Download citation
Download citation
link to html
The copper(II) ion in the synanti carboxyl­ate-bridged one-dimensional zigzag chain title complex, {[Cu(C16H18N3O2)]ClO4}n, exhibits a distorted trigonal–bipyramidal environment. Two N atoms and one carboxyl­ate O atom of the ligand form the basal plane, while the axial positions are filled by an N atom of the ligand and one O atom belonging to the carboxyl­ate group of an adjacent mol­ecule. The crystal packing is enhanced by C—H...O(perchlorate) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106049870/ga3027sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106049870/ga3027Isup2.hkl
Contains datablock I

CCDC reference: 602064

Comment top

The inclusion of a carboxylate group in Schiff base polydentate ligands gives a wide variety of polynuclear complexes ranging from discrete entities to multi-dimensional chain complexes. It has been widely observed that such compounds can be influenced by the metal ion and the possible counter-ion effects (Choi, Jeon, Lee et al., 2004; Colacio et al., 1992; Doedens, 1976; Tanase et al., 2005). For example, the self-assembly of copper(II) perchlorate with bis(2-pyridylmethyl)amino-2-ethanoic acid (Hpmea) leads to the carboxylate-bridged one-dimensional chain complex {[Cu(µ-pmea)](ClO4)·H2O}n, hereafter (II), in which each copper(II) ion has a distorted square-pyramidal geometry with an N3O basal plane and a carboxylate O atom in the axial position (Choi, Jeon, Lee et al., 2004a). However, bis(2-pyridylmethyl)amino-4-butyric acid (Hpmba) reacts with CuCl2 to give rise to the mononuclear compound [Cu(Hpmba)Cl2]·H2O, which exhibits a distorted square-pyramidal environment with an N3Cl basal plane and a Cl atom in the axial position (Choi, Jeon, Ryu et al., 2004). To investigate different molecular topologies, we have prepared and present here the structure of the one-dimensional chain copper(II) title complex {[Cu(µ-paba)](ClO4)}n, (I) [Hpaba is bis(2-pyridylmethyl)amino-2-butyric acid].

Because the Hpaba ligand does not saturate the coordination position on the copper(II) ion, a self-assembly reaction may occur through the deprotonated carboxylate group, leading to a carboxylate-bridged one-dimensional chain (Figs. 1 and 2) with an intramolecular Cu···Cu distance of 5.241 (1) Å (Table 1). Each copper(II) ion involves a CuN3O2 chromophore. The CuII coordination geometry is distorted trigonal–bipyramidal with τ = 0.64, where the structure index τ is defined as (β - α)/60 (where β and α are the largest coordination angles); τ has the values of 1 and 0 for trigonal–bipyramidal (D3h) and square-pyramidal (C4v) geometries, respectively (Addison et al., 1984). The three atoms in the trigonal plane are N1, N3 and O1 of the paba ligand, while the axial positions are filled by atom N2 and atom O2 belonging to a symmetry-related carboxylate group. The average Cu—N and Cu—O distances are 2.025 (1) and 2.022 (1) Å, respectively, which are comparable to those found in (II) [2.013 (5) and 2.097 (7) Å], {[Cu(µ-pmpa)](ClO4)·2H2O}n [Hpmpa is bis(2-pyridylmethyl)amino-3-propionic acid; 1.995 (3) and 2.168 (3) Å; Choi, Jeon, Lee et al., 2004] and {[Cu(dpa)(CH3COO)](ClO4)·0.5THF}n [dpa is N,N-bis(pyridine-2-ylmethyl)amine and THF is tetrahydrofuran; 1.990 (2) and 2.169 (2) Å; Tanase et al., 2005], hereafter (III). The different molecular topology of (I) compared with synanti one-dimensional chain complex (II) (τ = 0.16) may be attributed to the steric hindrance through the substitution of the ethyl group on the 2-carbon position of the Hpmea ligand.

The Cu atom is displaced 0.270 (1) Å from the least-squares plane defined by the N2O basal plane, towards carboxylate atom O2. The N1—Cu—N2 and N2—Cu—N3 bite angles of the five-membered chelate rings (Table 1) are similar to those expected for {[Cu(µ-papa)(H2O)](ClO4)·2H2O}n [Hpapa is 2-pyridylmethylamino-3-propionic acid; 81.5 (1)°; Colacio et al., 2000], {[Cu(µ-pmoa)(H2O)](ClO4)·2H2O}n [Hpmoa is 2-pyridylmethylamino-3-butyric acid; 81.7 (1)°; Colacio et al., 2000) and (III) [83.00 (14) and 82.20 (14)°]. The dihedral angle between the plane of the carboxylate group and the CuN2O plane is 87.2 (2)°. The axial Cu—N2 and Cu—O2 linkages are not perfectly perpendicular to the CuN2O plane, the N2—Cu—N, N2—Cu—O1, O2—Cu—N and O2—Cu—O1 angles ranging from 80.7 (1) to 101.6 (1)°. The average Cu—N(secondary amine, basal plane) distance of 2.018 (1) Å is slightly shorter than that of Cu—N2(tertiary amine, axial) [2.039 (2) Å]. The average N2—C [1.492 (2) Å] distance involving the tertiary amine is slightly longer than the average N1—C [1.339 (3) Å] and N3—C [1.343 (2) Å] distances involving the secondary amines. This fact may be due to the sp3-hybridization of the coordinated tertiary N atom. The IR spectrum of the complex shows the νas(COO) stretching frequency at 1608 cm-1 and νsym(COO) at 1421 cm-1, respectively. Their difference, Δν = 187 cm-1, is characteristic of the synanti coordination mode of the bridging carboxylate group (Colacio et al., 2000).

As illustrated in Fig. 1, the carboxylate polymer linking atoms (O2 and C14) are generated by means of the 21 screw axes at x = z = 1/4 parallel to the b axis, thus forming an infinite one-dimensional zigzag chain as shown in Fig. 2. The perchlorate anion has typical geometry [Cl—O distance range 1.378 (3)–1.432 (3) Å, mean 1.405 (2) Å; O—Cl—O angle range 105.0 (2)–112.9 (2)°, mean angle 109.4 (1)°], similiar to the perchlorate geometry reported by Hemmings et al.(1990). As shown in Fig. 1 and Table 2, atoms C6 and C7 in the cation are hydrogen bonded to atoms O6i and O3ii of the perchlorate anions, respectively; pyridine atom C12 is also hydrogen bonded to perchlorate atom O6, so the latter atom is bifurcated. Additionally atom C10 in the pyridine ring is hydrogen bonded to a carboxylate atom (O1iii) of the polymer. The weak C16—H16B···O2i bond is noted for completeness. This intermolecular hydrogen-bond network further stabilizes the crystal structure of (I).

Related literature top

For related literature, see: Addison et al. (1984); Choi, Jeon, Lee, Choi, Kim, Lim & Kim (2004); Choi, Jeon, Ryu, Oh, Lim & Kim (2004); Colacio et al. (1992, 2000); Doedens (1976); Hemmings et al. (1990); Tanase et al. (2005).

Experimental top

An aqueous solution (20 ml) of Cu(ClO4)2·6H2O (185 mg, 0.5 mmol) and bis(2-pyridylmethyl)amino-2-butyric acid (Hpaba) (129 mg, 0.5 mmol) was heated to reflux for 1 h and then cooled to room temperature. The solution was filtered and left at room temperature until purple crystals formed. The product was filtered and recrystallized from a hot water–methanol solution (1:1, 10 ml). Analysis found: C 42.85, H 4.14, N 9.46; calculated for C16H18ClCuN3O6: C 42.96, H 4.06, N 9.39%.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their carrier atoms, with Uiso(H) equal to 1.5Ueq(C16) for methyl H atoms and 1.2Ueq(C) for the other H atoms. The highest peak and deepest holes in the final difference density map are 1.07 and 0.35 Å, respectively, from atom C15.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), plus two polymeric linking atoms C14v and O2i belonging to two different neighboring units. Displacement ellipsoids are drawn at the 20% probability level and H atoms have been omitted for clarity. All hydrogen-bond contacts are shown by dashed lines. [Smmetry codes: (i) -x + 3/2, y - 1/2, -z + 1/2; (ii) x + 1/2, -y + 3/2, z - 1/2; (ii) x + 1/2, -y + 3/2, z + 1/2; (iv) x - 1/2, -y + 3/2, z - 1/2; (v) -x + 3/2, y + 1/2, -z + 1/2; (vi) x - 1/2, -y + 3/2, z + 1/2.]
[Figure 2] Fig. 2. A partial view of the cell contents, showing a representative infinite carboxylate-bridged molecular chain parallel to the b axis. The large black spheres denote Cu atoms. Only the C12···O6 hydrogen bonds are shown for clarity. The symmetry codes are as in Fig. 1 [additional symmetry code: (vii) x, y - 1, z].
catena-Poly[[copper(II)-µ-2-[bis(2-pyridylmethyl)amino]butyrato- κ4N,N',N'',O:κO'] perchlorate] top
Crystal data top
[Cu(C16H18N3O2)]ClO4F(000) = 916
Mr = 447.32Dx = 1.603 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7474 reflections
a = 14.0597 (11) Åθ = 2.4–28.4°
b = 9.4711 (7) ŵ = 1.36 mm1
c = 14.5223 (12) ÅT = 293 K
β = 106.626 (1)°Rectangular rod, purple
V = 1853.0 (3) Å30.41 × 0.23 × 0.16 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4627 independent reflections
Radiation source: fine-focus sealed tube3844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.643, Tmax = 0.808k = 1212
18596 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0566P)2 + 1.6027P]
where P = (Fo2 + 2Fc2)/3
4627 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu(C16H18N3O2)]ClO4V = 1853.0 (3) Å3
Mr = 447.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.0597 (11) ŵ = 1.36 mm1
b = 9.4711 (7) ÅT = 293 K
c = 14.5223 (12) Å0.41 × 0.23 × 0.16 mm
β = 106.626 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4627 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3844 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.808Rint = 0.022
18596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.98 e Å3
4627 reflectionsΔρmin = 0.35 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.81714 (2)0.80939 (3)0.22282 (2)0.03182 (10)
Cl0.74331 (5)0.97369 (7)0.63634 (5)0.05018 (17)
N10.81304 (18)0.9109 (2)0.10006 (15)0.0433 (5)
N20.92476 (15)0.6920 (2)0.19033 (15)0.0346 (4)
N30.91789 (16)0.8157 (2)0.35394 (15)0.0383 (4)
O10.74937 (12)0.60765 (17)0.21184 (13)0.0376 (4)
O20.70257 (13)0.88655 (18)0.25203 (15)0.0439 (4)
O30.6808 (3)0.8704 (4)0.6524 (4)0.1455 (19)
O40.8420 (3)0.9560 (5)0.6957 (3)0.1237 (13)
O50.7126 (3)1.1094 (3)0.6511 (3)0.1124 (12)
O60.7500 (3)0.9639 (4)0.5400 (2)0.0982 (10)
C10.7662 (3)1.0323 (3)0.0674 (2)0.0647 (9)
H10.73101.07760.10410.078*
C20.7682 (4)1.0928 (4)0.0186 (3)0.0770 (12)
H20.73381.17590.04020.092*
C30.8222 (3)1.0272 (4)0.0712 (2)0.0728 (11)
H30.82561.06610.12900.087*
C40.8714 (3)0.9038 (4)0.0380 (2)0.0619 (8)
H40.90780.85800.07340.074*
C50.8663 (2)0.8479 (3)0.04893 (19)0.0434 (6)
C60.9126 (2)0.7086 (3)0.0863 (2)0.0481 (6)
H6A0.87130.63270.05160.058*
H6B0.97710.70140.07470.058*
C71.01822 (18)0.7573 (3)0.2510 (2)0.0437 (6)
H7A1.02930.84740.22390.052*
H7B1.07420.69620.25310.052*
C81.00912 (19)0.7784 (3)0.3507 (2)0.0435 (6)
C91.0867 (2)0.7636 (4)0.4339 (2)0.0603 (8)
H91.14970.73800.43110.072*
C101.0683 (3)0.7881 (4)0.5219 (3)0.0718 (10)
H101.11910.77780.57880.086*
C110.9756 (3)0.8274 (3)0.5243 (2)0.0606 (8)
H110.96270.84460.58260.073*
C120.9011 (2)0.8411 (3)0.43876 (19)0.0470 (6)
H120.83800.86860.44010.056*
C130.91664 (19)0.5409 (3)0.2197 (2)0.0424 (6)
H130.95710.53810.28700.051*
C140.81167 (15)0.5118 (2)0.22494 (15)0.0303 (4)
C150.9629 (3)0.4326 (3)0.1719 (3)0.0675 (10)
H15A0.91550.40860.11100.081*
H15B1.01980.47540.15760.081*
C160.9962 (4)0.3000 (4)0.2250 (4)0.0881 (15)
H16A1.02370.23850.18670.132*
H16B0.94070.25460.23860.132*
H16C1.04580.32080.28420.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03131 (15)0.02832 (15)0.03835 (17)0.00009 (10)0.01401 (11)0.00092 (11)
Cl0.0543 (4)0.0469 (4)0.0544 (4)0.0036 (3)0.0239 (3)0.0011 (3)
N10.0571 (13)0.0375 (11)0.0398 (11)0.0043 (10)0.0210 (10)0.0039 (9)
N20.0324 (9)0.0323 (10)0.0428 (11)0.0032 (8)0.0168 (8)0.0003 (8)
N30.0366 (10)0.0411 (11)0.0365 (10)0.0021 (8)0.0095 (8)0.0028 (8)
O10.0289 (8)0.0308 (8)0.0549 (10)0.0006 (6)0.0148 (7)0.0026 (7)
O20.0383 (9)0.0300 (8)0.0700 (12)0.0008 (7)0.0259 (9)0.0073 (8)
O30.152 (4)0.095 (2)0.242 (5)0.037 (3)0.141 (4)0.009 (3)
O40.079 (2)0.156 (4)0.118 (3)0.020 (2)0.000 (2)0.023 (3)
O50.156 (3)0.0669 (18)0.133 (3)0.028 (2)0.071 (3)0.0137 (18)
O60.121 (3)0.114 (3)0.0717 (18)0.007 (2)0.0471 (18)0.0111 (17)
C10.099 (3)0.0503 (17)0.0557 (18)0.0257 (17)0.0399 (18)0.0143 (14)
C20.127 (3)0.0542 (19)0.061 (2)0.023 (2)0.045 (2)0.0219 (16)
C30.120 (3)0.0576 (19)0.0503 (18)0.002 (2)0.041 (2)0.0139 (15)
C40.092 (2)0.0566 (18)0.0499 (17)0.0014 (17)0.0403 (17)0.0009 (14)
C50.0543 (15)0.0387 (13)0.0407 (13)0.0050 (11)0.0193 (11)0.0031 (10)
C60.0605 (17)0.0461 (15)0.0434 (14)0.0065 (12)0.0239 (13)0.0034 (11)
C70.0314 (11)0.0472 (14)0.0562 (15)0.0077 (10)0.0180 (11)0.0066 (12)
C80.0348 (12)0.0440 (14)0.0497 (14)0.0060 (10)0.0091 (11)0.0026 (11)
C90.0405 (15)0.067 (2)0.0630 (19)0.0009 (14)0.0013 (13)0.0012 (16)
C100.070 (2)0.074 (2)0.0522 (19)0.0008 (18)0.0124 (16)0.0000 (16)
C110.078 (2)0.0611 (19)0.0361 (14)0.0016 (16)0.0060 (14)0.0038 (13)
C120.0544 (16)0.0485 (15)0.0386 (13)0.0004 (12)0.0139 (12)0.0028 (11)
C130.0349 (12)0.0328 (12)0.0644 (17)0.0017 (9)0.0222 (12)0.0036 (11)
C140.0289 (10)0.0303 (10)0.0335 (11)0.0013 (8)0.0119 (8)0.0027 (8)
C150.068 (2)0.0486 (17)0.104 (3)0.0125 (15)0.054 (2)0.0081 (17)
C160.104 (3)0.061 (2)0.125 (4)0.040 (2)0.074 (3)0.030 (2)
Geometric parameters (Å, º) top
Cu—Cui5.241 (1)C4—H40.9300
Cu—O21.9234 (17)C5—C61.503 (4)
Cu—N12.012 (2)C6—H6A0.9700
Cu—N32.023 (2)C6—H6B0.9700
Cu—N22.039 (2)C7—C81.502 (4)
Cu—O12.1207 (16)C7—H7A0.9700
Cl—O31.378 (3)C7—H7B0.9700
Cl—O51.392 (3)C8—C91.384 (4)
Cl—O41.418 (3)C9—C101.394 (6)
Cl—O61.432 (3)C9—H90.9300
N1—C51.336 (3)C10—C111.366 (6)
N1—C11.342 (4)C10—H100.9300
N2—C61.479 (3)C11—C121.383 (4)
N2—C71.491 (3)C11—H110.9300
N2—C131.507 (3)C12—H120.9300
N3—C121.341 (3)C13—C151.489 (4)
N3—C81.344 (3)C13—C141.525 (3)
O1—C141.238 (3)C13—H130.9800
O2—C14i1.264 (3)C14—O2ii1.264 (3)
C1—C21.381 (4)C15—C161.478 (5)
C1—H10.9300C15—H15A0.9700
C2—C31.371 (5)C15—H15B0.9700
C2—H20.9300C16—H16A0.9600
C3—C41.373 (5)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C4—C51.390 (4)
O2—Cu—N1101.56 (9)C5—C6—H6A109.2
O2—Cu—N3100.73 (9)N2—C6—H6B109.2
N1—Cu—N3130.90 (9)C5—C6—H6B109.2
O2—Cu—N2169.12 (7)H6A—C6—H6B107.9
N1—Cu—N283.71 (9)N2—C7—C8108.73 (19)
N3—Cu—N282.40 (9)N2—C7—H7A109.9
O2—Cu—O188.41 (7)C8—C7—H7A109.9
N1—Cu—O1117.75 (8)N2—C7—H7B109.9
N3—Cu—O1106.02 (8)C8—C7—H7B109.9
N2—Cu—O180.71 (7)H7A—C7—H7B108.3
O3—Cl—O5112.9 (2)N3—C8—C9121.2 (3)
O3—Cl—O4111.9 (3)N3—C8—C7114.5 (2)
O5—Cl—O4108.0 (3)C9—C8—C7124.4 (3)
O3—Cl—O6110.0 (3)C8—C9—C10118.5 (3)
O5—Cl—O6108.7 (2)C8—C9—H9120.8
O4—Cl—O6105.0 (2)C10—C9—H9120.8
C5—N1—C1118.8 (2)C11—C10—C9119.8 (3)
C5—N1—Cu113.60 (18)C11—C10—H10120.1
C1—N1—Cu127.56 (19)C9—C10—H10120.1
C6—N2—C7112.6 (2)C10—C11—C12119.1 (3)
C6—N2—C13113.2 (2)C10—C11—H11120.5
C7—N2—C13110.6 (2)C12—C11—H11120.5
C6—N2—Cu107.59 (16)N3—C12—C11121.4 (3)
C7—N2—Cu102.95 (15)N3—C12—H12119.3
C13—N2—Cu109.33 (14)C11—C12—H12119.3
C12—N3—C8120.0 (2)C15—C13—N2116.3 (2)
C12—N3—Cu127.60 (19)C15—C13—C14117.2 (2)
C8—N3—Cu112.15 (17)N2—C13—C14109.80 (19)
C14—O1—Cu111.48 (14)C15—C13—H13103.8
C14i—O2—Cu128.39 (15)N2—C13—H13103.8
N1—C1—C2122.7 (3)C14—C13—H13103.8
N1—C1—H1118.6O1—C14—O2ii124.8 (2)
C2—C1—H1118.6O1—C14—C13120.8 (2)
C3—C2—C1118.3 (3)O2ii—C14—C13114.32 (19)
C3—C2—H2120.9C16—C15—C13117.2 (3)
C1—C2—H2120.9C16—C15—H15A108.0
C2—C3—C4119.6 (3)C13—C15—H15A108.0
C2—C3—H3120.2C16—C15—H15B108.0
C4—C3—H3120.2C13—C15—H15B108.0
C3—C4—C5119.4 (3)H15A—C15—H15B107.2
C3—C4—H4120.3C15—C16—H16A109.5
C5—C4—H4120.3C15—C16—H16B109.5
N1—C5—C4121.2 (3)H16A—C16—H16B109.5
N1—C5—C6116.4 (2)C15—C16—H16C109.5
C4—C5—C6122.2 (3)H16A—C16—H16C109.5
N2—C6—C5111.9 (2)H16B—C16—H16C109.5
N2—C6—H6A109.2
O2—Cu—N1—C5161.13 (19)C1—N1—C5—C41.8 (5)
N3—Cu—N1—C583.5 (2)Cu—N1—C5—C4179.8 (2)
N2—Cu—N1—C59.2 (2)C1—N1—C5—C6176.9 (3)
O1—Cu—N1—C566.8 (2)Cu—N1—C5—C64.7 (3)
O2—Cu—N1—C120.7 (3)C3—C4—C5—N11.1 (5)
N3—Cu—N1—C194.7 (3)C3—C4—C5—C6175.9 (3)
N2—Cu—N1—C1168.9 (3)C7—N2—C6—C584.9 (3)
O1—Cu—N1—C1115.0 (3)C13—N2—C6—C5148.7 (2)
O2—Cu—N2—C699.3 (5)Cu—N2—C6—C527.8 (3)
N1—Cu—N2—C620.37 (17)N1—C5—C6—N222.5 (4)
N3—Cu—N2—C6153.16 (17)C4—C5—C6—N2162.4 (3)
O1—Cu—N2—C699.15 (16)C6—N2—C7—C8161.6 (2)
O2—Cu—N2—C7141.6 (4)C13—N2—C7—C870.7 (3)
N1—Cu—N2—C798.73 (16)Cu—N2—C7—C846.0 (2)
N3—Cu—N2—C734.06 (16)C12—N3—C8—C90.9 (4)
O1—Cu—N2—C7141.75 (16)Cu—N3—C8—C9174.1 (2)
O2—Cu—N2—C1324.0 (5)C12—N3—C8—C7178.3 (2)
N1—Cu—N2—C13143.67 (18)Cu—N3—C8—C76.7 (3)
N3—Cu—N2—C1383.55 (17)N2—C7—C8—N336.6 (3)
O1—Cu—N2—C1324.15 (16)N2—C7—C8—C9144.2 (3)
O2—Cu—N3—C1211.4 (2)N3—C8—C9—C100.1 (5)
N1—Cu—N3—C12127.1 (2)C7—C8—C9—C10179.2 (3)
N2—Cu—N3—C12158.1 (2)C8—C9—C10—C110.8 (6)
O1—Cu—N3—C1280.1 (2)C9—C10—C11—C120.5 (6)
O2—Cu—N3—C8174.09 (17)C8—N3—C12—C111.2 (4)
N1—Cu—N3—C858.4 (2)Cu—N3—C12—C11173.0 (2)
N2—Cu—N3—C816.46 (18)C10—C11—C12—N30.5 (5)
O1—Cu—N3—C894.47 (18)C6—N2—C13—C1539.0 (3)
O2—Cu—O1—C14156.86 (17)C7—N2—C13—C1588.4 (3)
N1—Cu—O1—C14100.90 (17)Cu—N2—C13—C15158.9 (2)
N3—Cu—O1—C1456.15 (17)C6—N2—C13—C1497.1 (2)
N2—Cu—O1—C1423.11 (16)C7—N2—C13—C14135.5 (2)
N1—Cu—O2—C14i66.6 (2)Cu—N2—C13—C1422.8 (2)
N3—Cu—O2—C14i69.4 (2)Cu—O1—C14—O2ii160.09 (19)
N2—Cu—O2—C14i175.2 (4)Cu—O1—C14—C1316.2 (3)
O1—Cu—O2—C14i175.4 (2)C15—C13—C14—O1139.9 (3)
C5—N1—C1—C22.1 (6)N2—C13—C14—O14.2 (3)
Cu—N1—C1—C2179.9 (3)C15—C13—C14—O2ii43.5 (4)
N1—C1—C2—C31.5 (7)N2—C13—C14—O2ii179.1 (2)
C1—C2—C3—C40.8 (7)N2—C13—C15—C16153.5 (3)
C2—C3—C4—C50.6 (6)C14—C13—C15—C1673.6 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O6ii0.972.443.401 (5)173
C7—H7B···O3iii0.972.463.258 (4)140
C10—H10···O1iv0.932.503.323 (4)148
C12—H12···O60.932.343.132 (4)143
C16—H16B···O2ii0.962.413.021 (4)122
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C16H18N3O2)]ClO4
Mr447.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.0597 (11), 9.4711 (7), 14.5223 (12)
β (°) 106.626 (1)
V3)1853.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.41 × 0.23 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.643, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
18596, 4627, 3844
Rint0.022
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.02
No. of reflections4627
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.35

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu—Cui5.241 (1)N2—C61.479 (3)
Cu—O21.9234 (17)N2—C71.491 (3)
Cu—N12.012 (2)N2—C131.507 (3)
Cu—N32.023 (2)N3—C121.341 (3)
Cu—N22.039 (2)N3—C81.344 (3)
Cu—O12.1207 (16)O1—C141.238 (3)
N1—C51.336 (3)O2—C14i1.264 (3)
N1—C11.342 (4)
O2—Cu—N1101.56 (9)O2—Cu—O188.41 (7)
O2—Cu—N3100.73 (9)N1—Cu—O1117.75 (8)
N1—Cu—N3130.90 (9)N3—Cu—O1106.02 (8)
O2—Cu—N2169.12 (7)N2—Cu—O180.71 (7)
N1—Cu—N283.71 (9)O1—C14—O2ii124.8 (2)
N3—Cu—N282.40 (9)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O6ii0.972.443.401 (5)173
C7—H7B···O3iii0.972.463.258 (4)140
C10—H10···O1iv0.932.503.323 (4)148
C12—H12···O60.932.343.132 (4)143
C16—H16B···O2ii0.962.413.021 (4)122
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x+1/2, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds