Download citation
Download citation
link to html
Crystals of the title compounds, namely 1-(diamino­methyl­ene)thio­uron-1-ium perchlorate, C2H7N4S+·ClO4, 1-(di­amino­methyl­ene)thio­uron-1-ium hydrogen sulfate, C2H7N4S+·HSO4, 1-(diamino­methyl­ene)thio­uron-1-ium dihydrogen phosphate, C2H7N4S+·H2PO4, and its isomorphic relative 1-(di­amino­methyl­ene)thio­uron-1-ium dihydrogen arsenate, C2H7N4S+·H2AsO4, are built up from a nonplanar 1-(di­amino­methyl­ene)thio­uron-1-ium cation and the respective anion linked together via N—H...O hydrogen bonds. Both arms of the cation are planar, but they are twisted with respect to one another around the central N atom. Ionic and extensive hydrogen-bonding inter­actions join oppositely charged units into layers in the perchlorate, double layers in the hydrogen sulfate, and a three-dimensional network in the dihydrogen phosphate and dihydrogen arsenate salts. This work demonstrates the usefulness of 1-(diamino­methyl­ene)­thio­urea in crystal engineering for the formation of supra­molecular networks with acids.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108013504/ga3088sup1.cif
Contains datablocks global, Ia, Ib, Ic, Id

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108013504/ga3088Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108013504/ga3088Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108013504/ga3088Icsup4.hkl
Contains datablock Ic

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108013504/ga3088Idsup5.hkl
Contains datablock Id

CCDC references: 692712; 692713; 692714; 692715

Comment top

1-(Diaminomethylene)thiourea and its imino tautomer, i.e. 2-imino-4-thiobiuret, are potentially interesting compounds that can be used in crystal engineering to build up extended frameworks, since they contain arrays of hydrogen-bonding sites (Janczak & Perpétuo, 2008). In addition, both tautomers have different potential coordination modes, since they can act as N,N or N,S ligands and can form several different types of complexes with metal ions. The coordination of metal ions by these tautomers is possible by both the neutral and the deprotonated (anionic) forms (Doxiadi et al., 2003). Beyond these known complexes, 2-imino-4-thiobiuret and 1-(diaminomethylene)thiourea can form salts with acids (Perpétuo & Janczak, 2008). We present here the crystal structures of 1-(diaminomethylene)thiouron-1-ium perchlorate, (Ia), and hydrogen sulfate, (Ib), as well as the isomorphic dihydrogen phosphate, (Ic), and dihydrogen arsenate, (Id); the conformations of the cations are compared with that of the neutral molecule as well as with those in the chloride, bromide and iodide salts.

The asymmetric units of the title compounds are illustrated in Figs. 1(a)–1(d). The two arms of the 1-(diaminomethylene)thiouron-1-ium cation containing the N1/C2/N3/N4 and N1/C1/N2/S1 fragments are planar but twisted from coplanarity at the central atom N1. The dihedral angle between the planes defined by the N1/C2/N3/N4 and N1/C1/N2/S1 arms is 1.4 (1)° in (Ia), 9.8 (1)° in (Ib), 4.4 (1)° in (Ic) and 2.1 (1)° in (Id). Therefore, the 1-(diaminomethylene)thiouron-1-ium cations in the crystals of (Ia) and (Id) are almost planar [the deviations of the non-H atoms from the mean plane are smaller than 0.021 (1) Å in (Ia) and 0.058 (1) Å in (Id); see Table 6]. A similar nonplanar, twisted conformation of the cation is observed in the crystals of other salts, as shown by their dihedral angles [22.9 (1)° for the chloride, 15.2 (1)° for the bromide and 4.2 (1)° for the iodide (Perpétuo & Janczak, 2008)]. Ab-initio molecular orbital (MO) calculations indicate that the most stable conformation of the 1-(diaminomethylene)thiouron-1-ium cation is twisted with a dihedral angle of 6.2° (Perpétuo & Janczak, 2008). In single crystals, the neutral 1-(diaminomethylene)thiourea molecule also has a twisted conformation, with a dihedral angle of 22.2 (1)°, while the MO-calculated dihedral angle is 6.6° (Janczak & Perpétuo, 2008).

In the present crystal structures, the respective C—N and C—S bond lengths are very similar (Table 5). The C—N bonds involving the central N1 atom are significantly longer than the C—N bonds linking the amine groups. The values of the C1—S1 bond lengths in these salts are shorter than that in the neutral molecule of 1-(diaminomethylene)thiourea [1.7364 (9) Å; Janczak & Perpétuo, 2008] and are comparable to those found in the crystals of 1-(diaminomethylene)thiouron-1-ium chloride, bromide and iodide (Perpétuo & Janczak, 2008) as well as in thiourea derivatives (average C—S distance of 1.663 Å; Allen et al. 1997). The C1—S1 bond lengths in (Ia)–(Id) are slightly longer than the pure double CS bond as observed in thioformaldehyde, CH2S [1.6109 (8) Å; Johnson et al., 1971], but shorter than the distance of 1.74 Å which represents 50% double-bond character (Abrahams, 1956; Allen et al. 1987). Thus the bond order of C1—S1 in (Ia)–(Id) is somewhat less than 2, because of the partial delocalization of the π electrons of the double C1—S1 and C2—N1 bonds over the single C—N bonds linking the NH2 groups. This results in a shortening of the single C—NH2 bonds and the elongation of the double double C1S1 and C2N1 bonds. Thus the bond order of the C—N bonds linking the amine groups is greater than that of the C—N bonds involving the central N1 atom. Ab-initio MO calculations show that interaction of atom S1 with the amine group (N4) leads to the rotation of both arms of the 1-(diaminomethylene)thiouron-1-ium cation around the C—N1 bond by 6.2°, as well as the distortion of the C—N—C, N—C—N and N—C—S angles from 120°, as expected for sp2-hydridization. The protonation of the central N1 atom decreases the steric effect of the lone-pair of electrons at atom N1 and makes the C1—N1—C2 angle greater by ~6° in comparison with the neutral molecule (Janczak & Perpétuo, 2008), which is consistent with the valence-shell electron-pair repulsion model (Gillespie, 1992). The anionic species of (Ia)–(Id) each exhibit a slightly distorted tetrahedral geometry, with bond lengths and angles typical of those found in several crystals of this kind (Allen, 2002).

In all of the title crystal structures, besides the interionic interactions, the oppositely charged units interact through hydrogen-bonding systems. Atom S1 contains two lone-pair electrons and so acts as a hydrogen-bond acceptor. The non-bonded S···H contact requires that the distance between the S and H atoms is shorter than the sum of the van der Waals radii of these atoms [rS = 1.80 Å (Bondi, 1964) and rH = 1.10 Å (Rowland & Taylor, 1996]. Besides S···H contacts, N—H···O contacts between the oppositely charged units with distances shorter than the sum of the van der Waals radii of O and H atoms are observed in these structures [rO = 1.52 Å and rH = 1.10 Å; Bondi, 1964; Pauling, 1960]. In (Ia) (Table 1), 1-(diaminomethylene)thiouron-1-ium cations related by inversion interact via a pair of N—H···S hydrogen bonds, forming a dimeric structure (Fig. 2a). These dimers are linked via N—H···O hydrogen bonds with ClO4- anions, forming layers that are arranged almost parallel to the (102) crystallographic plane and are separated by a distance of ~3.58 Å.

In (Ib), the 1-(diaminomethylene)thiouron-1-ium cations are discrete and they are surrounded by the HSO4- counter-ions (Fig. 2b). HSO4- anions related by inversion interact by a pair of O2—H2···O1i hydrogen bonds [O3—H3 in Table 2; also note that there are some small discrepancies between the O,N—H distances in Tables 1 and 2 and those given in the CIF _geom_bond loops], forming centrosymmetric dimers. The discrete 1-(diaminomethylene)thiouron-1-ium cations interact via N—H···O hydrogen bonds with the (HSO4-)2 dimers, forming double layers that are parallel to the (001) crystallographic plane (Table 2). The sheets in the double layers are interconnected by N—H···O hydrogen bonds, while between the double layers no hydrogen bonds are observed (Fig. 2b). The sheets in the double layer are separated by a distance of ~3.22 Å and the double layers by ~2.92 Å.

In the isomorphic structures of (Ic) and (Id) (Tables 3 and 4), and as found in (Ia), the 1-(diaminomethylene)thiouron-1-ium cations interact via N—H···S hydrogen bonds, forming centrosymmetric dimers. The anions, i.e. H2PO4- or H2AsO4-, are involved in two pairs of almost linear O—H···O hydrogen bonds to form pseudo-one-dimensional chains that run almost parallel to the [100] direction (Fig. 3a). The anionic chains interconnect the cationic dimers by N—H···O hydrogen bonds, forming a three-dimensional hydrogen-bonded network (Fig. 3b). In the crystal structures of (Ic) and (Id), the dimeric cations form a stacking structure with a distance between the mean planes of the dimers of 3.71 (1) and 3.42 (1) Å, respectively.

This study illustrates the utility of 1-(diaminomethylene)thiourea in crystal engineering for developing a variety of supramolecular structures, namely layers, double layers and three-dimensional networks.

Related literature top

For related literature, see: Abrahams (1956); Allen (2002); Allen et al. (1987, 1997); Bondi (1964); Doxiadi et al. (2003); Gillespie (1992); Janczak & Perpétuo (2008); Johnson et al. (1971); Pauling (1960); Perpétuo & Janczak (2008); Rowland & Taylor (1996).

Experimental top

Crystals of (Ia), (Ib), (Ic) and (Id) were obtained from 2-imino-4-thiobiuret (purchased from Aldrich, 99% purity) dissolved in 5% aqueous solutions of HCLO4, H2SO4, H3PO4 and H3AsO4 acids, respectively [quantities of reagents?]. After several days at room temperature, suitable crystals were formed.

Refinement top

H atoms were located in difference Fourier maps and were refined with isotropic displacement parameters in all structures.

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction Poland, 2005); cell refinement: CrysAlis CCD (Oxford Diffraction Poland, 2005); data reduction: CrysAlis RED (Oxford Diffraction Poland, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Views of (a) (Ia), (b) (Ib), (c) (Ic) and (d) (Id) with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms as spheres of arbitrary radii. Dashed lines indicate hydrogen-bond contacts.
[Figure 2] Fig. 2. Views of the crystal packing of (Ia) and (Ib), showing hydrogen-bonded layers in (Ia) (a) and double layers in (Ib) (b). Dashed lines represent N—H···S hydrogen bonds in dimers of 1-(diaminomethylene)thiouron-1-ium and O—H···O bonds in dimers involving HSO4-.
[Figure 3] Fig. 3. (a) A view of the anionic chains in the isomorphic structures of (Ic) and (Id), and (b) the crystal packing of (Id), showing the three-dimensional hydrogen-bonded network. Dashed lines represent N—H···S hydrogen bonds in dimers of 1-(diaminomethylene)thiouron-1-ium.
(Ia) 1-(diaminomethylene)thiouron-1-ium perchlorate top
Crystal data top
C2H7N4S+·ClO4Z = 2
Mr = 218.63F(000) = 224
Triclinic, P1Dx = 1.731 Mg m3
Dm = 1.73 Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8011 (9) ÅCell parameters from 1038 reflections
b = 8.4511 (14) Åθ = 3.7–29.5°
c = 9.430 (2) ŵ = 0.69 mm1
α = 109.15 (2)°T = 295 K
β = 91.441 (10)°Paralellepiped, colourless
γ = 104.639 (11)°0.37 × 0.22 × 0.14 mm
V = 419.59 (15) Å3
Data collection top
Kuma KM-4
diffractometer with CCD area detector
2110 independent reflections
Radiation source: fine-focus sealed tube1516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 29.5°, θmin = 3.7°
ω–scanh = 68
Absorption correction: analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
k = 1111
Tmin = 0.785, Tmax = 0.910l = 1212
5108 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2110 reflectionsΔρmax = 0.29 e Å3
137 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (5)
Crystal data top
C2H7N4S+·ClO4γ = 104.639 (11)°
Mr = 218.63V = 419.59 (15) Å3
Triclinic, P1Z = 2
a = 5.8011 (9) ÅMo Kα radiation
b = 8.4511 (14) ŵ = 0.69 mm1
c = 9.430 (2) ÅT = 295 K
α = 109.15 (2)°0.37 × 0.22 × 0.14 mm
β = 91.441 (10)°
Data collection top
Kuma KM-4
diffractometer with CCD area detector
2110 independent reflections
Absorption correction: analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
1516 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.910Rint = 0.016
5108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.00Δρmax = 0.29 e Å3
2110 reflectionsΔρmin = 0.35 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33875 (8)0.76951 (6)0.65728 (5)0.03919 (17)
O10.2814 (4)0.5916 (2)0.5601 (2)0.0906 (7)
O20.1475 (4)0.7940 (3)0.7455 (2)0.0895 (7)
O30.5514 (3)0.8099 (2)0.7523 (2)0.0810 (6)
O40.3649 (3)0.88027 (19)0.56864 (17)0.0528 (4)
S10.65094 (9)0.28351 (7)0.92477 (6)0.04618 (19)
C10.7894 (3)0.4101 (2)0.8318 (2)0.0330 (4)
N10.9665 (3)0.3752 (2)0.73814 (18)0.0350 (4)
H11.018 (4)0.448 (3)0.701 (2)0.042 (6)*
N20.7399 (4)0.5550 (2)0.8389 (2)0.0490 (5)
H210.812 (4)0.611 (3)0.795 (3)0.053 (7)*
H220.644 (4)0.590 (3)0.892 (3)0.054 (7)*
C21.0630 (3)0.2376 (2)0.7004 (2)0.0359 (4)
N31.2312 (3)0.2417 (3)0.6086 (2)0.0496 (5)
H311.298 (4)0.160 (3)0.587 (3)0.053 (7)*
H321.267 (4)0.320 (4)0.580 (3)0.058 (8)*
N40.9943 (4)0.1105 (2)0.7496 (3)0.0535 (5)
H421.064 (4)0.029 (3)0.724 (3)0.062 (7)*
H410.886 (6)0.113 (4)0.816 (3)0.096 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0538 (3)0.0521 (3)0.0679 (3)0.0150 (2)0.0159 (2)0.0267 (2)
O10.0967 (19)0.0368 (9)0.0737 (13)0.0236 (11)0.0041 (13)0.0183 (9)
O20.0716 (13)0.0936 (16)0.0998 (17)0.0381 (12)0.0450 (12)0.0584 (14)
O30.0564 (11)0.0649 (12)0.0737 (16)0.0097 (9)0.0192 (11)0.0292 (12)
O40.0671 (10)0.0462 (8)0.0617 (9)0.0211 (7)0.0230 (8)0.0358 (8)
S10.0521 (3)0.0442 (3)0.0549 (3)0.0201 (3)0.0258 (3)0.0280 (3)
C10.0312 (9)0.0305 (9)0.0347 (9)0.0065 (7)0.0046 (7)0.0102 (7)
N10.0398 (9)0.0295 (8)0.0404 (8)0.0113 (7)0.0157 (7)0.0169 (7)
N20.0569 (12)0.0432 (10)0.0658 (12)0.0292 (9)0.0337 (10)0.0306 (10)
C20.0318 (9)0.0312 (9)0.0399 (10)0.0100 (8)0.0038 (8)0.0060 (8)
N30.0484 (11)0.0505 (11)0.0560 (11)0.0240 (9)0.0236 (9)0.0181 (10)
N40.0514 (11)0.0412 (10)0.0840 (15)0.0261 (9)0.0268 (11)0.0320 (10)
Geometric parameters (Å, º) top
Cl1—O31.4044 (17)N2—H210.78 (3)
Cl1—O21.4198 (17)N2—H220.81 (3)
Cl1—O11.4283 (18)C2—N41.283 (3)
Cl1—O41.4304 (14)C2—N31.322 (3)
S1—C11.6656 (19)N3—H310.85 (2)
C1—N21.308 (2)N3—H320.78 (3)
C1—N11.396 (2)N4—H420.86 (3)
N1—C21.364 (2)N4—H410.90 (3)
N1—H10.81 (2)
O3—Cl1—O2109.83 (14)C1—N2—H21118.6 (18)
O3—Cl1—O1109.43 (13)C1—N2—H22121.4 (17)
O2—Cl1—O1108.83 (14)H21—N2—H22120 (2)
O3—Cl1—O4110.59 (10)N4—C2—N3121.6 (2)
O2—Cl1—O4108.40 (10)N4—C2—N1122.37 (18)
O4—Cl1—O4109.73 (10)N3—C2—N1116.0 (2)
N2—C1—N1112.58 (18)C2—N3—H31117.5 (16)
N2—C1—S1122.50 (16)C2—N3—H32119 (2)
N1—C1—S1124.92 (14)H31—N3—H32123 (2)
C2—N1—C1130.08 (17)C2—N4—H42118.5 (17)
C2—N1—H1115.6 (14)C2—N4—H41120 (2)
C1—N1—H1114.3 (14)H42—N4—H41121 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (2)2.40 (2)3.159 (3)156.5 (19)
N2—H21···O2i0.78 (2)2.32 (3)3.050 (3)156 (2)
N2—H22···S1ii0.80 (3)2.63 (3)3.434 (2)177 (2)
N3—H31···O4iii0.85 (2)2.44 (3)3.245 (3)158 (2)
N3—H31···O4iv0.85 (2)2.50 (2)3.104 (2)129 (2)
N3—H32···O1i0.78 (3)2.35 (3)3.082 (3)159 (3)
N4—H42···O2iii0.86 (3)2.22 (3)3.014 (3)153 (2)
N4—H41···S10.90 (3)2.25 (3)2.981 (2)138 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x+1, y1, z; (iv) x+2, y+1, z+1.
(Ib) 1-(diaminomethylene)thiouron-1-ium hydrogen sulfate top
Crystal data top
C2H7N4S+·HO4SZ = 2
Mr = 216.24F(000) = 224
Triclinic, P1Dx = 1.783 Mg m3
Dm = 1.78 Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8371 (11) ÅCell parameters from 1225 reflections
b = 8.103 (2) Åθ = 3.2–27.9°
c = 8.104 (2) ŵ = 0.65 mm1
α = 60.88 (1)°T = 295 K
β = 65.99 (1)°Paralellepiped, colourless
γ = 87.54 (2)°0.37 × 0.27 × 0.22 mm
V = 402.85 (17) Å3
Data collection top
Kuma KM-4
diffractometer with CCD area detector
1917 independent reflections
Radiation source: fine-focus sealed tube1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.005
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 27.9°, θmin = 3.2°
ω–scanh = 1010
Absorption correction: analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
k = 1010
Tmin = 0.796, Tmax = 0.871l = 1010
4199 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.2478P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1917 reflectionsΔρmax = 0.52 e Å3
134 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.101 (6)
Crystal data top
C2H7N4S+·HO4Sγ = 87.54 (2)°
Mr = 216.24V = 402.85 (17) Å3
Triclinic, P1Z = 2
a = 7.8371 (11) ÅMo Kα radiation
b = 8.103 (2) ŵ = 0.65 mm1
c = 8.104 (2) ÅT = 295 K
α = 60.88 (1)°0.37 × 0.27 × 0.22 mm
β = 65.99 (1)°
Data collection top
Kuma KM-4
diffractometer with CCD area detector
1917 independent reflections
Absorption correction: analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
1731 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.871Rint = 0.005
4199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.070All H-atom parameters refined
S = 1.01Δρmax = 0.52 e Å3
1917 reflectionsΔρmin = 0.49 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.76851 (5)0.01455 (5)0.33072 (6)0.02512 (12)
O10.69633 (16)0.19365 (15)0.28570 (19)0.0336 (3)
O20.97036 (17)0.04752 (19)0.2646 (2)0.0451 (3)
O30.68035 (18)0.11706 (16)0.57480 (18)0.0335 (3)
H30.561 (4)0.161 (4)0.628 (4)0.059 (7)*
O40.7104 (2)0.08542 (19)0.2500 (2)0.0449 (3)
S10.45743 (6)0.60771 (7)0.16711 (9)0.04241 (15)
N10.11009 (18)0.70288 (18)0.2241 (2)0.0263 (3)
H10.046 (3)0.789 (3)0.225 (3)0.032 (5)*
C10.2893 (2)0.7335 (2)0.2114 (2)0.0250 (3)
C20.0226 (2)0.5553 (2)0.2314 (2)0.0249 (3)
N20.3173 (2)0.8791 (2)0.2346 (3)0.0368 (3)
H210.234 (3)0.943 (3)0.258 (3)0.039 (5)*
H220.433 (3)0.908 (3)0.217 (3)0.046 (6)*
N30.1488 (2)0.5632 (2)0.2417 (3)0.0385 (3)
H310.206 (3)0.467 (3)0.252 (3)0.048 (6)*
H320.204 (3)0.654 (3)0.248 (3)0.045 (6)*
N40.1035 (2)0.4111 (2)0.2324 (3)0.0373 (3)
H410.225 (3)0.415 (3)0.218 (3)0.048 (6)*
H420.042 (3)0.324 (4)0.237 (4)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.02383 (19)0.02176 (18)0.0340 (2)0.00638 (13)0.01303 (15)0.01719 (15)
O10.0596 (8)0.0404 (7)0.0520 (7)0.0089 (6)0.0284 (6)0.0327 (6)
O20.0339 (6)0.0436 (7)0.0509 (8)0.0089 (5)0.0153 (5)0.0252 (6)
O30.0342 (6)0.0304 (6)0.0340 (6)0.0061 (5)0.0183 (5)0.0127 (5)
O40.0344 (6)0.0221 (5)0.0444 (6)0.0095 (4)0.0183 (5)0.0168 (5)
S10.0387 (2)0.0433 (3)0.0631 (3)0.01779 (18)0.0243 (2)0.0427 (2)
N10.0255 (6)0.0238 (6)0.0364 (7)0.0093 (5)0.0153 (5)0.0192 (5)
C10.0263 (7)0.0242 (6)0.0276 (7)0.0040 (5)0.0124 (5)0.0149 (6)
C20.0260 (7)0.0243 (6)0.0245 (6)0.0035 (5)0.0121 (5)0.0117 (5)
N20.0350 (7)0.0357 (7)0.0558 (9)0.0098 (6)0.0214 (7)0.0337 (7)
N30.0313 (7)0.0357 (7)0.0583 (9)0.0085 (6)0.0254 (7)0.0266 (7)
N40.0359 (7)0.0336 (7)0.0566 (10)0.0093 (6)0.0270 (7)0.0288 (7)
Geometric parameters (Å, º) top
S1—C11.6615 (16)N3—H310.87 (2)
N1—C21.3685 (19)N3—H320.85 (2)
N1—C11.3902 (18)N4—H410.91 (2)
N1—H10.84 (2)N4—H420.84 (2)
C1—N21.3212 (19)S2—O21.4380 (13)
C2—N41.303 (2)S2—O41.4427 (12)
C2—N31.313 (2)S2—O11.4633 (11)
N2—H210.83 (2)S2—O31.5571 (15)
N2—H220.89 (2)O3—H30.84 (2)
C2—N1—C1129.74 (13)C2—N3—H32121.3 (15)
C2—N1—H1114.9 (13)H31—N3—H32121 (2)
C1—N1—H1115.3 (13)C2—N4—H41118.1 (14)
N2—C1—N1112.97 (14)C2—N4—H42117.7 (15)
N2—C1—S1121.75 (12)H41—N4—H42124 (2)
N1—C1—S1125.27 (11)O2—S2—O4113.95 (9)
N4—C2—N3121.22 (15)O2—S2—O1111.09 (8)
N4—C2—N1121.83 (14)O1—S2—O4111.90 (8)
N3—C2—N1116.94 (14)O2—S2—O3104.43 (9)
C1—N2—H21123.1 (15)O4—S2—O3108.00 (8)
C1—N2—H22115.2 (14)O1—S2—O3106.90 (8)
H21—N2—H22122 (2)S2—O3—H3111.5 (14)
C2—N3—H31116.9 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.86 (3)1.83 (3)2.6714 (19)166 (2)
N1—H1···O2ii0.84 (2)2.29 (2)3.073 (2)155.2 (17)
N2—H21···O2ii0.83 (2)2.19 (2)2.963 (2)154.0 (19)
N2—H22···O4iii0.89 (2)2.30 (2)3.164 (2)166 (2)
N3—H31···O1iv0.87 (2)2.23 (2)3.080 (2)168 (2)
N3—H32···O4ii0.85 (2)2.19 (2)3.031 (2)168 (2)
N4—H41···S10.92 (2)2.22 (2)2.9798 (18)140.4 (19)
N4—H41···O3i0.92 (2)2.47 (2)3.029 (2)119.6 (17)
N4—H42···O2iv0.85 (3)2.22 (3)3.021 (2)159 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x1, y, z.
(Ic) 1-(diaminomethylene)thiouron-1-ium dihydrogen phosphate top
Crystal data top
C2H7N4S+·H2O4PZ = 2
Mr = 216.16F(000) = 224
Triclinic, P1Dx = 1.654 Mg m3
Dm = 1.65 Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.5229 (8) ÅCell parameters from 1257 reflections
b = 8.3241 (11) Åθ = 3.0–28.0°
c = 11.574 (2) ŵ = 0.54 mm1
α = 88.160 (12)°T = 295 K
β = 86.191 (11)°Paralellepiped, colourless
γ = 87.359 (10)°0.38 × 0.18 × 0.17 mm
V = 434.15 (13) Å3
Data collection top
Kuma KM-4
diffractometer with CDD area detector
2067 independent reflections
Radiation source: fine-focus sealed tube1757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 28.0°, θmin = 3.0°
ω–scanh = 55
Absorption correction: analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
k = 1010
Tmin = 0.812, Tmax = 0.909l = 1515
4924 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.072All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.0855P]
where P = (Fo2 + 2Fc2)/3
2067 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C2H7N4S+·H2O4Pγ = 87.359 (10)°
Mr = 216.16V = 434.15 (13) Å3
Triclinic, P1Z = 2
a = 4.5229 (8) ÅMo Kα radiation
b = 8.3241 (11) ŵ = 0.54 mm1
c = 11.574 (2) ÅT = 295 K
α = 88.160 (12)°0.38 × 0.18 × 0.17 mm
β = 86.191 (11)°
Data collection top
Kuma KM-4
diffractometer with CDD area detector
2067 independent reflections
Absorption correction: analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
1757 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.909Rint = 0.012
4924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.072All H-atom parameters refined
S = 1.00Δρmax = 0.27 e Å3
2067 reflectionsΔρmin = 0.26 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.28127 (7)0.65855 (4)0.60758 (3)0.02430 (11)
O10.4070 (2)0.49667 (11)0.64587 (8)0.0298 (2)
O20.01641 (19)0.71967 (12)0.68229 (9)0.0310 (2)
O30.1843 (2)0.65850 (13)0.48022 (9)0.0375 (3)
H30.305 (4)0.600 (2)0.4396 (18)0.050 (5)*
O40.5195 (2)0.78877 (12)0.60441 (11)0.0403 (3)
H40.675 (6)0.759 (3)0.625 (2)0.084 (8)*
S10.34160 (11)0.23701 (5)0.97068 (4)0.04931 (14)
C10.1533 (3)0.35003 (17)0.87071 (12)0.0315 (3)
N10.0335 (3)0.29052 (14)0.78114 (11)0.0323 (3)
H10.131 (4)0.364 (2)0.7380 (16)0.039 (5)*
C20.0998 (3)0.13590 (16)0.74954 (12)0.0311 (3)
N20.1685 (4)0.50789 (16)0.87172 (13)0.0404 (3)
H210.086 (4)0.562 (2)0.8152 (16)0.035 (4)*
H220.269 (4)0.557 (2)0.9211 (18)0.049 (5)*
N30.2781 (4)0.11737 (19)0.65666 (14)0.0473 (4)
H310.332 (4)0.027 (2)0.6361 (16)0.041 (5)*
H320.324 (4)0.202 (3)0.6131 (18)0.057 (6)*
N40.0002 (4)0.01142 (16)0.80830 (14)0.0461 (4)
H420.041 (4)0.083 (2)0.7754 (16)0.041 (5)*
H410.114 (4)0.024 (2)0.8625 (17)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02301 (17)0.02320 (17)0.02656 (19)0.00039 (12)0.00156 (13)0.00079 (13)
O10.0312 (5)0.0243 (5)0.0334 (5)0.0025 (4)0.0025 (4)0.0008 (4)
O20.0240 (5)0.0339 (5)0.0348 (6)0.0007 (4)0.0008 (4)0.0047 (4)
O30.0392 (6)0.0396 (6)0.0330 (6)0.0121 (5)0.0060 (5)0.0029 (5)
O40.0319 (5)0.0365 (5)0.0528 (8)0.0015 (4)0.0082 (5)0.0058 (5)
S10.0682 (3)0.0338 (2)0.0429 (2)0.00430 (19)0.0194 (2)0.00190 (17)
C10.0391 (8)0.0287 (7)0.0273 (7)0.0019 (6)0.0059 (6)0.0006 (5)
N10.0424 (7)0.0227 (6)0.0308 (6)0.0017 (5)0.0034 (5)0.0021 (5)
C20.0369 (7)0.0255 (6)0.0309 (7)0.0016 (5)0.0051 (6)0.0007 (5)
N20.0586 (9)0.0277 (6)0.0334 (7)0.0008 (6)0.0076 (6)0.0019 (6)
N30.0531 (10)0.0381 (7)0.0468 (8)0.0067 (7)0.0174 (7)0.0027 (6)
N40.0589 (10)0.0337 (7)0.0437 (8)0.0041 (6)0.0137 (8)0.0018 (6)
Geometric parameters (Å, º) top
P1—O11.5034 (10)N1—H10.890 (19)
P1—O21.5086 (11)C2—N41.303 (2)
P1—O41.5612 (12)C2—N31.309 (2)
P1—O31.5656 (12)N2—H210.855 (19)
O3—H30.84 (2)N2—H220.81 (2)
O4—H40.79 (2)N3—H310.81 (2)
S1—C11.6800 (16)N3—H320.88 (2)
C1—N21.3130 (19)N4—H420.893 (19)
C1—N11.3827 (19)N4—H410.790 (19)
N1—C21.3639 (18)
O1—P1—O2114.17 (6)C1—N1—H1115.5 (11)
O1—P1—O4111.37 (6)N4—C2—N3120.67 (15)
O2—P1—O4107.58 (6)N4—C2—N1123.09 (14)
O1—P1—O3111.95 (6)N3—C2—N1116.22 (14)
O2—P1—O3107.03 (6)C1—N2—H21119.4 (12)
O4—P1—O3104.12 (7)C1—N2—H22122.0 (14)
P1—O3—H3109.9 (13)H21—N2—H22118.3 (18)
P1—O4—H4115.4 (18)C2—N3—H31120.2 (13)
N2—C1—N1112.91 (14)C2—N3—H32119.3 (13)
N2—C1—S1122.04 (12)H31—N3—H32120.2 (19)
N1—C1—S1125.04 (11)C2—N4—H42115.3 (12)
C2—N1—C1130.34 (13)C2—N4—H41119.9 (14)
C2—N1—H1114.2 (11)H42—N4—H41123.9 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.84 (2)1.76 (2)2.5994 (17)171.0 (19)
O4—H4···O2ii0.79 (2)1.73 (3)2.5123 (15)171 (3)
N1—H1···O10.890 (19)1.948 (19)2.8273 (18)169.3 (16)
N2—H21···O20.855 (19)2.035 (19)2.874 (2)166.4 (16)
N2—H21···O20.855 (19)2.035 (19)2.874 (2)166.4 (16)
N2—H22···S1iii0.81 (2)2.68 (2)3.4677 (19)163.3 (18)
N4—H42···O2iv0.893 (19)2.00 (2)2.8682 (19)162.9 (16)
N4—H41···S10.790 (19)2.36 (2)3.0028 (19)138.9 (17)
N3—H31···O4iv0.81 (2)2.16 (2)2.964 (2)171.0 (17)
N3—H32···O10.88 (2)2.55 (2)3.234 (2)136.2 (17)
N3—H32···O4i0.88 (2)2.57 (2)3.182 (2)127.8 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y+1, z+2; (iv) x, y1, z.
(Id) 1-(diaminomethylene)thiouron-1-ium dihydrogen arsenate top
Crystal data top
C2H7N4S+·H2AsO4Z = 2
Mr = 260.11F(000) = 260
Triclinic, P1Dx = 1.914 Mg m3
Dm = 1.91 Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7250 (8) ÅCell parameters from 1287 reflections
b = 8.4071 (10) Åθ = 3.0–28.0°
c = 11.3841 (19) ŵ = 3.98 mm1
α = 89.402 (11)°T = 295 K
β = 86.840 (12)°Paralellepiped, colourless
γ = 88.871 (14)°0.38 × 0.14 × 0.12 mm
V = 451.41 (12) Å3
Data collection top
Kuma KM-4
diffractometer with CCD area detector
2149 independent reflections
Radiation source: fine-focus sealed tube1927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 28.0°, θmin = 3.0°
ω–scanh = 66
Absorption correction: analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
k = 1111
Tmin = 0.513, Tmax = 0.642l = 1514
4770 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.109All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0863P)2]
where P = (Fo2 + 2Fc2)/3
2149 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
C2H7N4S+·H2AsO4γ = 88.871 (14)°
Mr = 260.11V = 451.41 (12) Å3
Triclinic, P1Z = 2
a = 4.7250 (8) ÅMo Kα radiation
b = 8.4071 (10) ŵ = 3.98 mm1
c = 11.3841 (19) ÅT = 295 K
α = 89.402 (11)°0.38 × 0.14 × 0.12 mm
β = 86.840 (12)°
Data collection top
Kuma KM-4
diffractometer with CCD area detector
2149 independent reflections
Absorption correction: analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
1927 reflections with I > 2σ(I)
Tmin = 0.513, Tmax = 0.642Rint = 0.013
4770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109All H-atom parameters refined
S = 1.01Δρmax = 1.02 e Å3
2149 reflectionsΔρmin = 0.93 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.26918 (5)0.65723 (3)0.60563 (3)0.02854 (14)
O10.3995 (5)0.4836 (3)0.6521 (2)0.0338 (5)
O20.0076 (4)0.7238 (3)0.6864 (2)0.0337 (5)
O30.1745 (5)0.6532 (3)0.4633 (2)0.0450 (6)
H30.289 (13)0.618 (8)0.423 (6)0.10 (2)*
O40.5174 (5)0.8017 (3)0.6031 (3)0.0446 (6)
H40.657 (12)0.763 (7)0.627 (4)0.067 (15)*
S10.3455 (3)0.23998 (12)0.97557 (9)0.0543 (3)
C10.1611 (8)0.3520 (4)0.8756 (3)0.0362 (7)
N10.0297 (6)0.2922 (3)0.7906 (3)0.0362 (6)
H10.111 (8)0.356 (5)0.753 (3)0.030 (10)*
C20.0922 (8)0.1389 (4)0.7590 (3)0.0367 (7)
N20.1802 (8)0.5071 (4)0.8752 (3)0.0416 (7)
H210.118 (10)0.566 (6)0.817 (4)0.054 (13)*
H220.290 (9)0.550 (5)0.924 (4)0.042 (11)*
N30.2708 (9)0.1196 (4)0.6664 (3)0.0546 (9)
H310.368 (12)0.030 (7)0.646 (5)0.073 (16)*
H320.306 (13)0.213 (9)0.634 (5)0.09 (2)*
N40.0123 (9)0.0163 (4)0.8138 (3)0.0525 (9)
H410.150 (9)0.031 (5)0.871 (4)0.050 (12)*
H420.019 (10)0.063 (6)0.769 (4)0.051 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.01797 (19)0.0306 (2)0.0371 (2)0.00060 (12)0.00229 (12)0.00070 (13)
O10.0299 (11)0.0347 (11)0.0366 (11)0.0054 (9)0.0040 (8)0.0017 (8)
O20.0203 (9)0.0374 (11)0.0432 (12)0.0004 (8)0.0006 (8)0.0076 (9)
O30.0345 (13)0.0569 (15)0.0435 (14)0.0138 (11)0.0087 (10)0.0021 (11)
O40.0192 (10)0.0337 (12)0.0818 (19)0.0032 (9)0.0094 (11)0.0041 (12)
S10.0714 (7)0.0427 (5)0.0464 (5)0.0061 (5)0.0201 (5)0.0008 (4)
C10.0391 (17)0.0381 (17)0.0315 (15)0.0051 (13)0.0041 (12)0.0002 (12)
N10.0437 (15)0.0276 (13)0.0371 (14)0.0010 (11)0.0014 (12)0.0008 (10)
C20.0420 (17)0.0319 (15)0.0364 (16)0.0033 (13)0.0074 (13)0.0018 (12)
N20.0545 (18)0.0386 (15)0.0300 (14)0.0025 (13)0.0103 (13)0.0039 (12)
N30.063 (2)0.0394 (17)0.059 (2)0.0075 (16)0.0208 (17)0.0031 (15)
N40.070 (2)0.0326 (16)0.053 (2)0.0065 (15)0.0153 (17)0.0054 (13)
Geometric parameters (Å, º) top
As1—O21.649 (2)N1—H10.80 (5)
As1—O11.666 (2)C2—N41.292 (5)
As1—O41.704 (2)C2—N31.322 (5)
As1—O31.706 (3)N2—H210.84 (4)
O3—H30.78 (5)N2—H220.83 (5)
O4—H40.81 (5)N3—H310.91 (6)
S1—C11.686 (4)N3—H320.86 (6)
C1—N21.305 (5)N4—H410.91 (5)
C1—N11.378 (4)N4—H420.84 (5)
N1—C21.364 (4)
O2—As1—O1113.83 (11)C1—N1—H1115 (3)
O2—As1—O4107.10 (12)N4—C2—N3120.0 (3)
O1—As1—O4111.59 (11)N4—C2—N1123.8 (3)
O2—As1—O3107.43 (11)N3—C2—N1116.2 (3)
O1—As1—O3113.10 (12)C1—N2—H21123 (3)
O4—As1—O3103.05 (14)C1—N2—H22118 (3)
As1—O3—H3112 (5)H21—N2—H22117 (4)
As1—O4—H4107 (4)C2—N3—H31126 (3)
N2—C1—N1113.5 (3)C2—N3—H32109 (4)
N2—C1—S1122.0 (3)H31—N3—H32124 (5)
N1—C1—S1124.5 (3)C2—N4—H41119 (3)
C2—N1—C1130.4 (3)C2—N4—H42107 (3)
C2—N1—H1115 (3)H41—N4—H42129 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.78 (5)1.83 (5)2.599 (3)169 (5)
O4—H4···O2ii0.81 (5)1.76 (5)2.555 (3)166 (6)
N1—H1···O10.80 (5)2.03 (5)2.806 (4)166 (4)
N2—H21···O20.84 (4)2.06 (4)2.897 (4)173 (5)
N2—H22···S1iii0.83 (5)2.66 (5)3.449 (3)160 (4)
N3—H31···O4iv0.91 (6)2.08 (6)2.974 (4)168 (5)
N3—H32···O10.86 (6)2.35 (6)3.133 (4)150 (5)
N4—H41···S10.91 (5)2.28 (5)3.007 (4)136 (4)
N4—H42···O2iv0.84 (5)2.05 (6)2.867 (4)164 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y+1, z+2; (iv) x, y1, z.

Experimental details

(Ia)(Ib)(Ic)(Id)
Crystal data
Chemical formulaC2H7N4S+·ClO4C2H7N4S+·HO4SC2H7N4S+·H2O4PC2H7N4S+·H2AsO4
Mr218.63216.24216.16260.11
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)295295295295
a, b, c (Å)5.8011 (9), 8.4511 (14), 9.430 (2)7.8371 (11), 8.103 (2), 8.104 (2)4.5229 (8), 8.3241 (11), 11.574 (2)4.7250 (8), 8.4071 (10), 11.3841 (19)
α, β, γ (°)109.15 (2), 91.441 (10), 104.639 (11)60.88 (1), 65.99 (1), 87.54 (2)88.160 (12), 86.191 (11), 87.359 (10)89.402 (11), 86.840 (12), 88.871 (14)
V3)419.59 (15)402.85 (17)434.15 (13)451.41 (12)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.690.650.543.98
Crystal size (mm)0.37 × 0.22 × 0.140.37 × 0.27 × 0.220.38 × 0.18 × 0.170.38 × 0.14 × 0.12
Data collection
DiffractometerKuma KM-4
diffractometer with CCD area detector
Kuma KM-4
diffractometer with CCD area detector
Kuma KM-4
diffractometer with CDD area detector
Kuma KM-4
diffractometer with CCD area detector
Absorption correctionAnalytical
(face-indexed; SHELXTL; Sheldrick, 2008)
Analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
Analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
Analytical
(face-indexed; SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.785, 0.9100.796, 0.8710.812, 0.9090.513, 0.642
No. of measured, independent and
observed [I > 2σ(I)] reflections
5108, 2110, 1516 4199, 1917, 1731 4924, 2067, 1757 4770, 2149, 1927
Rint0.0160.0050.0120.013
(sin θ/λ)max1)0.6930.6580.6600.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.00 0.029, 0.070, 1.01 0.027, 0.072, 1.00 0.041, 0.109, 1.01
No. of reflections2110191720672149
No. of parameters137134145136
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.350.52, 0.490.27, 0.261.02, 0.93

Computer programs: CrysAlis CCD (Oxford Diffraction Poland, 2005), CrysAlis RED (Oxford Diffraction Poland, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006).

Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (2)2.40 (2)3.159 (3)156.5 (19)
N2—H21···O2i0.78 (2)2.32 (3)3.050 (3)156 (2)
N2—H22···S1ii0.80 (3)2.63 (3)3.434 (2)177 (2)
N3—H31···O4iii0.85 (2)2.44 (3)3.245 (3)158 (2)
N3—H31···O4iv0.85 (2)2.50 (2)3.104 (2)129 (2)
N3—H32···O1i0.78 (3)2.35 (3)3.082 (3)159 (3)
N4—H42···O2iii0.86 (3)2.22 (3)3.014 (3)153 (2)
N4—H41···S10.90 (3)2.25 (3)2.981 (2)138 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x+1, y1, z; (iv) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.86 (3)1.83 (3)2.6714 (19)166 (2)
N1—H1···O2ii0.84 (2)2.29 (2)3.073 (2)155.2 (17)
N2—H21···O2ii0.83 (2)2.19 (2)2.963 (2)154.0 (19)
N2—H22···O4iii0.89 (2)2.30 (2)3.164 (2)166 (2)
N3—H31···O1iv0.87 (2)2.23 (2)3.080 (2)168 (2)
N3—H32···O4ii0.85 (2)2.19 (2)3.031 (2)168 (2)
N4—H41···S10.92 (2)2.22 (2)2.9798 (18)140.4 (19)
N4—H41···O3i0.92 (2)2.47 (2)3.029 (2)119.6 (17)
N4—H42···O2iv0.85 (3)2.22 (3)3.021 (2)159 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) for (Ic) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.84 (2)1.76 (2)2.5994 (17)171.0 (19)
O4—H4···O2ii0.79 (2)1.73 (3)2.5123 (15)171 (3)
N1—H1···O10.890 (19)1.948 (19)2.8273 (18)169.3 (16)
N2—H21···O20.855 (19)2.035 (19)2.874 (2)166.4 (16)
N2—H21···O20.855 (19)2.035 (19)2.874 (2)166.4 (16)
N2—H22···S1iii0.81 (2)2.68 (2)3.4677 (19)163.3 (18)
N4—H42···O2iv0.893 (19)2.00 (2)2.8682 (19)162.9 (16)
N4—H41···S10.790 (19)2.36 (2)3.0028 (19)138.9 (17)
N3—H31···O4iv0.81 (2)2.16 (2)2.964 (2)171.0 (17)
N3—H32···O10.88 (2)2.55 (2)3.234 (2)136.2 (17)
N3—H32···O4i0.88 (2)2.57 (2)3.182 (2)127.8 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y+1, z+2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) for (Id) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.78 (5)1.83 (5)2.599 (3)169 (5)
O4—H4···O2ii0.81 (5)1.76 (5)2.555 (3)166 (6)
N1—H1···O10.80 (5)2.03 (5)2.806 (4)166 (4)
N2—H21···O20.84 (4)2.06 (4)2.897 (4)173 (5)
N2—H22···S1iii0.83 (5)2.66 (5)3.449 (3)160 (4)
N3—H31···O4iv0.91 (6)2.08 (6)2.974 (4)168 (5)
N3—H32···O10.86 (6)2.35 (6)3.133 (4)150 (5)
N4—H41···S10.91 (5)2.28 (5)3.007 (4)136 (4)
N4—H42···O2iv0.84 (5)2.05 (6)2.867 (4)164 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y+1, z+2; (iv) x, y1, z.
A comparison of selected geometrical parameters for 1-(diaminomethylene)thiouron-1-ium in (Ia), (Ib), (Ic) and (Id ) and the ab-initio MO-calculated values top
Bond/angle(Ia)(Ib)(Ic)(Id)MO calculateda
C1—S11.6656 (19)1.6615 (16)1.6800 (16)1.686 (4)1.662
C1—N11.396 (2)1.3902 (18)1.3827 (19)1.378 (4)1.421
C1—N21.308 (2)1.3212 (19)1.3130 (19)1.305 (5)1.348
N1—C21.364 (2)1.3685 (19)1.3639 (18)1.364 (4)1.368
C2—N31.322 (3)1.313 (2)1.309 (2)1.322 (5)1.343
C2—N41.283 (3)1.303 (2)1.303 (2)1.292 (5)1.319
N2—C1—N1112.58(18112.97 (14)112.91 (14)113.5 (3)111.4
N2—C1—S1122.50 (16)121.75 (12)122.04 (12)122.0 (3)122.9
N1—C1—S1124.92 (14)125.27 (11)125.04 (11)124.5 (3)125.7
C2—N1—C1130.08 (17)129.74 (13)130.34 (13)130.4 (3)129.9
N4—C2—N3121.6 (2)121.22 (15)120.67 (15)120.0 (3)121.3
N4—C2—N1122.37 (18)121.83 (14)123.09 (14)123.8 (3)121.8
N3—C2—N1116.0 (2)116.94 (14)116.22 (14)116.2 (3)117.0
C2—N1—C1—N2-178.84 (20)-171.84 (15)-177.85 (15)-174.98 (35)172.0
N3—C2—N1—C1-179.55 (19)-179.50 (15)177.32 (15)174.51 (37)-174.8
Note: (a) data from Perpétuo & Janczak (2008).
Deviations of the atoms from the mean least-squares plane defined by the non-H atoms of 1-(diaminomethylene)thiouron-1-ium in (Ia), (Ib), (Ic) and (Id) and in the gas phase as obtained by MO calculations. top
Atom(Ia)(Ib)(Ic)(Id)MO calculateda
N2-0.0151 (13)0.0939 (10)-0.0030 (9)-0.0297 (23)-0.0551
C10.0051 (16)-0.0080 (12)-0.0018 (12)-0.0066 (29)0.0015
S10.0148 (10)-0.1058 (8)-0.0120 (8)0.0090 (20)0.0290
N10.0046 (15)-0.0484 (12)0.0257 (12)0.0575 (28)0.0757
C20.0007 (16)0.0008 (16)-0.0033 (13)0.0067 (32)0.0006
N30.0106 (12)-0.0673 (10)-0.0186 (10)-0.0186 (25)-0.0057
N4-0.0207 (13)0.1347 (10)-0.0129 (10)-0.0183 (25)-0.0453
Note: (a) data from Perpétuo & Janczak (2008).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds