 (3) | Bi—Li4—Li1xviii | 125.264 (4) |
Li2vi—Li1—Li1xiv | 145.53 (15) | Li2—Li4—Li1xviii | 54.736 (4) |
Li2vii—Li1—Li1xiv | 91.4 (3) | Li2vi—Li4—Li1xviii | 125.264 (4) |
In—Li1—Li1xiv | 45.000 (10) | Li2xxv—Li4—Li1xviii | 125.264 (4) |
Li1viii—Li1—Li1xiv | 136.7 (3) | Li2xxvii—Li4—Li1xviii | 54.736 (5) |
Li1ix—Li1—Li1xiv | 46.8 (4) | Li1xii—Li4—Li1xviii | 90.000 (1) |
Li1x—Li1—Li1xiv | 90.000 (1) | Li1xxxix—Li4—Li1xviii | 90.000 (1) |
Li1xi—Li1—Li1xiv | 92.5 (5) | Li1viii—Li4—Li1xviii | 180.0 |
Li4xii—Li1—Li1xiv | 135.000 (9) | Bivi—Li4—Li1xxi | 54.736 (4) |
Li1xiii—Li1—Li1xiv | 60.000 (11) | Bixxv—Li4—Li1xxi | 125.264 (5) |
Li3i—Li1—Li1xv | 91.5 (3) | Bixxvii—Li4—Li1xxi | 54.736 (4) |
Li3ii—Li1—Li1xv | 36.14 (19) | Bi—Li4—Li1xxi | 125.264 (4) |
Bi—Li1—Li1xv | 37.3 (2) | Li2—Li4—Li1xxi | 54.736 (4) |
Biiii—Li1—Li1xv | 93.3 (3) | Li2vi—Li4—Li1xxi | 125.264 (4) |
Biiv—Li1—Li1xv | 93.3 (3) | Li2xxv—Li4—Li1xxi | 54.736 (5) |
Biv—Li1—Li1xv | 146.48 (14) | Li2xxvii—Li4—Li1xxi | 125.264 (4) |
Li2vi—Li1—Li1xv | 91.4 (3) | Li1xii—Li4—Li1xxi | 90.000 (2) |
Li2vii—Li1—Li1xv | 145.53 (15) | Li1xxxix—Li4—Li1xxi | 90.000 (1) |
In—Li1—Li1xv | 45.000 (9) | Li1viii—Li4—Li1xxi | 90.0 |
Li1viii—Li1—Li1xv | 46.8 (4) | Li1xviii—Li4—Li1xxi | 90.000 (1) |
Li1ix—Li1—Li1xv | 136.7 (3) | Bivi—Li4—Li1x | 125.264 (4) |
Li1x—Li1—Li1xv | 92.5 (5) | Bixxv—Li4—Li1x | 54.736 (4) |
Li1xi—Li1—Li1xv | 90.0 | Bixxvii—Li4—Li1x | 125.264 (4) |
Li4xii—Li1—Li1xv | 135.000 (9) | Bi—Li4—Li1x | 54.736 (5) |
Li1xiii—Li1—Li1xv | 60.000 (10) | Li2—Li4—Li1x | 125.264 (4) |
Li1xiv—Li1—Li1xv | 90.000 (19) | Li2vi—Li4—Li1x | 54.736 (5) |
Li3i—Li1—Li1xvi | 36.14 (19) | Li2xxv—Li4—Li1x | 125.264 (5) |
Li3ii—Li1—Li1xvi | 91.5 (3) | Li2xxvii—Li4—Li1x | 54.736 (5) |
Bi—Li1—Li1xvi | 37.3 (2) | Li1xii—Li4—Li1x | 90.0 |
Biiii—Li1—Li1xvi | 93.3 (3) | Li1xxxix—Li4—Li1x | 90.000 (2) |
Biiv—Li1—Li1xvi | 146.48 (14) | Li1viii—Li4—Li1x | 90.000 (1) |
Biv—Li1—Li1xvi | 93.3 (3) | Li1xviii—Li4—Li1x | 90.0 |
Li2vi—Li1—Li1xvi | 91.4 (3) | Li1xxi—Li4—Li1x | 180.0 |
Li2vii—Li1—Li1xvi | 145.53 (15) | Bivi—Li4—Li1xvi | 90.72 (15) |
In—Li1—Li1xvi | 45.000 (9) | Bixxv—Li4—Li1xvi | 90.72 (15) |
Li1viii—Li1—Li1xvi | 92.5 (5) | Bixxvii—Li4—Li1xvi | 143.5 (3) |
Li1ix—Li1—Li1xvi | 90.0 | Bi—Li4—Li1xvi | 34.0 (3) |
Li1x—Li1—Li1xvi | 46.8 (4) | Li2—Li4—Li1xvi | 146.0 (3) |
Li1xi—Li1—Li1xvi | 136.7 (3) | Li2vi—Li4—Li1xvi | 89.28 (15) |
Li4xii—Li1—Li1xvi | 135.000 (9) | Li2xxv—Li4—Li1xvi | 89.28 (15) |
Li1xiii—Li1—Li1xvi | 90.000 (19) | Li2xxvii—Li4—Li1xvi | 36.5 (3) |
Li1xiv—Li1—Li1xvi | 60.000 (10) | Li1xii—Li4—Li1xvi | 134.986 (10) |
Li1xv—Li1—Li1xvi | 60.000 (10) | Li1xxxix—Li4—Li1xvi | 45.014 (11) |
Li3i—Li1—Li4 | 90.69 (13) | Li1viii—Li4—Li1xvi | 88.8 (3) |
Li3ii—Li1—Li4 | 90.69 (13) | Li1xviii—Li4—Li1xvi | 91.2 (3) |
Bi—Li1—Li4 | 32.70 (10) | Li1xxi—Li4—Li1xvi | 134.986 (10) |
Biiii—Li1—Li4 | 149.8 (6) | Li1x—Li4—Li1xvi | 45.014 (10) |
Biiv—Li1—Li4 | 89.21 (17) | Bivi—Li4—Li1xix | 34.0 (3) |
Biv—Li1—Li4 | 89.21 (17) | Bixxv—Li4—Li1xix | 90.72 (15) |
Li2vi—Li1—Li4 | 35.65 (7) | Bixxvii—Li4—Li1xix | 90.72 (15) |
Li2vii—Li1—Li4 | 141.9 (6) | Bi—Li4—Li1xix | 143.5 (3) |
In—Li1—Li4 | 91.2 (3) | Li2—Li4—Li1xix | 36.5 (3) |
Li1viii—Li1—Li4 | 46.8 (4) | Li2vi—Li4—Li1xix | 146.0 (3) |
Li1ix—Li1—Li4 | 133.1 (4) | Li2xxv—Li4—Li1xix | 89.28 (15) |
Li1x—Li1—Li4 | 46.8 (4) | Li2xxvii—Li4—Li1xix | 89.28 (15) |
Li1xi—Li1—Li4 | 133.1 (4) | Li1xii—Li4—Li1xix | 91.2 (3) |
Li4xii—Li1—Li4 | 88.8 (3) | Li1xxxix—Li4—Li1xix | 88.8 (3) |
Li1xiii—Li1—Li4 | 121.0 (2) | Li1viii—Li4—Li1xix | 134.986 (6) |
Li1xiv—Li1—Li4 | 121.0 (2) | Li1xviii—Li4—Li1xix | 45.014 (5) |
Li1xv—Li1—Li4 | 61.0 (2) | Li1xxi—Li4—Li1xix | 45.014 (6) |
Li1xvi—Li1—Li4 | 61.0 (2) | Li1x—Li4—Li1xix | 134.986 (6) |
Li4xvii—Li2—Li4 | 180.0 | Li1xvi—Li4—Li1xix | 119.984 (9) |
Li4xvii—Li2—Li1xviii | 107.8 (3) | Bivi—Li4—Li1xv | 90.72 (15) |
Li4—Li2—Li1xviii | 72.2 (3) | Bixxv—Li4—Li1xv | 143.5 (3) |
Li4xvii—Li2—Li1xix | 72.2 (3) | Bixxvii—Li4—Li1xv | 90.72 (15) |
Li4—Li2—Li1xix | 107.8 (3) | Bi—Li4—Li1xv | 34.0 (3) |
Li1xviii—Li2—Li1xix | 68.9 (3) | Li2—Li4—Li1xv | 146.0 (3) |
Li4xvii—Li2—Li1xii | 107.8 (3) | Li2vi—Li4—Li1xv | 89.28 (15) |
Li4—Li2—Li1xii | 72.2 (3) | Li2xxv—Li4—Li1xv | 36.5 (3) |
Li1xviii—Li2—Li1xii | 111.1 (3) | Li2xxvii—Li4—Li1xv | 89.28 (15) |
Li1xix—Li2—Li1xii | 180.0 | Li1xii—Li4—Li1xv | 134.986 (11) |
Li4xvii—Li2—Li1xx | 72.2 (3) | Li1xxxix—Li4—Li1xv | 45.014 (11) |
Li4—Li2—Li1xx | 107.8 (3) | Li1viii—Li4—Li1xv | 45.014 (10) |
Li1xviii—Li2—Li1xx | 180.0 | Li1xviii—Li4—Li1xv | 134.986 (11) |
Li1xix—Li2—Li1xx | 111.1 (3) | Li1xxi—Li4—Li1xv | 91.2 (3) |
Li1xii—Li2—Li1xx | 68.9 (3) | Li1x—Li4—Li1xv | 88.8 (3) |
Li4xvii—Li2—Li1xxi | 107.8 (3) | Li1xvi—Li4—Li1xv | 58.0 (4) |
Li4—Li2—Li1xxi | 72.2 (3) | Li1xix—Li4—Li1xv | 119.984 (9) |
Li1xviii—Li2—Li1xxi | 111.1 (3) | Bivi—Li4—Li1xx | 90.72 (15) |
Li1xix—Li2—Li1xxi | 68.9 (3) | Bixxv—Li4—Li1xx | 90.72 (15) |
Li1xii—Li2—Li1xxi | 111.1 (3) | Bixxvii—Li4—Li1xx | 34.0 (3) |
Li1xx—Li2—Li1xxi | 68.9 (3) | Bi—Li4—Li1xx | 143.5 (3) |
Li4xvii—Li2—Li1xxii | 72.2 (3) | Li2—Li4—Li1xx | 36.5 (3) |
Li4—Li2—Li1xxii | 107.8 (3) | Li2vi—Li4—Li1xx | 89.28 (15) |
Li1xviii—Li2—Li1xxii | 68.9 (3) | Li2xxv—Li4—Li1xx | 89.28 (15) |
Li1xix—Li2—Li1xxii | 111.1 (3) | Li2xxvii—Li4—Li1xx | 146.0 (3) |
Li1xii—Li2—Li1xxii | 68.9 (3) | Li1xii—Li4—Li1xx | 45.014 (11) |
Li1xx—Li2—Li1xxii | 111.1 (3) | Li1xxxix—Li4—Li1xx | 134.986 (10) |
Li1xxi—Li2—Li1xxii | 180.0 | Li1viii—Li4—Li1xx | 88.8 (3) |
Li4xvii—Li2—Bixxiii | 53.109 (11) | Li1xviii—Li4—Li1xx | 91.2 (3) |
Li4—Li2—Bixxiii | 126.891 (11) | Li1xxi—Li4—Li1xx | 45.014 (10) |
Li1xviii—Li2—Bixxiii | 124.37 (18) | Li1x—Li4—Li1xx | 134.986 (11) |
Li1xix—Li2—Bixxiii | 125.3 (3) | Li1xvi—Li4—Li1xx | 177.5 (5) |
Li1xii—Li2—Bixxiii | 54.7 (3) | Li1xix—Li4—Li1xx | 62.0 (4) |
Li1xx—Li2—Bixxiii | 55.63 (18) | Li1xv—Li4—Li1xx | 119.984 (12) |
Li1xxi—Li2—Bixxiii | 124.37 (18) | Bivi—Li4—Li1xxii | 90.72 (15) |
Li1xxii—Li2—Bixxiii | 55.63 (18) | Bixxv—Li4—Li1xxii | 34.0 (3) |
Li4xvii—Li2—Bivi | 126.891 (11) | Bixxvii—Li4—Li1xxii | 90.72 (15) |
Li4—Li2—Bivi | 53.109 (11) | Bi—Li4—Li1xxii | 143.5 (3) |
Li1xviii—Li2—Bivi | 55.63 (18) | Li2—Li4—Li1xxii | 36.5 (3) |
Li1xix—Li2—Bivi | 54.7 (3) | Li2vi—Li4—Li1xxii | 89.28 (15) |
Li1xii—Li2—Bivi | 125.3 (3) | Li2xxv—Li4—Li1xxii | 146.0 (3) |
Li1xx—Li2—Bivi | 124.37 (18) | Li2xxvii—Li4—Li1xxii | 89.28 (15) |
Li1xxi—Li2—Bivi | 55.63 (18) | Li1xii—Li4—Li1xxii | 45.014 (11) |
Li1xxii—Li2—Bivi | 124.37 (18) | Li1xxxix—Li4—Li1xxii | 134.986 (11) |
Bixxiii—Li2—Bivi | 180.000 (11) | Li1viii—Li4—Li1xxii | 134.986 (11) |
Li4xvii—Li2—Bixxiv | 53.109 (9) | Li1xviii—Li4—Li1xxii | 45.014 (10) |
Li4—Li2—Bixxiv | 126.891 (9) | Li1xxi—Li4—Li1xxii | 91.2 (3) |
Li1xviii—Li2—Bixxiv | 124.37 (18) | Li1x—Li4—Li1xxii | 88.8 (3) |
Li1xix—Li2—Bixxiv | 55.63 (18) | Li1xvi—Li4—Li1xxii | 119.984 (12) |
Li1xii—Li2—Bixxiv | 124.37 (18) | Li1xix—Li4—Li1xxii | 62.0 (4) |
Li1xx—Li2—Bixxiv | 55.63 (18) | Li1xv—Li4—Li1xxii | 177.5 (5) |
Li1xxi—Li2—Bixxiv | 54.7 (3) | Li1xx—Li4—Li1xxii | 62.0 (4) |
Li1xxii—Li2—Bixxiv | 125.3 (3) | Bivi—Li4—Li1 | 143.5 (3) |
Bixxiii—Li2—Bixxiv | 87.677 (12) | Bixxv—Li4—Li1 | 90.72 (15) |
Bivi—Li2—Bixxiv | 92.323 (12) | Bixxvii—Li4—Li1 | 90.72 (15) |
Li4xvii—Li2—Bixxv | 126.891 (9) | Bi—Li4—Li1 | 34.0 (3) |
Li4—Li2—Bixxv | 53.109 (9) | Li2—Li4—Li1 | 146.0 (3) |
Li1xviii—Li2—Bixxv | 55.63 (18) | Li2vi—Li4—Li1 | 36.5 (3) |
Li1xix—Li2—Bixxv | 124.37 (18) | Li2xxv—Li4—Li1 | 89.28 (15) |
Li1xii—Li2—Bixxv | 55.63 (18) | Li2xxvii—Li4—Li1 | 89.28 (15) |
Li1xx—Li2—Bixxv | 124.37 (18) | Li1xii—Li4—Li1 | 91.2 (3) |
Li1xxi—Li2—Bixxv | 125.3 (3) | Li1xxxix—Li4—Li1 | 88.8 (3) |
Li1xxii—Li2—Bixxv | 54.7 (3) | Li1viii—Li4—Li1 | 45.014 (5) |
Bixxiii—Li2—Bixxv | 92.323 (11) | Li1xviii—Li4—Li1 | 134.986 (5) |
Bivi—Li2—Bixxv | 87.677 (12) | Li1xxi—Li4—Li1 | 134.986 (6) |
Bixxiv—Li2—Bixxv | 180.000 (11) | Li1x—Li4—Li1 | 45.014 (6) |
Li4xvii—Li2—Bixxvi | 53.109 (9) | Li1xvi—Li4—Li1 | 58.0 (4) |
Li4—Li2—Bixxvi | 126.891 (9) | Li1xix—Li4—Li1 | 177.5 (5) |
Li1xviii—Li2—Bixxvi | 54.7 (3) | Li1xv—Li4—Li1 | 58.0 (4) |
Li1xix—Li2—Bixxvi | 55.63 (18) | Li1xx—Li4—Li1 | 119.984 (8) |
Li1xii—Li2—Bixxvi | 124.37 (18) | Li1xxii—Li4—Li1 | 119.984 (8) |
Li1xx—Li2—Bixxvi | 125.3 (3) | Li3—In—Li3iii | 109.471 (18) |
Li1xxi—Li2—Bixxvi | 124.37 (18) | Li3—In—Li3i | 109.471 (8) |
Li1xxii—Li2—Bixxvi | 55.63 (18) | Li3iii—In—Li3i | 109.471 (9) |
Bixxiii—Li2—Bixxvi | 87.677 (12) | Li3—In—Li3ii | 109.471 (8) |
Bivi—Li2—Bixxvi | 92.323 (12) | Li3iii—In—Li3ii | 109.471 (9) |
Bixxiv—Li2—Bixxvi | 87.677 (11) | Li3i—In—Li3ii | 109.471 (17) |
Bixxv—Li2—Bixxvi | 92.323 (11) | Li3—In—Bi | 180.0 |
Li4xvii—Li2—Bixxvii | 126.891 (9) | Li3iii—In—Bi | 70.529 (17) |
Li4—Li2—Bixxvii | 53.109 (9) | Li3i—In—Bi | 70.529 (8) |
Li1xviii—Li2—Bixxvii | 125.3 (3) | Li3ii—In—Bi | 70.529 (8) |
Li1xix—Li2—Bixxvii | 124.37 (18) | Li3—In—Biiii | 70.529 (18) |
Li1xii—Li2—Bixxvii | 55.63 (18) | Li3iii—In—Biiii | 180.0 |
Li1xx—Li2—Bixxvii | 54.7 (3) | Li3i—In—Biiii | 70.529 (9) |
Li1xxi—Li2—Bixxvii | 55.63 (18) | Li3ii—In—Biiii | 70.529 (9) |
Li1xxii—Li2—Bixxvii | 124.37 (18) | Bi—In—Biiii | 109.471 (18) |
Bixxiii—Li2—Bixxvii | 92.323 (12) | Li3—In—Bii | 70.529 (9) |
Bivi—Li2—Bixxvii | 87.677 (12) | Li3iii—In—Bii | 70.529 (9) |
Bixxiv—Li2—Bixxvii | 92.323 (11) | Li3i—In—Bii | 180.0 |
Bixxv—Li2—Bixxvii | 87.677 (11) | Li3ii—In—Bii | 70.529 (17) |
Bixxvi—Li2—Bixxvii | 180.0 | Bi—In—Bii | 109.471 (8) |
Li4xvii—Li2—Li2xxviii | 35.264 (8) | Biiii—In—Bii | 109.471 (9) |
Li4—Li2—Li2xxviii | 144.736 (8) | Li3—In—Biii | 70.529 (8) |
Li1xviii—Li2—Li2xxviii | 88.6 (3) | Li3iii—In—Biii | 70.529 (9) |
Li1xix—Li2—Li2xxviii | 36.9 (3) | Li3i—In—Biii | 70.529 (17) |
Li1xii—Li2—Li2xxviii | 143.1 (3) | Li3ii—In—Biii | 180.0 |
Li1xx—Li2—Li2xxviii | 91.4 (3) | Bi—In—Biii | 109.471 (8) |
Li1xxi—Li2—Li2xxviii | 88.6 (3) | Biiii—In—Biii | 109.471 (9) |
Li1xxii—Li2—Li2xxviii | 91.4 (3) | Bii—In—Biii | 109.471 (17) |
Bixxiii—Li2—Li2xxviii | 88.374 (8) | Li3—In—Li1 | 125.264 (9) |
Bivi—Li2—Li2xxviii | 91.626 (8) | Li3iii—In—Li1 | 125.264 (8) |
Bixxiv—Li2—Li2xxviii | 43.862 (6) | Li3i—In—Li1 | 54.736 (9) |
Bixxv—Li2—Li2xxviii | 136.138 (5) | Li3ii—In—Li1 | 54.736 (9) |
Bixxvi—Li2—Li2xxviii | 43.862 (6) | Bi—In—Li1 | 54.736 (9) |
Bixxvii—Li2—Li2xxviii | 136.138 (6) | Biiii—In—Li1 | 54.736 (8) |
Li4xvii—Li2—Li2vi | 144.736 (8) | Bii—In—Li1 | 125.264 (8) |
Li4—Li2—Li2vi | 35.264 (8) | Biii—In—Li1 | 125.264 (8) |
Li1xviii—Li2—Li2vi | 91.4 (3) | Li3—In—Li1ii | 54.736 (9) |
Li1xix—Li2—Li2vi | 143.1 (3) | Li3iii—In—Li1ii | 54.736 (8) |
Li1xii—Li2—Li2vi | 36.9 (3) | Li3i—In—Li1ii | 125.264 (9) |
Li1xx—Li2—Li2vi | 88.6 (3) | Li3ii—In—Li1ii | 125.264 (9) |
Li1xxi—Li2—Li2vi | 91.4 (3) | Bi—In—Li1ii | 125.264 (9) |
Li1xxii—Li2—Li2vi | 88.6 (3) | Biiii—In—Li1ii | 125.264 (8) |
Bixxiii—Li2—Li2vi | 91.626 (8) | Bii—In—Li1ii | 54.736 (8) |
Bivi—Li2—Li2vi | 88.374 (8) | Biii—In—Li1ii | 54.736 (8) |
Bixxiv—Li2—Li2vi | 136.138 (6) | Li1—In—Li1ii | 180.0 |
Bixxv—Li2—Li2vi | 43.862 (6) | Li3—In—Li1xv | 125.264 (4) |
Bixxvi—Li2—Li2vi | 136.138 (6) | Li3iii—In—Li1xv | 54.736 (5) |
Bixxvii—Li2—Li2vi | 43.862 (5) | Li3i—In—Li1xv | 125.264 (5) |
Li2xxviii—Li2—Li2vi | 180.0 | Li3ii—In—Li1xv | 54.736 (5) |
Li4xvii—Li2—Li2xxv | 144.736 (4) | Bi—In—Li1xv | 54.736 (4) |
Li4—Li2—Li2xxv | 35.264 (5) | Biiii—In—Li1xv | 125.264 (4) |
Li1xviii—Li2—Li2xxv | 91.4 (3) | Bii—In—Li1xv | 54.736 (5) |
Li1xix—Li2—Li2xxv | 88.6 (3) | Biii—In—Li1xv | 125.264 (4) |
Li1xii—Li2—Li2xxv | 91.4 (3) | Li1—In—Li1xv | 90.0 |
Li1xx—Li2—Li2xxv | 88.6 (3) | Li1ii—In—Li1xv | 90.000 (1) |
Li1xxi—Li2—Li2xxv | 36.9 (3) | Li3—In—Li1xiii | 54.736 (4) |
Li1xxii—Li2—Li2xxv | 143.1 (3) | Li3iii—In—Li1xiii | 125.264 (4) |
Bixxiii—Li2—Li2xxv | 136.138 (10) | Li3i—In—Li1xiii | 125.264 (4) |
Bivi—Li2—Li2xxv | 43.862 (10) | Li3ii—In—Li1xiii | 54.736 (5) |
Bixxiv—Li2—Li2xxv | 91.626 (8) | Bi—In—Li1xiii | 125.264 (4) |
Bixxv—Li2—Li2xxv | 88.374 (8) | Biiii—In—Li1xiii | 54.736 (5) |
Bixxvi—Li2—Li2xxv | 136.138 (10) | Bii—In—Li1xiii | 54.736 (5) |
Bixxvii—Li2—Li2xxv | 43.862 (10) | Biii—In—Li1xiii | 125.264 (5) |
Li2xxviii—Li2—Li2xxv | 120.000 (5) | Li1—In—Li1xiii | 90.0 |
Li2vi—Li2—Li2xxv | 60.000 (5) | Li1ii—In—Li1xiii | 90.000 (1) |
Li4xvii—Li2—Li2xxix | 35.264 (5) | Li1xv—In—Li1xiii | 90.0 |
Li4—Li2—Li2xxix | 144.736 (4) | Li4—Bi—Li1 | 113.3 (4) |
Li1xviii—Li2—Li2xxix | 88.6 (3) | Li4—Bi—Li1xv | 113.3 (4) |
Li1xix—Li2—Li2xxix | 91.4 (3) | Li1—Bi—Li1xv | 105.4 (4) |
Li1xii—Li2—Li2xxix | 88.6 (3) | Li4—Bi—Li1xvi | 113.3 (4) |
Li1xx—Li2—Li2xxix | 91.4 (3) | Li1—Bi—Li1xvi | 105.4 (4) |
Li1xxi—Li2—Li2xxix | 143.1 (3) | Li1xv—Bi—Li1xvi | 105.4 (4) |
Li1xxii—Li2—Li2xxix | 36.9 (3) | Li4—Bi—Li1x | 74.3 (3) |
Bixxiii—Li2—Li2xxix | 43.862 (10) | Li1—Bi—Li1x | 70.425 (9) |
Bivi—Li2—Li2xxix | 136.138 (10) | Li1xv—Bi—Li1x | 172.4 (7) |
Bixxiv—Li2—Li2xxix | 88.374 (8) | Li1xvi—Bi—Li1x | 70.424 (18) |
Bixxv—Li2—Li2xxix | 91.626 (8) | Li4—Bi—Li1xxxix | 74.3 (3) |
Bixxvi—Li2—Li2xxix | 43.862 (10) | Li1—Bi—Li1xxxix | 172.4 (7) |
Bixxvii—Li2—Li2xxix | 136.138 (10) | Li1xv—Bi—Li1xxxix | 70.424 (11) |
Li2xxviii—Li2—Li2xxix | 60.000 (5) | Li1xvi—Bi—Li1xxxix | 70.424 (11) |
Li2vi—Li2—Li2xxix | 120.000 (5) | Li1x—Bi—Li1xxxix | 113.0 (3) |
Li2xxv—Li2—Li2xxix | 180.0 | Li4—Bi—Li1viii | 74.3 (3) |
Li4xvii—Li2—Li2xxx | 35.264 (5) | Li1—Bi—Li1viii | 70.425 (9) |
Li4—Li2—Li2xxx | 144.736 (4) | Li1xv—Bi—Li1viii | 70.424 (17) |
Li1xviii—Li2—Li2xxx | 143.1 (3) | Li1xvi—Bi—Li1viii | 172.4 (7) |
Li1xix—Li2—Li2xxx | 91.4 (3) | Li1x—Bi—Li1viii | 113.0 (3) |
Li1xii—Li2—Li2xxx | 88.6 (3) | Li1xxxix—Bi—Li1viii | 113.0 (3) |
Li1xx—Li2—Li2xxx | 36.9 (3) | Li4—Bi—In | 180.00 (3) |
Li1xxi—Li2—Li2xxx | 88.6 (3) | Li1—Bi—In | 66.7 (4) |
Li1xxii—Li2—Li2xxx | 91.4 (3) | Li1xv—Bi—In | 66.7 (4) |
Bixxiii—Li2—Li2xxx | 43.862 (10) | Li1xvi—Bi—In | 66.7 (4) |
Bivi—Li2—Li2xxx | 136.138 (10) | Li1x—Bi—In | 105.7 (3) |
Bixxiv—Li2—Li2xxx | 43.862 (10) | Li1xxxix—Bi—In | 105.7 (3) |
Bixxv—Li2—Li2xxx | 136.138 (10) | Li1viii—Bi—In | 105.7 (3) |
Bixxvi—Li2—Li2xxx | 88.374 (8) | Li4—Bi—Li2xxvii | 56.361 (9) |
Bixxvii—Li2—Li2xxx | 91.626 (8) | Li1—Bi—Li2xxvii | 126.97 (15) |
Li2xxviii—Li2—Li2xxx | 60.000 (5) | Li1xv—Bi—Li2xxvii | 126.97 (15) |
Li2vi—Li2—Li2xxx | 120.000 (5) | Li1xvi—Bi—Li2xxvii | 56.9 (4) |
Li2xxv—Li2—Li2xxx | 120.000 (11) | Li1x—Bi—Li2xxvii | 56.58 (16) |
Li2xxix—Li2—Li2xxx | 60.000 (11) | Li1xxxix—Bi—Li2xxvii | 56.58 (16) |
Li4xvii—Li2—Li2xxvii | 144.736 (5) | Li1viii—Bi—Li2xxvii | 130.6 (3) |
Li4—Li2—Li2xxvii | 35.264 (5) | In—Bi—Li2xxvii | 123.639 (9) |
Li1xviii—Li2—Li2xxvii | 36.9 (3) | Li4—Bi—Li2vi | 56.361 (12) |
Li1xix—Li2—Li2xxvii | 88.6 (3) | Li1—Bi—Li2vi | 56.9 (4) |
Li1xii—Li2—Li2xxvii | 91.4 (3) | Li1xv—Bi—Li2vi | 126.97 (15) |
Li1xx—Li2—Li2xxvii | 143.1 (3) | Li1xvi—Bi—Li2vi | 126.97 (15) |
Li1xxi—Li2—Li2xxvii | 91.4 (3) | Li1x—Bi—Li2vi | 56.58 (16) |
Li1xxii—Li2—Li2xxvii | 88.6 (3) | Li1xxxix—Bi—Li2vi | 130.6 (3) |
Bixxiii—Li2—Li2xxvii | 136.138 (10) | Li1viii—Bi—Li2vi | 56.58 (16) |
Bivi—Li2—Li2xxvii | 43.862 (10) | In—Bi—Li2vi | 123.639 (12) |
Bixxiv—Li2—Li2xxvii | 136.138 (10) | Li2xxvii—Bi—Li2vi | 92.275 (11) |
Bixxv—Li2—Li2xxvii | 43.862 (10) | Li4—Bi—Li2xxv | 56.361 (9) |
Bixxvi—Li2—Li2xxvii | 91.626 (8) | Li1—Bi—Li2xxv | 126.97 (15) |
Bixxvii—Li2—Li2xxvii | 88.374 (8) | Li1xv—Bi—Li2xxv | 56.9 (4) |
Li2xxviii—Li2—Li2xxvii | 120.000 (5) | Li1xvi—Bi—Li2xxv | 126.97 (15) |
Li2vi—Li2—Li2xxvii | 60.000 (5) | Li1x—Bi—Li2xxv | 130.6 (3) |
Li2xxv—Li2—Li2xxvii | 60.000 (11) | Li1xxxix—Bi—Li2xxv | 56.58 (16) |
Li2xxix—Li2—Li2xxvii | 120.000 (11) | Li1viii—Bi—Li2xxv | 56.58 (16) |
Li2xxx—Li2—Li2xxvii | 180.0 | In—Bi—Li2xxv | 123.639 (9) |
Li1xxxi—Li3—Li1xiv | 180.0 (7) | Li2xxvii—Bi—Li2xxv | 92.275 (11) |
Li1xxxi—Li3—Li1xxxii | 107.7 (4) | Li2vi—Bi—Li2xxv | 92.275 (11) |
Li1xiv—Li3—Li1xxxii | 72.3 (4) | Li4—Bi—Li3i | 126.827 (8) |
Li1xxxi—Li3—Li1ii | 72.3 (4) | Li1—Bi—Li3i | 52.80 (18) |
Li1xiv—Li3—Li1ii | 107.7 (4) | Li1xv—Bi—Li3i | 119.9 (4) |
Li1xxxii—Li3—Li1ii | 180.0 (7) | Li1xvi—Bi—Li3i | 52.80 (18) |
Li1xxxi—Li3—Li1xxxiii | 107.7 (4) | Li1x—Bi—Li3i | 52.5 (3) |
Li1xiv—Li3—Li1xxxiii | 72.3 (4) | Li1xxxix—Bi—Li3i | 123.20 (18) |
Li1xxxii—Li3—Li1xxxiii | 107.7 (4) | Li1viii—Bi—Li3i | 123.20 (18) |
Li1ii—Li3—Li1xxxiii | 72.3 (4) | In—Bi—Li3i | 53.173 (8) |
Li1xxxi—Li3—Li1xiii | 72.3 (4) | Li2xxvii—Bi—Li3i | 89.934 (1) |
Li1xiv—Li3—Li1xiii | 107.7 (4) | Li2vi—Bi—Li3i | 89.934 (1) |
Li1xxxii—Li3—Li1xiii | 72.3 (4) | Li2xxv—Bi—Li3i | 176.812 (15) |
Li1ii—Li3—Li1xiii | 107.7 (4) | Li4—Bi—Li3iii | 126.827 (11) |
Li1xxxiii—Li3—Li1xiii | 180.0 | Li1—Bi—Li3iii | 119.9 (4) |
Li1xxxi—Li3—Li5xxxiv | 68.8 (4) | Li1xv—Bi—Li3iii | 52.80 (18) |
Li1xiv—Li3—Li5xxxiv | 111.2 (4) | Li1xvi—Bi—Li3iii | 52.80 (18) |
Li1xxxii—Li3—Li5xxxiv | 68.8 (4) | Li1x—Bi—Li3iii | 123.20 (18) |
Li1ii—Li3—Li5xxxiv | 111.2 (4) | Li1xxxix—Bi—Li3iii | 52.5 (3) |
Li1xxxiii—Li3—Li5xxxiv | 68.8 (4) | Li1viii—Bi—Li3iii | 123.20 (18) |
Li1xiii—Li3—Li5xxxiv | 111.2 (4) | In—Bi—Li3iii | 53.173 (11) |
Li1xxxi—Li3—Inxxxiv | 68.8 (4) | Li2xxvii—Bi—Li3iii | 89.934 (1) |
Li1xiv—Li3—Inxxxiv | 111.2 (4) | Li2vi—Bi—Li3iii | 176.812 (15) |
Li1xxxii—Li3—Inxxxiv | 68.8 (4) | Li2xxv—Bi—Li3iii | 89.934 (1) |
Li1ii—Li3—Inxxxiv | 111.2 (4) | Li3i—Bi—Li3iii | 87.769 (11) |
Li1xxxiii—Li3—Inxxxiv | 68.8 (4) | Li4—Bi—Li3ii | 126.827 (8) |
Li1xiii—Li3—Inxxxiv | 111.2 (4) | Li1—Bi—Li3ii | 52.80 (18) |
Li5xxxiv—Li3—Inxxxiv | 0.0 | Li1xv—Bi—Li3ii | 52.80 (18) |
Li1xxxi—Li3—In | 111.2 (4) | Li1xvi—Bi—Li3ii | 119.9 (4) |
Li1xiv—Li3—In | 68.8 (4) | Li1x—Bi—Li3ii | 123.20 (18) |
Li1xxxii—Li3—In | 111.2 (4) | Li1xxxix—Bi—Li3ii | 123.20 (18) |
Li1ii—Li3—In | 68.8 (4) | Li1viii—Bi—Li3ii | 52.5 (3) |
Li1xxxiii—Li3—In | 111.2 (4) | In—Bi—Li3ii | 53.173 (8) |
Li1xiii—Li3—In | 68.8 (4) | Li2xxvii—Bi—Li3ii | 176.812 (16) |
Li5xxxiv—Li3—In | 180.0 | Li2vi—Bi—Li3ii | 89.934 (1) |
Inxxxiv—Li3—In | 180.0 | Li2xxv—Bi—Li3ii | 89.934 (1) |
Li1xxxi—Li3—Bixxxv | 53.96 (16) | Li3i—Bi—Li3ii | 87.769 (11) |
Li1xiv—Li3—Bixxxv | 126.04 (16) | Li3iii—Bi—Li3ii | 87.769 (11) |
Li1xxxii—Li3—Bixxxv | 125.1 (4) | Li4—Bi—Bivi | 35.264 (9) |
Li1ii—Li3—Bixxxv | 54.9 (4) | Li1—Bi—Bivi | 148.5 (4) |
Li1xxxiii—Li3—Bixxxv | 53.96 (16) | Li1xv—Bi—Bivi | 93.3 (3) |
Li1xiii—Li3—Bixxxv | 126.04 (16) | Li1xvi—Bi—Bivi | 93.3 (3) |
Li5xxxiv—Li3—Bixxxv | 56.299 (11) | Li1x—Bi—Bivi | 93.3 (3) |
Inxxxiv—Li3—Bixxxv | 56.299 (11) | Li1xxxix—Bi—Bivi | 39.0 (3) |
In—Li3—Bixxxv | 123.701 (11) | Li1viii—Bi—Bivi | 93.3 (3) |
Li1xxxi—Li3—Biiii | 126.04 (16) | In—Bi—Bivi | 144.736 (8) |
Li1xiv—Li3—Biiii | 53.96 (16) | Li2xxvii—Bi—Bivi | 46.161 (6) |
Li1xxxii—Li3—Biiii | 54.9 (4) | Li2vi—Bi—Bivi | 91.625 (8) |
Li1ii—Li3—Biiii | 125.1 (4) | Li2xxv—Bi—Bivi | 46.161 (6) |
Li1xxxiii—Li3—Biiii | 126.04 (16) | Li3i—Bi—Bivi | 136.094 (5) |
Li1xiii—Li3—Biiii | 53.96 (16) | Li3iii—Bi—Bivi | 91.563 (7) |
Li5xxxiv—Li3—Biiii | 123.701 (11) | Li3ii—Bi—Bivi | 136.094 (5) |
Inxxxiv—Li3—Biiii | 123.701 (11) | Li4—Bi—Bixxv | 35.264 (5) |
In—Li3—Biiii | 56.299 (11) | Li1—Bi—Bixxv | 93.3 (3) |
Bixxxv—Li3—Biiii | 180.0 | Li1xv—Bi—Bixxv | 148.5 (4) |
Li1xxxi—Li3—Bixxxvi | 125.1 (4) | Li1xvi—Bi—Bixxv | 93.3 (3) |
Li1xiv—Li3—Bixxxvi | 54.9 (4) | Li1x—Bi—Bixxv | 39.0 (3) |
Li1xxxii—Li3—Bixxxvi | 53.96 (16) | Li1xxxix—Bi—Bixxv | 93.3 (3) |
Li1ii—Li3—Bixxxvi | 126.04 (16) | Li1viii—Bi—Bixxv | 93.3 (3) |
Li1xxxiii—Li3—Bixxxvi | 53.96 (16) | In—Bi—Bixxv | 144.736 (5) |
Li1xiii—Li3—Bixxxvi | 126.04 (16) | Li2xxvii—Bi—Bixxv | 46.161 (11) |
Li5xxxiv—Li3—Bixxxvi | 56.299 (8) | Li2vi—Bi—Bixxv | 46.161 (10) |
Inxxxiv—Li3—Bixxxvi | 56.299 (8) | Li2xxv—Bi—Bixxv | 91.625 (8) |
In—Li3—Bixxxvi | 123.701 (8) | Li3i—Bi—Bixxv | 91.563 (7) |
Bixxxv—Li3—Bixxxvi | 92.189 (10) | Li3iii—Bi—Bixxv | 136.094 (10) |
Biiii—Li3—Bixxxvi | 87.811 (10) | Li3ii—Bi—Bixxv | 136.094 (10) |
Li1xxxi—Li3—Bii | 54.9 (4) | Bivi—Bi—Bixxv | 59.999 (5) |
Li1xiv—Li3—Bii | 125.1 (4) | Li4—Bi—Bixxvii | 35.264 (5) |
Li1xxxii—Li3—Bii | 126.04 (16) | Li1—Bi—Bixxvii | 93.3 (3) |
Li1ii—Li3—Bii | 53.96 (16) | Li1xv—Bi—Bixxvii | 93.3 (3) |
Li1xxxiii—Li3—Bii | 126.04 (16) | Li1xvi—Bi—Bixxvii | 148.5 (4) |
Li1xiii—Li3—Bii | 53.96 (16) | Li1x—Bi—Bixxvii | 93.3 (3) |
Li5xxxiv—Li3—Bii | 123.701 (8) | Li1xxxix—Bi—Bixxvii | 93.3 (3) |
Inxxxiv—Li3—Bii | 123.701 (8) | Li1viii—Bi—Bixxvii | 39.0 (3) |
In—Li3—Bii | 56.299 (8) | In—Bi—Bixxvii | 144.736 (5) |
Bixxxv—Li3—Bii | 87.811 (10) | Li2xxvii—Bi—Bixxvii | 91.625 (8) |
Biiii—Li3—Bii | 92.189 (10) | Li2vi—Bi—Bixxvii | 46.161 (10) |
Bixxxvi—Li3—Bii | 180.000 (10) | Li2xxv—Bi—Bixxvii | 46.161 (11) |
Li1xxxi—Li3—Bixxxii | 53.96 (16) | Li3i—Bi—Bixxvii | 136.094 (10) |
Li1xiv—Li3—Bixxxii | 126.04 (16) | Li3iii—Bi—Bixxvii | 136.094 (10) |
Li1xxxii—Li3—Bixxxii | 53.96 (16) | Li3ii—Bi—Bixxvii | 91.563 (7) |
Li1ii—Li3—Bixxxii | 126.04 (16) | Bivi—Bi—Bixxvii | 59.999 (5) |
Li1xxxiii—Li3—Bixxxii | 125.1 (4) | Bixxv—Bi—Bixxvii | 59.999 (11) |
Li1xiii—Li3—Bixxxii | 54.9 (4) | Li4—Bi—Bixl | 90.920 (4) |
Li5xxxiv—Li3—Bixxxii | 56.299 (9) | Li1—Bi—Bixl | 90.832 (9) |
Inxxxiv—Li3—Bixxxii | 56.299 (9) | Li1xv—Bi—Bixl | 35.7 (2) |
In—Li3—Bixxxii | 123.701 (8) | Li1xvi—Bi—Bixl | 141.1 (2) |
Bixxxv—Li3—Bixxxii | 92.189 (10) | Li1x—Bi—Bixl | 148.06 (14) |
Biiii—Li3—Bixxxii | 87.811 (10) | Li1xxxix—Bi—Bixl | 88.996 (9) |
Bixxxvi—Li3—Bixxxii | 92.189 (10) | Li1viii—Bi—Bixl | 35.11 (14) |
Bii—Li3—Bixxxii | 87.811 (10) | In—Bi—Bixl | 89.080 (4) |
Li1xxxi—Li3—Biii | 126.04 (16) | Li2xxvii—Bi—Bixl | 136.068 (5) |
Li1xiv—Li3—Biii | 53.96 (16) | Li2vi—Bi—Bixl | 91.593 (8) |
Li1xxxii—Li3—Biii | 126.04 (16) | Li2xxv—Bi—Bixl | 43.839 (6) |
Li1ii—Li3—Biii | 53.96 (16) | Li3i—Bi—Bixl | 133.821 (6) |
Li1xxxiii—Li3—Biii | 54.9 (4) | Li3iii—Bi—Bixl | 88.407 (8) |
Li1xiii—Li3—Biii | 125.1 (4) | Li3ii—Bi—Bixl | 46.095 (5) |
Li5xxxiv—Li3—Biii | 123.701 (8) | Bivi—Bi—Bixl | 90.0 |
Inxxxiv—Li3—Biii | 123.701 (8) | Bixxv—Bi—Bixl | 121.296 (7) |
In—Li3—Biii | 56.299 (9) | Bixxvii—Bi—Bixl | 61.306 (9) |
Bixxxv—Li3—Biii | 87.811 (10) | Li4—Bi—Biiv | 90.920 (16) |
Biiii—Li3—Biii | 92.189 (10) | Li1—Bi—Biiv | 35.7 (2) |
Bixxxvi—Li3—Biii | 87.811 (10) | Li1xv—Bi—Biiv | 90.832 (18) |
Bii—Li3—Biii | 92.189 (10) | Li1xvi—Bi—Biiv | 141.1 (2) |
Bixxxii—Li3—Biii | 180.00 (2) | Li1x—Bi—Biiv | 88.996 (16) |
Li1xxxi—Li3—Li3iii | 91.5 (3) | Li1xxxix—Bi—Biiv | 148.06 (14) |
Li1xiv—Li3—Li3iii | 88.5 (3) | Li1viii—Bi—Biiv | 35.11 (14) |
Li1xxxii—Li3—Li3iii | 146.4 (4) | In—Bi—Biiv | 89.080 (16) |
Li1ii—Li3—Li3iii | 33.6 (4) | Li2xxvii—Bi—Biiv | 136.068 (10) |
Li1xxxiii—Li3—Li3iii | 91.5 (3) | Li2vi—Bi—Biiv | 43.839 (10) |
Li1xiii—Li3—Li3iii | 88.5 (3) | Li2xxv—Bi—Biiv | 91.593 (8) |
Li5xxxiv—Li3—Li3iii | 144.736 (8) | Li3i—Bi—Biiv | 88.407 (8) |
Inxxxiv—Li3—Li3iii | 144.736 (8) | Li3iii—Bi—Biiv | 133.821 (11) |
In—Li3—Li3iii | 35.264 (8) | Li3ii—Bi—Biiv | 46.095 (11) |
Bixxxv—Li3—Li3iii | 88.436 (7) | Bivi—Bi—Biiv | 121.296 (8) |
Biiii—Li3—Li3iii | 91.564 (7) | Bixxv—Bi—Biiv | 89.999 (19) |
Bixxxvi—Li3—Li3iii | 133.884 (5) | Bixxvii—Bi—Biiv | 61.306 (12) |
Bii—Li3—Li3iii | 46.116 (5) | Bixl—Bi—Biiv | 62.595 (13) |
Bixxxii—Li3—Li3iii | 133.884 (5) |
Symmetry codes: (i) −x+1/4, y, −z+1/4; (ii) −x+1/4, −y+1/4, z; (iii) x, −y+1/4, −z+1/4; (iv) x+1/4, −y+1/2, z−1/4; (v) x+1/4, y−1/4, −z+1/2; (vi) x, −y+3/4, −z+3/4; (vii) x, y−1/2, z−1/2; (viii) y+1/4, −z+1/2, x−1/4; (ix) −y+1/2, −z, −x+1/2; (x) −z+1/2, x−1/4, y+1/4; (xi) −z+1/2, −x+1/2, −y; (xii) −x+1, −y+1/2, −z+1/2; (xiii) −y+1/4, z, −x+1/4; (xiv) z, −x+1/4, −y+1/4; (xv) z, x, y; (xvi) y, z, x; (xvii) −x+1, −y+1, −z+1; (xviii) −y+1/2, −z+1/2, −x+1; (xix) x, y+1/2, z+1/2; (xx) y+1/2, z+1/2, x; (xxi) −z+1/2, −x+1, −y+1/2; (xxii) z+1/2, x, y+1/2; (xxiii) −x+1, y+1/4, z+1/4; (xxiv) x+1/4, −y+1, z+1/4; (xxv) −x+3/4, y, −z+3/4; (xxvi) x+1/4, y+1/4, −z+1; (xxvii) −x+3/4, −y+3/4, z; (xxviii) x, −y+5/4, −z+5/4; (xxix) −x+5/4, y, −z+5/4; (xxx) −x+5/4, −y+5/4, z; (xxxi) −z, x−1/4, y−1/4; (xxxii) x−1/4, y−1/4, −z; (xxxiii) y−1/4, −z, x−1/4; (xxxiv) −x, −y, −z; (xxxv) −x, y−1/4, z−1/4; (xxxvi) x−1/4, −y, z−1/4; (xxxvii) x, −y−1/4, −z−1/4; (xxxviii) −x−1/4, y, −z−1/4; (xxxix) x−1/4, y+1/4, −z+1/2; (xl) −x+1/2, y+1/4, z−1/4. |