Download citation
Download citation
link to html
The title compound, C27H19NO2S, contains chains of fused R_2^2(19) rings formed by intermolecular C—H...O=C hydrogen bonds and running along the [011] and [0\overline11] directions. These chains are linked through short intermol­ecular C—H...π contacts, giving rise to sheets. The conformation of the title compound is dominated primarily by the nearly orthogonal lone-pair orbitals on the N and S atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105004270/gd1360sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004270/gd1360Isup2.hkl
Contains datablock I

CCDC reference: 269044

Comment top

This paper forms part of our continuing study of the synthesis and structural characterization of sulfur divalent compounds. We are particularly interested in the utility of the title compound, (I) (Fig. 1 and Table 1), as a convenient reagent for sulfenamide synthesis (Harpp et al., 1971). A search of the Cambridge Structural Database (CSD; Version 5.25; Allen, 2002) for the thiophthalimide fragment with an S-alkyl or S-aryl substituent yielded only two examples, N-(2-nitrophenylthio)phthalimide (CSD refcode DETGOY; Iwasaki et al., 1986) and N-(trichloromethylthio)phthalimide (GUHDUI; Carle et al., 2000).

The thiophthalimide fragment in (I) is almost planar, with a dihedral angle of 2.1 (2)° between the N1/C20/C21/C26/C27 and C21–C26 planes. This value is similar ?to that of 1.4 ° in?? N-(2-nitrophenylthio)phthalimide (Iwasaki et al., 1986). The six-membered ring of the phthalimide group is planar, with deviations within 0.020 (2) Å. The five-membered ring is distorted, with significant out-of-plane deviations for atoms C20 [0.014 (1) Å] and C21 [0.015 (2) Å]. The S—N distance is shorter than the normal S—N single bond length (1.74 Å) but is usual for this type of structure, many of which have S—N single bonds in the range 1.63–1.68 Å as a result of the contribution of π character to the S—N bond. The C13—Cn bonds [n = 1, 7 and 14; mean 1.537 (4) Å] are all well above the upper quartile value of 1.521 Å for C for Csp3—Caryl bonds (Allen et al., 1987). The mean of the 18 phenyl C—C distances is 1.381 (5) Å. The C—S distance is comparable with the value of 1.894 (2) Å found in N,N-dibenzyltriphenylmethanesulfenamide (Brito et al., 2004). The dihedral angles between phenyl rings C1–C6 and C7–C12, C1–C6 and C14–C19, and C7–C12 and C14–C19 are 81.9 (1), 57.5 (1) and 78.0 (1)°.

The crystal structure of (I) is built from weak intermolecular C—H···O=C and C—H···π interactions (Table 2). The molecules act as double donors in C—H···O hydrogen bonds, linking molecules related by the n-glide planes (Fig. 2 A and Table 2), so generating chains of fused R22(19) rings (Bernstein et al., 1995) along the [011] direction. Chains related by translation along [010] are linked through a C—H··· π interaction, where the C4/H4 group at (x, y, z) acts as a donor to the centroid (Cg in Fig. 2a and Table 2) of the C7–C12 aryl ring at (x, 1 + y, z), giving rise to sheets. An equivalent sheet, related to the previous one by the twofold screw axes along c, is generated in a similar way by means of chains running along the [0–11] direction (Fig. 2 b). The crystal is built up of these types of sheets, connected only by van der Waals interactions (Fig. 3).

Experimental top

A heptane solution of trichloromethanesulfenyl chloride was added dropwise to a stirred dimethylformamide solution of phthalimide and triethylamine, producing (I) (Wunderly, 1972). Crystals suitable for X-ray analysis were grown by slow evaporation from dichloromethane–diethyl ether (1:1) at room temperature. IR (KBr, cm−1): 2360 (m), 1774(m), 1718 (versus), 1440–1491 (w), 1340 (w), 1276 (versus), 1169 (m), 1089 (w), 1039 (m), 865 (m), 715–789 (m), 669 (m), 626 (w), 525–578 (w), 488 (w); UV/vis (CH2Cl2, nm): λ 285 (sh), 292, 302; MS(EI): m/z: 244, 243, 242, 241, 240, 239, 228, 166, 165, 147, 77, 76; m.p. 469 K.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å), riding on their carrier atoms, with Uiso(H) set to 1.2 times Ueq of the parent atom. The orientation of the structure with respect to the polar axis (Jones, 1986) was determined on the basis of 2010 Friedel pairs. The number of unique reflections in the merged set is 2457.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H-atom radii are arbitrary.
[Figure 2] Fig. 2. (a) A view of the packing of (I) along the a axis, showing the C—H···π interactions between the [011] chains. [Symmetry codes: (i) 3/2 − x,1/2 + y,1/2 + z; (ii) 3/2 − x,-1/2 + y, −1/2 + z; (iii) x,1 + y,z.] (b) A view of the packing of (I) along the a axis, showing the [0–11] chains. [Symmetry codes: (iv) 1 − x, −y,1/2 + z; (v) −1/2 + x, 1/2 − y,z; (vi) 1 − x, 1 − y,-1/2 + z.]
[Figure 3] Fig. 3. A view of the packing of (I) along the b axis, showing the [011] and [0–11] chains. [Symmetry codes: (i) 3/2 − x,1/2 + y,1/2 + z; (ii) 3/2 − x,-1/2 + y,-1/2 + z.]
N-(Triphenylmethylsulfanyl)phthalimide top
Crystal data top
C27H19NO2SDx = 1.345 Mg m3
Mr = 421.49Melting point: 469 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2257 reflections
a = 14.790 (15) Åθ = 2.6–27.5°
b = 9.373 (8) ŵ = 0.18 mm1
c = 15.01 (3) ÅT = 298 K
V = 2081 (5) Å3Prism, colourless
Z = 40.40 × 0.25 × 0.19 mm
F(000) = 880
Data collection top
Nonius KappaCCD area-detector
diffractometer
4484 independent reflections
Radiation source: fine-focus sealed tube3966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1918
Tmin = 0.943, Tmax = 0.960k = 1211
17690 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1932P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.004
S = 1.19Δρmax = 0.24 e Å3
4484 reflectionsΔρmin = 0.32 e Å3
280 parametersAbsolute structure: Flack (1983)
1 restraintAbsolute structure parameter: 0.01 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H19NO2SV = 2081 (5) Å3
Mr = 421.49Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.790 (15) ŵ = 0.18 mm1
b = 9.373 (8) ÅT = 298 K
c = 15.01 (3) Å0.40 × 0.25 × 0.19 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4484 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3966 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.960Rint = 0.053
17690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.24 e Å3
S = 1.19Δρmin = 0.32 e Å3
4484 reflectionsAbsolute structure: Flack (1983)
280 parametersAbsolute structure parameter: 0.01 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean plane data SHELXL97 for (I) #################################### Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

13.1928 (0.0251) x − 2.0213 (0.0111) y + 5.9638 (0.0194) z = 9.3695 (0.0173) * 0.0079 (0.0013) N1 * −0.0138 (0.0013) C20 * 0.0150 (0.0015) C21 * −0.0105 (0.0015) C26 * 0.0013 (0.0013) C27 Rms deviation of fitted atoms = 0.0109 13.2637 (0.0253) x − 1.6938 (0.0117) y + 6.0625 (0.0198) z = 9.4228 (0.0174) A ngle to previous plane (with approximate e.s.d.) = 2.06 (0.17) * −0.0035 (0.0018) C21 * −0.0028 (0.0022) C22 * 0.0046 (0.0023) C23 * −0.0002 (0.0022) C24 * −0.0060 (0.0019) C25 * 0.0078 (0.0018) C26 Rms deviation of fitted atoms = 0.0048 13.2450 (0.0249) x − 2.0225 (0.0089) y + 5.8423 (0.0149) z = 9.3535 (0.0171) A ngle to previous plane (with approximate e.s.d.) = 2.18 (0.16) * 0.0016 (0.0019) C20 * 0.0192 (0.0016) C21 * −0.0156 (0.0016) C26 * 0.0011 (0.0019) C27 * 0.0201 (0.0015) N1 * −0.0079 (0.0014) O1 * −0.0186 (0.0014) O2 0.0975 (0.0028) S1 Rms deviation of fitted atoms = 0.0143 4.6341 (0.0168) x + 7.7052 (0.0150) y − 7.1371 (0.0193) z = 3.5106 (0.0151) A ngle to previous plane (with approximate e.s.d.) = 85.31 (0.13) * −0.0020 (0.0016) C7 * −0.0082 (0.0016) C8 * 0.0123 (0.0017) C9

* −0.0062 (0.0018) C10 * −0.0041 (0.0020) C11 * 0.0082 (0.0018) C12 Rms deviation of fitted atoms = 0.0076 10.3354 (0.0225) x − 0.2295 (0.0101) y + 10.7319 (0.0231) z = 10.7496 (0.0216) A ngle to previous plane (with approximate e.s.d.) = 81.89 (0.13) * 0.0069 (0.0017) C1 * −0.0082 (0.0019) C2 * 0.0034 (0.0021) C3 * 0.0027 (0.0021) C4 * −0.0039 (0.0019) C5 * −0.0009 (0.0017) C6 Rms deviation of fitted atoms = 0.0050 14.1449 (0.0261) x − 2.0756 (0.0101) y − 2.8602 (0.0157) z = 9.7535 (0.0201) A ngle to previous plane (with approximate e.s.d.) = 57.48 (0.13)

* −0.0161 (0.0015) C14 * 0.0138 (0.0015) C15 * 0.0001 (0.0017) C16 * −0.0120 (0.0018) C17 * 0.0095 (0.0019) C18

* 0.0047 (0.0018) C19 Rms deviation of fitted atoms = 0.0108 4.6341 (0.0168) x + 7.7052 (0.0150) y − 7.1371 (0.0193) z = 3.5106 (0.0151) A ngle to previous plane (with approximate e.s.d.) = 77.98 (0.13) * −0.0020 (0.0016) C7 * −0.0082 (0.0016) C8 * 0.0123 (0.0017) C9 * −0.0062 (0.0018) C10 * −0.0041 (0.0020) C11 * 0.0082 (0.0018) C12 Rms deviation of fitted atoms = 0.0076

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64887 (3)0.23718 (6)0.22875 (5)0.04120 (17)
N10.59754 (11)0.10601 (18)0.28646 (14)0.0355 (4)
O10.55996 (15)0.2368 (2)0.41214 (16)0.0678 (6)
O20.61016 (13)0.0809 (2)0.18653 (13)0.0598 (5)
C10.79519 (14)0.3912 (2)0.24485 (16)0.0333 (5)
C20.74670 (18)0.4938 (2)0.29233 (19)0.0457 (6)
H20.70250.46490.33260.055*
C30.76334 (19)0.6381 (2)0.2805 (2)0.0539 (7)
H30.73120.7050.31360.065*
C40.82632 (18)0.6824 (2)0.2207 (2)0.0529 (6)
H40.83710.77930.21270.063*
C50.87380 (18)0.5842 (3)0.1723 (2)0.0487 (6)
H50.91660.61490.13110.058*
C60.85895 (15)0.4392 (2)0.18374 (16)0.0377 (5)
H60.89180.37360.15040.045*
C70.82789 (14)0.1370 (2)0.19384 (14)0.0312 (5)
C80.91675 (14)0.1036 (2)0.21639 (17)0.0378 (5)
H80.94030.13670.270.045*
C90.97075 (17)0.0223 (2)0.16081 (19)0.0449 (6)
H91.03050.00420.17630.054*
C100.9367 (2)0.0312 (3)0.08350 (19)0.0525 (7)
H100.97240.08830.0470.063*
C110.85002 (19)0.0006 (3)0.0600 (2)0.0592 (8)
H110.82670.03650.0070.071*
C120.79599 (17)0.0838 (3)0.11432 (18)0.0482 (6)
H120.73720.10480.09670.058*
C130.77347 (14)0.2315 (2)0.25777 (15)0.0305 (5)
C140.78589 (13)0.1774 (2)0.35333 (15)0.0305 (5)
C150.77030 (14)0.0331 (2)0.37048 (17)0.0365 (5)
H150.75410.02720.32390.044*
C160.77854 (17)0.0213 (3)0.45552 (19)0.0470 (6)
H160.76650.11720.46610.056*
C170.80438 (17)0.0655 (3)0.52455 (18)0.0514 (7)
H170.8090.0290.5820.062*
C180.8233 (2)0.2063 (3)0.50842 (19)0.0537 (7)
H180.84250.26470.55480.064*
C190.81399 (18)0.2619 (2)0.42373 (19)0.0434 (6)
H190.82680.35770.41380.052*
C200.58719 (15)0.0364 (2)0.25749 (16)0.0379 (5)
C210.54394 (15)0.1118 (3)0.33244 (17)0.0408 (6)
C220.5220 (2)0.2549 (3)0.3407 (3)0.0609 (8)
H220.53420.31920.29510.073*
C230.4816 (2)0.2984 (4)0.4180 (3)0.0737 (10)
H230.46660.39410.42540.088*
C240.4630 (2)0.2037 (5)0.4844 (3)0.0746 (10)
H240.43520.23670.5360.09*
C250.48408 (19)0.0592 (4)0.4777 (2)0.0628 (8)
H250.47050.00470.52310.075*
C260.52625 (16)0.0158 (3)0.39983 (17)0.0426 (6)
C270.56107 (15)0.1263 (3)0.37293 (17)0.0414 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0316 (3)0.0426 (3)0.0494 (4)0.0002 (2)0.0061 (3)0.0107 (3)
N10.0312 (10)0.0399 (10)0.0354 (11)0.0056 (7)0.0002 (8)0.0049 (8)
O10.0658 (14)0.0668 (13)0.0708 (16)0.0025 (9)0.0135 (12)0.0369 (11)
O20.0674 (13)0.0632 (12)0.0488 (12)0.0187 (9)0.0160 (10)0.0229 (9)
C10.0348 (10)0.0273 (10)0.0377 (13)0.0018 (7)0.0022 (10)0.0016 (8)
C20.0513 (14)0.0350 (12)0.0508 (16)0.0007 (10)0.0099 (13)0.0026 (11)
C30.0615 (17)0.0316 (12)0.0687 (19)0.0041 (11)0.0070 (15)0.0048 (12)
C40.0578 (15)0.0331 (12)0.0678 (18)0.0083 (10)0.0039 (15)0.0048 (13)
C50.0440 (13)0.0444 (14)0.0575 (17)0.0114 (11)0.0026 (13)0.0071 (12)
C60.0384 (12)0.0358 (12)0.0389 (13)0.0019 (8)0.0008 (10)0.0029 (9)
C70.0360 (11)0.0282 (10)0.0293 (12)0.0054 (8)0.0033 (9)0.0005 (8)
C80.0404 (12)0.0362 (12)0.0366 (14)0.0011 (8)0.0005 (11)0.0045 (10)
C90.0419 (13)0.0360 (12)0.0567 (17)0.0013 (9)0.0120 (12)0.0006 (11)
C100.0598 (18)0.0435 (14)0.0543 (17)0.0130 (12)0.0253 (14)0.0137 (12)
C110.064 (2)0.0714 (19)0.0422 (16)0.0202 (14)0.0103 (14)0.0285 (14)
C120.0456 (15)0.0621 (16)0.0371 (14)0.0125 (11)0.0010 (12)0.0098 (11)
C130.0273 (10)0.0335 (11)0.0308 (12)0.0020 (8)0.0007 (9)0.0012 (8)
C140.0266 (10)0.0337 (12)0.0312 (12)0.0029 (8)0.0000 (9)0.0019 (9)
C150.0342 (11)0.0336 (12)0.0416 (14)0.0022 (9)0.0023 (10)0.0001 (9)
C160.0412 (13)0.0475 (14)0.0522 (17)0.0073 (10)0.0033 (12)0.0164 (12)
C170.0481 (15)0.0750 (19)0.0311 (14)0.0110 (12)0.0032 (12)0.0102 (12)
C180.0564 (16)0.0677 (18)0.0369 (15)0.0054 (13)0.0034 (13)0.0108 (13)
C190.0452 (14)0.0434 (14)0.0417 (15)0.0004 (10)0.0022 (12)0.0054 (10)
C200.0316 (11)0.0437 (13)0.0382 (14)0.0074 (9)0.0003 (10)0.0089 (10)
C210.0321 (12)0.0493 (15)0.0409 (14)0.0121 (9)0.0014 (10)0.0002 (11)
C220.0527 (17)0.0553 (18)0.075 (2)0.0147 (12)0.0021 (16)0.0037 (15)
C230.063 (2)0.077 (2)0.081 (3)0.0234 (16)0.0068 (18)0.033 (2)
C240.0531 (18)0.111 (3)0.059 (2)0.0179 (18)0.0017 (16)0.042 (2)
C250.0484 (16)0.104 (2)0.0364 (17)0.0029 (15)0.0020 (13)0.0053 (16)
C260.0308 (12)0.0651 (17)0.0319 (14)0.0037 (11)0.0022 (10)0.0038 (11)
C270.0304 (12)0.0566 (15)0.0372 (14)0.0007 (10)0.0001 (11)0.0117 (11)
Geometric parameters (Å, º) top
S1—N11.685 (2)C11—C121.390 (4)
S1—C131.894 (3)C11—H110.93
N1—C201.412 (3)C12—H120.93
N1—C271.419 (4)C13—C141.533 (4)
O1—C271.191 (3)C14—C191.384 (4)
O2—C201.193 (3)C14—C151.396 (3)
C1—C61.390 (3)C15—C161.380 (4)
C1—C21.395 (3)C15—H150.93
C1—C131.543 (3)C16—C171.372 (4)
C2—C31.386 (4)C16—H160.93
C2—H20.93C17—C181.370 (4)
C3—C41.358 (4)C17—H170.93
C3—H30.93C18—C191.381 (5)
C4—C51.367 (4)C18—H180.93
C4—H40.93C19—H190.93
C5—C61.388 (4)C20—C211.475 (4)
C5—H50.93C21—C261.379 (4)
C6—H60.93C21—C221.386 (4)
C7—C121.377 (4)C22—C231.368 (6)
C7—C81.393 (3)C22—H220.93
C7—C131.534 (3)C23—C241.362 (6)
C8—C91.384 (3)C23—H230.93
C8—H80.93C24—C251.394 (5)
C9—C101.361 (4)C24—H240.93
C9—H90.93C25—C261.386 (4)
C10—C111.361 (4)C25—H250.93
C10—H100.93C26—C271.484 (4)
N1—S1—C13107.44 (10)C7—C13—S1112.49 (16)
C20—N1—C27111.56 (19)C1—C13—S198.42 (13)
C20—N1—S1125.47 (18)C19—C14—C15117.6 (2)
C27—N1—S1122.95 (17)C19—C14—C13124.2 (2)
C6—C1—C2117.6 (2)C15—C14—C13118.25 (19)
C6—C1—C13122.52 (19)C16—C15—C14120.9 (2)
C2—C1—C13119.8 (2)C16—C15—H15119.5
C3—C2—C1121.0 (2)C14—C15—H15119.5
C3—C2—H2119.5C17—C16—C15120.3 (2)
C1—C2—H2119.5C17—C16—H16119.9
C4—C3—C2120.3 (2)C15—C16—H16119.8
C4—C3—H3119.9C18—C17—C16119.6 (3)
C2—C3—H3119.9C18—C17—H17120.2
C3—C4—C5119.9 (2)C16—C17—H17120.2
C3—C4—H4120.1C17—C18—C19120.4 (3)
C5—C4—H4120.1C17—C18—H18119.8
C4—C5—C6120.8 (2)C19—C18—H18119.8
C4—C5—H5119.6C18—C19—C14121.1 (2)
C6—C5—H5119.6C18—C19—H19119.4
C5—C6—C1120.4 (2)C14—C19—H19119.4
C5—C6—H6119.8O2—C20—N1125.1 (2)
C1—C6—H6119.8O2—C20—C21129.6 (2)
C12—C7—C8116.9 (2)N1—C20—C21105.4 (2)
C12—C7—C13124.9 (2)C26—C21—C22121.5 (3)
C8—C7—C13118.2 (2)C26—C21—C20109.2 (2)
C9—C8—C7121.5 (2)C22—C21—C20129.3 (3)
C9—C8—H8119.3C23—C22—C21117.8 (3)
C7—C8—H8119.3C23—C22—H22121.1
C10—C9—C8120.3 (3)C21—C22—H22121.1
C10—C9—H9119.9C24—C23—C22121.0 (3)
C8—C9—H9119.9C24—C23—H23119.5
C11—C10—C9119.5 (2)C22—C23—H23119.5
C11—C10—H10120.3C23—C24—C25122.3 (3)
C9—C10—H10120.3C23—C24—H24118.8
C10—C11—C12120.6 (3)C25—C24—H24118.8
C10—C11—H11119.7C26—C25—C24116.6 (3)
C12—C11—H11119.7C26—C25—H25121.7
C7—C12—C11121.2 (3)C24—C25—H25121.7
C7—C12—H12119.4C21—C26—C25120.8 (3)
C11—C12—H12119.4C21—C26—C27108.7 (2)
C14—C13—C7109.36 (18)C25—C26—C27130.5 (3)
C14—C13—C1114.43 (18)O1—C27—N1125.0 (2)
C7—C13—C1111.87 (18)O1—C27—C26129.9 (3)
C14—C13—S1109.94 (14)N1—C27—C26105.1 (2)
C13—S1—N1—C2088.2 (2)C1—C13—C14—C15178.14 (18)
C13—S1—N1—C2790.02 (19)S1—C13—C14—C1572.2 (2)
C6—C1—C2—C31.6 (4)C19—C14—C15—C163.0 (3)
C13—C1—C2—C3178.5 (2)C13—C14—C15—C16178.6 (2)
C1—C2—C3—C41.3 (4)C14—C15—C16—C171.5 (3)
C2—C3—C4—C50.3 (5)C15—C16—C17—C181.0 (4)
C3—C4—C5—C60.4 (4)C16—C17—C18—C191.8 (4)
C4—C5—C6—C10.1 (4)C17—C18—C19—C140.3 (4)
C2—C1—C6—C50.9 (3)C15—C14—C19—C182.1 (3)
C13—C1—C6—C5177.7 (2)C13—C14—C19—C18179.6 (2)
C12—C7—C8—C90.8 (3)C27—N1—C20—O2178.2 (2)
C13—C7—C8—C9178.1 (2)S1—N1—C20—O23.4 (3)
C7—C8—C9—C102.2 (3)C27—N1—C20—C212.0 (2)
C8—C9—C10—C112.0 (4)S1—N1—C20—C21176.39 (15)
C9—C10—C11—C120.4 (4)O2—C20—C21—C26177.5 (3)
C8—C7—C12—C110.8 (3)N1—C20—C21—C262.7 (3)
C13—C7—C12—C11179.6 (2)O2—C20—C21—C222.6 (4)
C10—C11—C12—C71.0 (4)N1—C20—C21—C22177.1 (3)
C12—C7—C13—C14134.6 (2)C26—C21—C22—C230.2 (4)
C8—C7—C13—C1446.6 (2)C20—C21—C22—C23179.9 (3)
C12—C7—C13—C197.6 (3)C21—C22—C23—C240.6 (5)
C8—C7—C13—C181.3 (3)C22—C23—C24—C250.3 (5)
C12—C7—C13—S112.1 (3)C23—C24—C25—C260.7 (4)
C8—C7—C13—S1169.03 (16)C22—C21—C26—C251.3 (4)
C6—C1—C13—C14123.3 (2)C20—C21—C26—C25178.9 (2)
C2—C1—C13—C1460.1 (3)C22—C21—C26—C27177.5 (2)
C6—C1—C13—C71.8 (3)C20—C21—C26—C272.4 (3)
C2—C1—C13—C7174.9 (2)C24—C25—C26—C211.4 (4)
C6—C1—C13—S1120.3 (2)C24—C25—C26—C27177.0 (3)
C2—C1—C13—S156.4 (3)C20—N1—C27—O1178.9 (2)
N1—S1—C13—C1430.72 (16)S1—N1—C27—O12.6 (3)
N1—S1—C13—C791.42 (19)C20—N1—C27—C260.6 (2)
N1—S1—C13—C1150.62 (14)S1—N1—C27—C26177.82 (15)
C7—C13—C14—C19126.5 (2)C21—C26—C27—O1179.4 (3)
C1—C13—C14—C190.1 (3)C25—C26—C27—O10.8 (5)
S1—C13—C14—C19109.5 (2)C21—C26—C27—N11.1 (2)
C7—C13—C14—C1551.7 (2)C25—C26—C27—N1179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.553.478 (5)177
C10—H10···O1ii0.932.653.369 (5)135
C4—H4···Cgiii0.932.873.778 (8)164
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC27H19NO2S
Mr421.49
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)14.790 (15), 9.373 (8), 15.01 (3)
V3)2081 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.25 × 0.19
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.943, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
17690, 4484, 3966
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.19
No. of reflections4484
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32
Absolute structureFlack (1983)
Absolute structure parameter0.01 (7)

Computer programs: COLLECT (Nonius, 1998), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—N11.685 (2)O2—C201.193 (3)
S1—C131.894 (3)C1—C131.543 (3)
N1—C201.412 (3)C7—C131.534 (3)
N1—C271.419 (4)C13—C141.533 (4)
O1—C271.191 (3)C21—C261.379 (4)
N1—S1—C13107.44 (10)C14—C13—C1114.43 (18)
C14—C13—C7109.36 (18)C7—C13—C1111.87 (18)
C13—S1—N1—C2088.2 (2)C13—S1—N1—C2790.02 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.553.478 (5)177
C10—H10···O1ii0.932.653.369 (5)135
C4—H4···Cgiii0.932.873.778 (8)164
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z1/2; (iii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds