Download citation
Download citation
link to html
Diosgenin [or (22R,25R)-spirost-5-en-3β-ol] is the starting material of the Marker degradation, a cheap semi-synthesis of progesterone, which has been designated as an Inter­national Historic Chemical Landmark. Thus far, a single X-ray structure for diosgenin is known, namely its dimethyl sulfoxide solvate [Zhang et al. (2005). Acta Cryst. E61, o2324–o2325]. We have now determined the structure of the hemihydrate, C27H42O3·0.5H2O. The asymmetric unit contains two diosgenin mol­ecules, with quite similar conformations, and one water mol­ecule. Hy­droxy groups in steroids and water mol­ecules form O—H...O hydrogen-bonded R54(10) ring motifs. Fused edge-sharing R(10) rings form a backbone oriented along [100], which aggregates the diosgenin mol­ecules in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812027912/gg2085sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812027912/gg2085Isup2.hkl
Contains datablock I

CCDC reference: 896318

Key indicators

  • Single-crystal X-ray study
  • T = 136 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.072
  • wR factor = 0.177
  • Data-to-parameter ratio = 8.6

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.12 Rint given 0.131 PLAT020_ALERT_3_C The value of Rint is greater than 0.12 ......... 0.131 PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0076 Ang PLAT732_ALERT_1_C Angle Calc 99(5), Rep 100(2) ...... 2.50 su-Ra H1W -O1W -H2W 1.555 1.555 1.555 # 319 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C27 H42 O3 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 2 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.599 6
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 67.40 From the CIF: _reflns_number_total 4918 Count of symmetry unique reflns 4925 Completeness (_total/calc) 99.86% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 3 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT791_ALERT_4_G Note: The Model has Chirality at C3 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C8 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C9 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C10 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C13 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C14 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C16 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C17 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C20 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C22 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C25 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C53 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C58 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C59 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C60 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C63 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C64 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C66 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C67 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C70 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C72 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C75 (Verify) R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 52 Perc.
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 9 ALERT level C = Check. Ensure it is not caused by an omission or oversight 27 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 24 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Diosgenin is a steroid sapogenin available from natural sources, which is used for the commercial synthesis of steroid products like cortisone, pregnenolone and progesterone, amongst others (Djerassi, 1992; Zhang et al., 2011). Its most significant application has been as a precursor in an economical semi-synthesis of progesterone, developed by Marker before World War II. This route, known as the Marker degradation (Lehmann, 1992), has been designated as an International Historic Chemical Landmark by the American Chemical Society and the Sociedad Química de México. However, the X-ray structure of diosgenin remains unknown, and only the dimethyl sulfoxide solvate has been characterized crystallographically so far (Zhang et al., 2005). This is not surprising, taking into account the poor solubility of this steroid in polar solvents (Chen et al., 2012).

We have now crystallized diosgenin hemihydrate. The asymmetric unit contains two diosgenin molecules and one lattice water molecule (Fig. 1). Diosgenin displays a rigid conformation, as reflected by the small r.m.s. deviation for the fit between independent molecules, of 0.16 Å. This conformation is also very close to that observed in the DMSO solvate (Zhang et al., 2005; with r.m.s. deviations with the molecules of the title crystal: 0.22 and 0.23 Å).

In contrast with the DMSO solvate, in which discrete hydrogen bonds are formed between the steroid and the solvent, the hemihydrate gives rise to a supramolecular structure. Ring motifs R54(10) are formed by three diosgenin and two water molecules. These motifs share edges with neighboring symmetry-related R(10) rings, forming a chain of fused rings in the crystal (Fig. 2), oriented in the [100] direction. This backbone based on efficient hydrogen bonds aggregates molecules in the crystal, and allows the crystallization of the hemihydrate. Such one-dimensional supramolecular structure is found in other steroids hydrates. Indeed, 11 identical supramolecular arrangements were found in the CSD, predominantly for androstane and androstene derivatives hydrates (e.g. Xia et al., 2005). It thus seems that these kind of steroids functionalized with an alcohol group at C3 should have a propensity to crystallize as hydrates, since a stabilizing supramolecular structure may be arranged.

Related literature top

For historical background to the use of diosgenin in the synthesis of progesterone, see: Lehmann (1992); Djerassi (1992); Zhang et al. (2011). For the solubility of diosgenin, see: Chen et al. (2012). For the structure of diosgenin dimethyl sulfoxide solvate, see: Zhang et al. (2005). For a steroidal crystal structure featuring an R54(10)-based supramolecular structure, see: Xia et al. (2005).

Experimental top

Diosgenin hemihydrate was initially obtained as unreacted material in a reaction attempt between diosgenin and terephthaloyl chloride. The same hemihydrate may be obtained by stirring diosgenin in CH2Cl2 (1 mmol in 20 ml) until complete dissolution. After washing the solution with distilled water, the organic phase is dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue is then crystallized from hexane/acetone (3:2).

Refinement top

The search for a single-crystal was challenging. After a number of attempts, a sample with a thickness limited to 0.03 mm was collected, although data reduction revealed that it was not a single-crystal. The poor sample quality is reflected in the high residual for symmetry-equivalent reflections, Rint = 0.131. Hydroxy H atoms, H3, H53, H1W and H2W, were found in a difference map and refined freely. The geometry for the water molecule was however restrained, with O—H = 0.85 (2) Å, and H1W···H2W = 1.34 (1) Å. Other H atoms, bonded to C atoms, were placed in idealized positions and refined as riding to their carrier atoms. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl H atoms and x = 1.2 for other H atoms. The absolute configuration was assigned from chiral centers with known configuration in the steroidal nucleus, and measured Friedel pairs (3683) were merged.

Structure description top

Diosgenin is a steroid sapogenin available from natural sources, which is used for the commercial synthesis of steroid products like cortisone, pregnenolone and progesterone, amongst others (Djerassi, 1992; Zhang et al., 2011). Its most significant application has been as a precursor in an economical semi-synthesis of progesterone, developed by Marker before World War II. This route, known as the Marker degradation (Lehmann, 1992), has been designated as an International Historic Chemical Landmark by the American Chemical Society and the Sociedad Química de México. However, the X-ray structure of diosgenin remains unknown, and only the dimethyl sulfoxide solvate has been characterized crystallographically so far (Zhang et al., 2005). This is not surprising, taking into account the poor solubility of this steroid in polar solvents (Chen et al., 2012).

We have now crystallized diosgenin hemihydrate. The asymmetric unit contains two diosgenin molecules and one lattice water molecule (Fig. 1). Diosgenin displays a rigid conformation, as reflected by the small r.m.s. deviation for the fit between independent molecules, of 0.16 Å. This conformation is also very close to that observed in the DMSO solvate (Zhang et al., 2005; with r.m.s. deviations with the molecules of the title crystal: 0.22 and 0.23 Å).

In contrast with the DMSO solvate, in which discrete hydrogen bonds are formed between the steroid and the solvent, the hemihydrate gives rise to a supramolecular structure. Ring motifs R54(10) are formed by three diosgenin and two water molecules. These motifs share edges with neighboring symmetry-related R(10) rings, forming a chain of fused rings in the crystal (Fig. 2), oriented in the [100] direction. This backbone based on efficient hydrogen bonds aggregates molecules in the crystal, and allows the crystallization of the hemihydrate. Such one-dimensional supramolecular structure is found in other steroids hydrates. Indeed, 11 identical supramolecular arrangements were found in the CSD, predominantly for androstane and androstene derivatives hydrates (e.g. Xia et al., 2005). It thus seems that these kind of steroids functionalized with an alcohol group at C3 should have a propensity to crystallize as hydrates, since a stabilizing supramolecular structure may be arranged.

For historical background to the use of diosgenin in the synthesis of progesterone, see: Lehmann (1992); Djerassi (1992); Zhang et al. (2011). For the solubility of diosgenin, see: Chen et al. (2012). For the structure of diosgenin dimethyl sulfoxide solvate, see: Zhang et al. (2005). For a steroidal crystal structure featuring an R54(10)-based supramolecular structure, see: Xia et al. (2005).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A part of the one-dimensional supramolecular structure of the title compound, based on six diosgenin and three water molecules. H atoms not involved in hydrogen bonds have been omitted, and the projection is normal to [010]. One R(10) motif is shown as a solid yellow polygon, with H-bonds components of the edges displayed as dashed bonds.
(25R)-Spirost-5-en-3-ol hemihydrate top
Crystal data top
C27H42O3·0.5H2ODx = 1.163 Mg m3
Mr = 423.61Melting point: 590 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 1880 reflections
a = 7.3483 (5) Åθ = 3.5–67.7°
b = 19.698 (2) ŵ = 0.58 mm1
c = 33.440 (3) ÅT = 136 K
V = 4840.3 (8) Å3Plate, colourless
Z = 80.50 × 0.17 × 0.03 mm
F(000) = 1864
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
4918 independent reflections
Radiation source: Enhance (Cu) X-ray Source3573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.131
Detector resolution: 10.4685 pixels mm-1θmax = 67.4°, θmin = 3.5°
ω scansh = 58
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
k = 2023
Tmin = 0.821, Tmax = 0.981l = 4034
17450 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
4918 reflections(Δ/σ)max < 0.001
570 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.36 e Å3
0 constraints
Crystal data top
C27H42O3·0.5H2OV = 4840.3 (8) Å3
Mr = 423.61Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 7.3483 (5) ŵ = 0.58 mm1
b = 19.698 (2) ÅT = 136 K
c = 33.440 (3) Å0.50 × 0.17 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
4918 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
3573 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.981Rint = 0.131
17450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0723 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.31 e Å3
4918 reflectionsΔρmin = 0.36 e Å3
570 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5923 (7)0.7342 (3)0.13594 (14)0.0290 (12)
H1A0.72380.73080.14210.035*
H1B0.55410.78150.14130.035*
C20.5635 (7)0.7189 (3)0.09132 (15)0.0334 (13)
H2A0.61120.67310.08510.040*
H2B0.63170.75230.07500.040*
C30.3633 (7)0.7222 (3)0.08070 (15)0.0289 (11)
H3A0.31720.76940.08510.035*
O30.3447 (5)0.7044 (2)0.03903 (10)0.0320 (8)
H30.233 (9)0.695 (3)0.0297 (17)0.038*
C40.2557 (7)0.6725 (3)0.10695 (15)0.0308 (12)
H4A0.29200.62540.10020.037*
H4B0.12430.67730.10110.037*
C50.2877 (7)0.6847 (3)0.15135 (15)0.0272 (11)
C60.1487 (7)0.6917 (3)0.17587 (15)0.0279 (11)
H6A0.02980.69150.16470.033*
C70.1669 (7)0.7001 (3)0.22032 (14)0.0259 (11)
H7A0.13920.74770.22750.031*
H7B0.07620.67070.23380.031*
C80.3565 (7)0.6821 (2)0.23572 (14)0.0237 (11)
H8A0.37150.63160.23480.028*
C90.4999 (7)0.7147 (2)0.20819 (14)0.0231 (10)
H9A0.46820.76400.20640.028*
C100.4859 (7)0.6858 (2)0.16451 (15)0.0248 (11)
C110.6944 (7)0.7113 (3)0.22522 (15)0.0310 (12)
H11A0.77480.74060.20890.037*
H11B0.73970.66410.22290.037*
C120.7067 (7)0.7334 (3)0.26892 (15)0.0284 (11)
H12A0.83260.72650.27870.034*
H12B0.67800.78240.27100.034*
C130.5748 (7)0.6930 (3)0.29506 (14)0.0257 (11)
C140.3842 (7)0.7060 (2)0.27863 (14)0.0249 (11)
H14A0.36830.75640.27820.030*
C150.2581 (7)0.6793 (3)0.31154 (14)0.0289 (11)
H15A0.25040.62910.31110.035*
H15B0.13420.69860.30910.035*
C160.3531 (7)0.7045 (3)0.34912 (15)0.0274 (11)
H16A0.29160.74620.35950.033*
C170.5543 (7)0.7201 (2)0.33852 (15)0.0263 (11)
H17A0.57350.77040.33860.032*
C180.6231 (8)0.6166 (3)0.29475 (16)0.0329 (12)
H18A0.60830.59850.26760.049*
H18B0.74960.61060.30340.049*
H18C0.54220.59220.31310.049*
C190.5637 (8)0.6130 (3)0.16203 (16)0.0368 (13)
H19A0.52770.59230.13660.055*
H19B0.69680.61480.16370.055*
H19C0.51600.58590.18420.055*
C200.6654 (8)0.6881 (3)0.37263 (15)0.0331 (12)
H20A0.72020.64510.36220.040*
C210.8195 (9)0.7317 (4)0.38853 (18)0.0487 (16)
H21A0.88030.70800.41060.073*
H21B0.90730.74040.36710.073*
H21C0.77030.77500.39820.073*
C220.5214 (8)0.6686 (3)0.40287 (14)0.0314 (12)
O220.3637 (5)0.65326 (18)0.38008 (10)0.0306 (8)
C230.5652 (9)0.6065 (3)0.42891 (16)0.0375 (13)
H23A0.68380.61350.44230.045*
H23B0.57560.56580.41170.045*
C240.4197 (9)0.5945 (3)0.46013 (16)0.0382 (13)
H24A0.30550.58040.44680.046*
H24B0.45840.55730.47810.046*
C250.3849 (9)0.6590 (3)0.48480 (16)0.0388 (14)
H25A0.49670.67020.50050.047*
C260.3448 (8)0.7168 (3)0.45564 (16)0.0375 (13)
H26A0.32650.75940.47090.045*
H26B0.23060.70680.44110.045*
O260.4881 (6)0.72624 (19)0.42763 (10)0.0343 (9)
C270.2262 (10)0.6504 (5)0.5131 (2)0.062 (2)
H27A0.19910.69390.52600.094*
H27B0.11930.63490.49820.094*
H27C0.25740.61670.53360.094*
C510.1484 (8)0.9123 (3)0.08829 (15)0.0332 (12)
H51A0.26590.93560.09290.040*
H51B0.16350.86440.09660.040*
C520.1074 (8)0.9138 (3)0.04339 (16)0.0380 (14)
H52A0.10880.96140.03380.046*
H52B0.20260.88840.02880.046*
C530.0776 (8)0.8824 (3)0.03508 (15)0.0346 (13)
H53A0.07740.83450.04500.041*
O530.1234 (6)0.8824 (2)0.00652 (11)0.0398 (10)
H530.030 (10)0.864 (4)0.0216 (18)0.048*
C540.2235 (8)0.9220 (3)0.05734 (15)0.0326 (12)
H54A0.22590.96940.04750.039*
H54B0.34410.90150.05200.039*
C550.1871 (8)0.9218 (3)0.10181 (15)0.0284 (11)
C560.3132 (7)0.8993 (3)0.12685 (16)0.0307 (12)
H56A0.42710.88610.11590.037*
C570.2893 (8)0.8931 (3)0.17109 (16)0.0330 (12)
H57A0.26950.84480.17800.040*
H57B0.40240.90820.18450.040*
C580.1290 (7)0.9352 (2)0.18683 (15)0.0265 (11)
H58A0.16320.98430.18660.032*
C590.0371 (7)0.9245 (3)0.15971 (14)0.0255 (11)
H59A0.05960.87450.15920.031*
C600.0013 (8)0.9458 (3)0.11552 (15)0.0294 (12)
C610.2116 (8)0.9569 (3)0.17732 (16)0.0346 (13)
H61A0.31710.94340.16070.042*
H61B0.20061.00690.17600.042*
C620.2473 (8)0.9358 (3)0.22073 (16)0.0353 (13)
H62A0.27490.88670.22170.042*
H62B0.35490.96060.23090.042*
C630.0844 (7)0.9507 (3)0.24752 (15)0.0257 (11)
C640.0824 (7)0.9140 (2)0.22941 (14)0.0258 (11)
H64A0.04840.86500.22790.031*
C650.2273 (8)0.9192 (3)0.26234 (15)0.0345 (13)
H65A0.28370.96480.26290.041*
H65B0.32350.88450.25880.041*
C660.1155 (8)0.9059 (3)0.29997 (15)0.0299 (12)
H66A0.13500.85840.30960.036*
C670.0877 (8)0.9178 (3)0.29005 (14)0.0268 (11)
H67A0.15140.87300.28860.032*
C680.0511 (8)1.0276 (3)0.25050 (15)0.0319 (12)
H68A0.01781.04540.22410.048*
H68B0.16221.05010.25990.048*
H68C0.04801.03640.26940.048*
C690.0099 (9)1.0231 (3)0.11037 (16)0.0367 (13)
H69A0.07631.04460.12880.055*
H69B0.02181.03490.08280.055*
H69C0.13341.03900.11630.055*
C700.1610 (8)0.9579 (3)0.32608 (15)0.0291 (12)
H70A0.17861.00600.31730.035*
C710.3431 (8)0.9323 (3)0.34269 (17)0.0397 (14)
H71A0.43510.93320.32150.060*
H71B0.32860.88570.35250.060*
H71C0.38210.96170.36470.060*
C720.0016 (8)0.9564 (3)0.35482 (15)0.0309 (12)
O720.1563 (5)0.95371 (18)0.33112 (10)0.0299 (8)
C730.0145 (8)1.0185 (3)0.38266 (15)0.0329 (12)
H73A0.10061.02420.39770.039*
H73B0.03381.05980.36640.039*
C740.1697 (9)1.0106 (3)0.41173 (16)0.0380 (13)
H74A0.28651.01050.39700.046*
H74B0.17081.04950.43050.046*
C750.1508 (9)0.9442 (3)0.43536 (15)0.0360 (13)
H75A0.03800.94650.45210.043*
C760.1306 (9)0.8864 (3)0.40496 (16)0.0360 (13)
H76A0.11380.84300.41950.043*
H76B0.24390.88280.38910.043*
O760.0191 (5)0.89658 (17)0.37864 (10)0.0321 (8)
C770.3121 (10)0.9321 (3)0.46238 (19)0.0493 (16)
H77A0.33220.97220.47910.074*
H77B0.28820.89260.47950.074*
H77C0.42060.92350.44610.074*
O1W0.0209 (6)0.6938 (2)0.01496 (13)0.0484 (11)
H1W0.118 (6)0.669 (3)0.015 (2)0.058*
H2W0.055 (8)0.725 (2)0.0017 (17)0.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (3)0.036 (3)0.032 (3)0.005 (2)0.001 (2)0.004 (2)
C20.026 (3)0.039 (3)0.035 (3)0.008 (3)0.000 (2)0.002 (2)
C30.027 (3)0.027 (3)0.033 (3)0.002 (2)0.002 (2)0.005 (2)
O30.026 (2)0.039 (2)0.0305 (18)0.0009 (18)0.0054 (17)0.0040 (15)
C40.022 (3)0.036 (3)0.034 (3)0.003 (2)0.001 (2)0.004 (2)
C50.022 (3)0.024 (3)0.035 (3)0.002 (2)0.001 (2)0.001 (2)
C60.020 (3)0.027 (3)0.036 (3)0.002 (2)0.008 (2)0.002 (2)
C70.019 (3)0.029 (3)0.030 (2)0.001 (2)0.002 (2)0.0029 (19)
C80.024 (3)0.016 (2)0.031 (2)0.002 (2)0.001 (2)0.0033 (18)
C90.022 (2)0.016 (2)0.031 (2)0.001 (2)0.000 (2)0.0039 (17)
C100.019 (3)0.019 (2)0.037 (3)0.001 (2)0.000 (2)0.0010 (19)
C110.028 (3)0.032 (3)0.034 (3)0.004 (2)0.004 (2)0.001 (2)
C120.017 (3)0.033 (3)0.036 (3)0.003 (2)0.002 (2)0.001 (2)
C130.024 (3)0.024 (3)0.029 (2)0.005 (2)0.001 (2)0.0004 (19)
C140.026 (3)0.014 (2)0.035 (3)0.002 (2)0.002 (2)0.0013 (18)
C150.026 (3)0.030 (3)0.031 (3)0.001 (2)0.001 (2)0.0035 (19)
C160.028 (3)0.023 (3)0.031 (2)0.002 (2)0.003 (2)0.0028 (19)
C170.028 (3)0.017 (2)0.034 (3)0.001 (2)0.000 (2)0.0029 (19)
C180.029 (3)0.027 (3)0.042 (3)0.004 (2)0.002 (3)0.003 (2)
C190.040 (3)0.026 (3)0.045 (3)0.009 (3)0.002 (3)0.007 (2)
C200.031 (3)0.036 (3)0.032 (3)0.006 (3)0.000 (2)0.001 (2)
C210.033 (3)0.070 (5)0.043 (3)0.015 (3)0.004 (3)0.009 (3)
C220.034 (3)0.036 (3)0.024 (2)0.001 (3)0.002 (2)0.003 (2)
O220.030 (2)0.031 (2)0.0306 (18)0.0057 (17)0.0020 (17)0.0077 (14)
C230.041 (3)0.038 (3)0.034 (3)0.005 (3)0.000 (3)0.003 (2)
C240.045 (3)0.034 (3)0.035 (3)0.001 (3)0.006 (3)0.004 (2)
C250.036 (3)0.046 (3)0.034 (3)0.002 (3)0.003 (3)0.000 (2)
C260.035 (3)0.043 (3)0.035 (3)0.000 (3)0.000 (3)0.006 (2)
O260.036 (2)0.031 (2)0.0358 (18)0.0032 (18)0.0001 (18)0.0039 (15)
C270.045 (4)0.092 (6)0.050 (4)0.005 (4)0.006 (4)0.010 (4)
C510.024 (3)0.041 (3)0.035 (3)0.004 (3)0.003 (2)0.002 (2)
C520.032 (3)0.045 (3)0.036 (3)0.004 (3)0.005 (3)0.001 (2)
C530.036 (3)0.038 (3)0.030 (3)0.004 (3)0.005 (3)0.000 (2)
O530.043 (3)0.044 (2)0.0317 (19)0.003 (2)0.0002 (19)0.0063 (16)
C540.026 (3)0.036 (3)0.036 (3)0.002 (3)0.003 (2)0.000 (2)
C550.030 (3)0.020 (3)0.036 (3)0.004 (2)0.005 (2)0.0000 (19)
C560.024 (3)0.030 (3)0.038 (3)0.000 (2)0.003 (2)0.006 (2)
C570.025 (3)0.036 (3)0.038 (3)0.004 (3)0.001 (2)0.002 (2)
C580.026 (3)0.019 (3)0.034 (3)0.002 (2)0.002 (2)0.0015 (18)
C590.023 (3)0.022 (2)0.031 (3)0.006 (2)0.001 (2)0.0004 (19)
C600.031 (3)0.026 (3)0.032 (2)0.001 (2)0.001 (3)0.0020 (19)
C610.027 (3)0.040 (3)0.037 (3)0.000 (3)0.002 (3)0.004 (2)
C620.032 (3)0.034 (3)0.040 (3)0.003 (3)0.004 (3)0.002 (2)
C630.025 (3)0.021 (3)0.032 (2)0.003 (2)0.002 (2)0.0010 (19)
C640.029 (3)0.014 (2)0.035 (3)0.002 (2)0.002 (2)0.0031 (18)
C650.030 (3)0.038 (3)0.036 (3)0.008 (3)0.004 (3)0.002 (2)
C660.039 (3)0.019 (3)0.032 (3)0.005 (2)0.003 (3)0.0017 (19)
C670.035 (3)0.013 (2)0.033 (3)0.007 (2)0.001 (2)0.0033 (18)
C680.036 (3)0.026 (3)0.033 (3)0.003 (2)0.004 (3)0.003 (2)
C690.040 (3)0.037 (3)0.033 (3)0.002 (3)0.003 (3)0.003 (2)
C700.035 (3)0.023 (2)0.030 (3)0.002 (2)0.002 (2)0.0025 (19)
C710.031 (3)0.049 (4)0.039 (3)0.001 (3)0.000 (3)0.000 (2)
C720.031 (3)0.029 (3)0.033 (3)0.007 (3)0.002 (3)0.002 (2)
O720.030 (2)0.0288 (18)0.0314 (18)0.0001 (17)0.0032 (17)0.0004 (14)
C730.038 (3)0.024 (3)0.037 (3)0.003 (3)0.005 (3)0.000 (2)
C740.045 (3)0.034 (3)0.035 (3)0.006 (3)0.005 (3)0.007 (2)
C750.037 (3)0.041 (3)0.030 (3)0.004 (3)0.000 (3)0.001 (2)
C760.044 (4)0.028 (3)0.037 (3)0.001 (3)0.001 (3)0.003 (2)
O760.037 (2)0.0231 (18)0.0366 (18)0.0018 (18)0.0021 (18)0.0035 (14)
C770.054 (4)0.049 (4)0.045 (3)0.002 (3)0.007 (3)0.001 (3)
O1W0.038 (2)0.053 (3)0.053 (2)0.005 (2)0.010 (2)0.009 (2)
Geometric parameters (Å, º) top
C1—C21.537 (7)C51—C601.559 (8)
C1—C101.559 (7)C51—H51A0.9900
C1—H1A0.9900C51—H51B0.9900
C1—H1B0.9900C52—C531.519 (8)
C2—C31.515 (8)C52—H52A0.9900
C2—H2A0.9900C52—H52B0.9900
C2—H2B0.9900C53—O531.431 (6)
C3—O31.443 (6)C53—C541.521 (8)
C3—C41.535 (7)C53—H53A1.0000
C3—H3A1.0000O53—H530.93 (7)
O3—H30.90 (7)C54—C551.511 (7)
C4—C51.522 (7)C54—H54A0.9900
C4—H4A0.9900C54—H54B0.9900
C4—H4B0.9900C55—C561.326 (8)
C5—C61.316 (8)C55—C601.533 (8)
C5—C101.522 (7)C56—C571.495 (7)
C6—C71.502 (7)C56—H56A0.9500
C6—H6A0.9500C57—C581.534 (7)
C7—C81.527 (7)C57—H57A0.9900
C7—H7A0.9900C57—H57B0.9900
C7—H7B0.9900C58—C641.523 (7)
C8—C141.524 (7)C58—C591.535 (7)
C8—C91.541 (7)C58—H58A1.0000
C8—H8A1.0000C59—C611.548 (7)
C9—C111.540 (7)C59—C601.558 (7)
C9—C101.571 (6)C59—H59A1.0000
C9—H9A1.0000C60—C691.534 (8)
C10—C191.546 (7)C61—C621.532 (7)
C11—C121.528 (7)C61—H61A0.9900
C11—H11A0.9900C61—H61B0.9900
C11—H11B0.9900C62—C631.524 (8)
C12—C131.529 (7)C62—H62A0.9900
C12—H12A0.9900C62—H62B0.9900
C12—H12B0.9900C63—C681.538 (8)
C13—C141.526 (7)C63—C641.546 (7)
C13—C181.546 (8)C63—C671.563 (7)
C13—C171.556 (7)C64—C651.535 (7)
C14—C151.532 (7)C64—H64A1.0000
C14—H14A1.0000C65—C661.525 (7)
C15—C161.521 (7)C65—H65A0.9900
C15—H15A0.9900C65—H65B0.9900
C15—H15B0.9900C66—O721.436 (6)
C16—O221.448 (6)C66—C671.548 (8)
C16—C171.551 (7)C66—H66A1.0000
C16—H16A1.0000C67—C701.538 (7)
C17—C201.538 (7)C67—H67A1.0000
C17—H17A1.0000C68—H68A0.9800
C18—H18A0.9800C68—H68B0.9800
C18—H18B0.9800C68—H68C0.9800
C18—H18C0.9800C69—H69A0.9800
C19—H19A0.9800C69—H69B0.9800
C19—H19B0.9800C69—H69C0.9800
C19—H19C0.9800C70—C721.515 (8)
C20—C221.513 (8)C70—C711.534 (8)
C20—C211.518 (8)C70—H70A1.0000
C20—H20A1.0000C71—H71A0.9800
C21—H21A0.9800C71—H71B0.9800
C21—H21B0.9800C71—H71C0.9800
C21—H21C0.9800C72—O721.406 (7)
C22—O221.420 (7)C72—O761.429 (6)
C22—O261.426 (6)C72—C731.541 (7)
C22—C231.536 (8)C73—C741.507 (8)
C23—C241.513 (8)C73—H73A0.9900
C23—H23A0.9900C73—H73B0.9900
C23—H23B0.9900C74—C751.534 (8)
C24—C251.536 (8)C74—H74A0.9900
C24—H24A0.9900C74—H74B0.9900
C24—H24B0.9900C75—C771.509 (9)
C25—C271.512 (9)C75—C761.533 (8)
C25—C261.528 (8)C75—H75A1.0000
C25—H25A1.0000C76—O761.423 (7)
C26—O261.422 (7)C76—H76A0.9900
C26—H26A0.9900C76—H76B0.9900
C26—H26B0.9900C77—H77A0.9800
C27—H27A0.9800C77—H77B0.9800
C27—H27B0.9800C77—H77C0.9800
C27—H27C0.9800O1W—H1W0.87 (2)
C51—C521.532 (7)O1W—H2W0.87 (2)
C2—C1—C10114.0 (4)C52—C51—H51A108.4
C2—C1—H1A108.8C60—C51—H51A108.4
C10—C1—H1A108.8C52—C51—H51B108.4
C2—C1—H1B108.8C60—C51—H51B108.4
C10—C1—H1B108.8H51A—C51—H51B107.5
H1A—C1—H1B107.7C53—C52—C51110.3 (5)
C3—C2—C1110.7 (4)C53—C52—H52A109.6
C3—C2—H2A109.5C51—C52—H52A109.6
C1—C2—H2A109.5C53—C52—H52B109.6
C3—C2—H2B109.5C51—C52—H52B109.6
C1—C2—H2B109.5H52A—C52—H52B108.1
H2A—C2—H2B108.1O53—C53—C52112.9 (5)
O3—C3—C2107.9 (4)O53—C53—C54108.0 (5)
O3—C3—C4110.4 (4)C52—C53—C54109.4 (5)
C2—C3—C4109.8 (5)O53—C53—H53A108.8
O3—C3—H3A109.6C52—C53—H53A108.8
C2—C3—H3A109.6C54—C53—H53A108.8
C4—C3—H3A109.6C53—O53—H53111 (4)
C3—O3—H3118 (4)C55—C54—C53110.8 (5)
C5—C4—C3112.2 (4)C55—C54—H54A109.5
C5—C4—H4A109.2C53—C54—H54A109.5
C3—C4—H4A109.2C55—C54—H54B109.5
C5—C4—H4B109.2C53—C54—H54B109.5
C3—C4—H4B109.2H54A—C54—H54B108.1
H4A—C4—H4B107.9C56—C55—C54119.9 (5)
C6—C5—C10124.1 (5)C56—C55—C60123.1 (5)
C6—C5—C4120.3 (5)C54—C55—C60117.0 (5)
C10—C5—C4115.6 (5)C55—C56—C57124.8 (5)
C5—C6—C7124.0 (5)C55—C56—H56A117.6
C5—C6—H6A118.0C57—C56—H56A117.6
C7—C6—H6A118.0C56—C57—C58112.7 (5)
C6—C7—C8112.9 (4)C56—C57—H57A109.1
C6—C7—H7A109.0C58—C57—H57A109.1
C8—C7—H7A109.0C56—C57—H57B109.1
C6—C7—H7B109.0C58—C57—H57B109.1
C8—C7—H7B109.0H57A—C57—H57B107.8
H7A—C7—H7B107.8C64—C58—C57110.2 (4)
C14—C8—C7111.6 (4)C64—C58—C59109.6 (4)
C14—C8—C9110.0 (4)C57—C58—C59109.5 (4)
C7—C8—C9109.0 (4)C64—C58—H58A109.1
C14—C8—H8A108.7C57—C58—H58A109.1
C7—C8—H8A108.7C59—C58—H58A109.1
C9—C8—H8A108.7C58—C59—C61112.2 (4)
C11—C9—C8113.3 (4)C58—C59—C60112.9 (4)
C11—C9—C10112.9 (4)C61—C59—C60113.0 (4)
C8—C9—C10111.0 (4)C58—C59—H59A106.0
C11—C9—H9A106.3C61—C59—H59A106.0
C8—C9—H9A106.3C60—C59—H59A106.0
C10—C9—H9A106.3C55—C60—C69108.0 (5)
C5—C10—C19108.9 (5)C55—C60—C59110.7 (4)
C5—C10—C1108.2 (4)C69—C60—C59111.5 (4)
C19—C10—C1110.4 (4)C55—C60—C51108.8 (4)
C5—C10—C9109.7 (4)C69—C60—C51109.0 (5)
C19—C10—C9111.2 (4)C59—C60—C51108.9 (4)
C1—C10—C9108.4 (4)C62—C61—C59113.0 (5)
C12—C11—C9113.3 (4)C62—C61—H61A109.0
C12—C11—H11A108.9C59—C61—H61A109.0
C9—C11—H11A108.9C62—C61—H61B109.0
C12—C11—H11B108.9C59—C61—H61B109.0
C9—C11—H11B108.9H61A—C61—H61B107.8
H11A—C11—H11B107.7C63—C62—C61111.8 (5)
C11—C12—C13111.1 (4)C63—C62—H62A109.3
C11—C12—H12A109.4C61—C62—H62A109.3
C13—C12—H12A109.4C63—C62—H62B109.3
C11—C12—H12B109.4C61—C62—H62B109.3
C13—C12—H12B109.4H62A—C62—H62B107.9
H12A—C12—H12B108.0C62—C63—C68110.7 (4)
C14—C13—C12106.8 (4)C62—C63—C64107.6 (4)
C14—C13—C18111.8 (4)C68—C63—C64111.1 (5)
C12—C13—C18110.9 (4)C62—C63—C67116.3 (5)
C14—C13—C17101.0 (4)C68—C63—C67110.6 (4)
C12—C13—C17114.6 (4)C64—C63—C67100.1 (4)
C18—C13—C17111.3 (4)C58—C64—C65119.8 (5)
C8—C14—C13114.2 (4)C58—C64—C63114.6 (4)
C8—C14—C15119.3 (4)C65—C64—C63103.8 (4)
C13—C14—C15103.8 (4)C58—C64—H64A105.9
C8—C14—H14A106.2C65—C64—H64A105.9
C13—C14—H14A106.2C63—C64—H64A105.9
C15—C14—H14A106.2C66—C65—C64101.9 (4)
C16—C15—C14101.7 (4)C66—C65—H65A111.4
C16—C15—H15A111.4C64—C65—H65A111.4
C14—C15—H15A111.4C66—C65—H65B111.4
C16—C15—H15B111.4C64—C65—H65B111.4
C14—C15—H15B111.4H65A—C65—H65B109.2
H15A—C15—H15B109.3O72—C66—C65111.9 (4)
O22—C16—C15112.8 (4)O72—C66—C67104.9 (4)
O22—C16—C17104.5 (4)C65—C66—C67108.5 (4)
C15—C16—C17108.3 (4)O72—C66—H66A110.5
O22—C16—H16A110.4C65—C66—H66A110.5
C15—C16—H16A110.4C67—C66—H66A110.5
C17—C16—H16A110.4C70—C67—C66104.3 (4)
C20—C17—C16104.8 (4)C70—C67—C63120.3 (4)
C20—C17—C13120.0 (4)C66—C67—C63104.1 (4)
C16—C17—C13103.8 (4)C70—C67—H67A109.2
C20—C17—H17A109.2C66—C67—H67A109.2
C16—C17—H17A109.2C63—C67—H67A109.2
C13—C17—H17A109.2C63—C68—H68A109.5
C13—C18—H18A109.5C63—C68—H68B109.5
C13—C18—H18B109.5H68A—C68—H68B109.5
H18A—C18—H18B109.5C63—C68—H68C109.5
C13—C18—H18C109.5H68A—C68—H68C109.5
H18A—C18—H18C109.5H68B—C68—H68C109.5
H18B—C18—H18C109.5C60—C69—H69A109.5
C10—C19—H19A109.5C60—C69—H69B109.5
C10—C19—H19B109.5H69A—C69—H69B109.5
H19A—C19—H19B109.5C60—C69—H69C109.5
C10—C19—H19C109.5H69A—C69—H69C109.5
H19A—C19—H19C109.5H69B—C69—H69C109.5
H19B—C19—H19C109.5C72—C70—C71116.0 (4)
C22—C20—C21115.5 (5)C72—C70—C67102.5 (4)
C22—C20—C17103.2 (4)C71—C70—C67114.9 (5)
C21—C20—C17115.0 (5)C72—C70—H70A107.7
C22—C20—H20A107.5C71—C70—H70A107.7
C21—C20—H20A107.5C67—C70—H70A107.7
C17—C20—H20A107.5C70—C71—H71A109.5
C20—C21—H21A109.5C70—C71—H71B109.5
C20—C21—H21B109.5H71A—C71—H71B109.5
H21A—C21—H21B109.5C70—C71—H71C109.5
C20—C21—H21C109.5H71A—C71—H71C109.5
H21A—C21—H21C109.5H71B—C71—H71C109.5
H21B—C21—H21C109.5O72—C72—O76110.9 (4)
O22—C22—O26109.9 (5)O72—C72—C70106.3 (4)
O22—C22—C20105.4 (4)O76—C72—C70107.4 (5)
O26—C22—C20107.8 (5)O72—C72—C73107.9 (5)
O22—C22—C23107.8 (5)O76—C72—C73108.9 (4)
O26—C22—C23109.9 (4)C70—C72—C73115.3 (5)
C20—C22—C23115.7 (5)C72—O72—C66105.2 (4)
C22—O22—C16106.2 (4)C74—C73—C72111.5 (5)
C24—C23—C22111.6 (5)C74—C73—H73A109.3
C24—C23—H23A109.3C72—C73—H73A109.3
C22—C23—H23A109.3C74—C73—H73B109.3
C24—C23—H23B109.3C72—C73—H73B109.3
C22—C23—H23B109.3H73A—C73—H73B108.0
H23A—C23—H23B108.0C73—C74—C75110.6 (5)
C23—C24—C25111.1 (5)C73—C74—H74A109.5
C23—C24—H24A109.4C75—C74—H74A109.5
C25—C24—H24A109.4C73—C74—H74B109.5
C23—C24—H24B109.4C75—C74—H74B109.5
C25—C24—H24B109.4H74A—C74—H74B108.1
H24A—C24—H24B108.0C77—C75—C76110.8 (5)
C27—C25—C26109.6 (6)C77—C75—C74111.8 (5)
C27—C25—C24111.9 (6)C76—C75—C74107.4 (4)
C26—C25—C24107.8 (4)C77—C75—H75A108.9
C27—C25—H25A109.2C76—C75—H75A108.9
C26—C25—H25A109.2C74—C75—H75A108.9
C24—C25—H25A109.2O76—C76—C75112.4 (5)
O26—C26—C25112.0 (5)O76—C76—H76A109.1
O26—C26—H26A109.2C75—C76—H76A109.1
C25—C26—H26A109.2O76—C76—H76B109.1
O26—C26—H26B109.2C75—C76—H76B109.1
C25—C26—H26B109.2H76A—C76—H76B107.9
H26A—C26—H26B107.9C76—O76—C72113.0 (4)
C26—O26—C22113.9 (4)C75—C77—H77A109.5
C25—C27—H27A109.5C75—C77—H77B109.5
C25—C27—H27B109.5H77A—C77—H77B109.5
H27A—C27—H27B109.5C75—C77—H77C109.5
C25—C27—H27C109.5H77A—C77—H77C109.5
H27A—C27—H27C109.5H77B—C77—H77C109.5
H27B—C27—H27C109.5H1W—O1W—H2W100 (2)
C52—C51—C60115.3 (5)
C10—C1—C2—C357.4 (6)C60—C51—C52—C5354.7 (7)
C1—C2—C3—O3177.4 (4)C51—C52—C53—O53180.0 (5)
C1—C2—C3—C457.1 (6)C51—C52—C53—C5459.7 (6)
O3—C3—C4—C5173.9 (4)O53—C53—C54—C55177.9 (5)
C2—C3—C4—C555.0 (6)C52—C53—C54—C5558.9 (6)
C3—C4—C5—C6128.5 (5)C53—C54—C55—C56124.0 (5)
C3—C4—C5—C1053.2 (6)C53—C54—C55—C6053.6 (6)
C10—C5—C6—C71.6 (8)C54—C55—C56—C57176.5 (5)
C4—C5—C6—C7176.5 (5)C60—C55—C56—C570.9 (8)
C5—C6—C7—C814.4 (7)C55—C56—C57—C5817.8 (8)
C6—C7—C8—C14167.1 (4)C56—C57—C58—C64166.3 (4)
C6—C7—C8—C945.3 (5)C56—C57—C58—C5945.5 (6)
C14—C8—C9—C1146.5 (6)C64—C58—C59—C6150.3 (5)
C7—C8—C9—C11169.2 (4)C57—C58—C59—C61171.4 (4)
C14—C8—C9—C10174.8 (4)C64—C58—C59—C60179.4 (4)
C7—C8—C9—C1062.6 (5)C57—C58—C59—C6059.5 (6)
C6—C5—C10—C19107.5 (6)C56—C55—C60—C69109.3 (6)
C4—C5—C10—C1970.7 (6)C54—C55—C60—C6973.1 (6)
C6—C5—C10—C1132.5 (5)C56—C55—C60—C5912.9 (7)
C4—C5—C10—C149.3 (6)C54—C55—C60—C59164.6 (5)
C6—C5—C10—C914.4 (7)C56—C55—C60—C51132.5 (5)
C4—C5—C10—C9167.3 (4)C54—C55—C60—C5145.0 (6)
C2—C1—C10—C551.3 (6)C58—C59—C60—C5542.3 (6)
C2—C1—C10—C1967.8 (6)C61—C59—C60—C55170.9 (4)
C2—C1—C10—C9170.2 (4)C58—C59—C60—C6978.0 (6)
C11—C9—C10—C5174.5 (4)C61—C59—C60—C6950.7 (6)
C8—C9—C10—C546.0 (5)C58—C59—C60—C51161.8 (4)
C11—C9—C10—C1953.9 (6)C61—C59—C60—C5169.6 (5)
C8—C9—C10—C1974.5 (5)C52—C51—C60—C5545.3 (6)
C11—C9—C10—C167.5 (5)C52—C51—C60—C6972.2 (6)
C8—C9—C10—C1164.0 (4)C52—C51—C60—C59166.0 (5)
C8—C9—C11—C1247.6 (6)C58—C59—C61—C6251.2 (6)
C10—C9—C11—C12174.9 (4)C60—C59—C61—C62179.8 (5)
C9—C11—C12—C1354.6 (6)C59—C61—C62—C6354.8 (6)
C11—C12—C13—C1459.4 (6)C61—C62—C63—C6865.3 (6)
C11—C12—C13—C1862.7 (6)C61—C62—C63—C6456.2 (6)
C11—C12—C13—C17170.2 (5)C61—C62—C63—C67167.4 (5)
C7—C8—C14—C13176.9 (4)C57—C58—C64—C6558.7 (6)
C9—C8—C14—C1355.7 (5)C59—C58—C64—C65179.4 (4)
C7—C8—C14—C1559.6 (6)C57—C58—C64—C63176.9 (4)
C9—C8—C14—C15179.3 (4)C59—C58—C64—C6356.3 (5)
C12—C13—C14—C861.9 (5)C62—C63—C64—C5859.0 (6)
C18—C13—C14—C859.6 (6)C68—C63—C64—C5862.3 (6)
C17—C13—C14—C8178.0 (4)C67—C63—C64—C58179.2 (4)
C12—C13—C14—C15166.5 (4)C62—C63—C64—C65168.6 (4)
C18—C13—C14—C1572.0 (5)C68—C63—C64—C6570.2 (5)
C17—C13—C14—C1546.4 (5)C67—C63—C64—C6546.7 (5)
C8—C14—C15—C16170.0 (4)C58—C64—C65—C66170.2 (4)
C13—C14—C15—C1641.4 (5)C63—C64—C65—C6640.8 (5)
C14—C15—C16—O22135.3 (4)C64—C65—C66—O72134.0 (4)
C14—C15—C16—C1720.2 (5)C64—C65—C66—C6718.8 (6)
O22—C16—C17—C2014.0 (5)O72—C66—C67—C7016.9 (5)
C15—C16—C17—C20134.4 (4)C65—C66—C67—C70136.6 (4)
O22—C16—C17—C13112.7 (4)O72—C66—C67—C63110.1 (4)
C15—C16—C17—C137.7 (5)C65—C66—C67—C639.7 (6)
C14—C13—C17—C20148.9 (5)C62—C63—C67—C7094.5 (6)
C12—C13—C17—C2096.8 (6)C68—C63—C67—C7032.8 (7)
C18—C13—C17—C2030.1 (7)C64—C63—C67—C70150.0 (5)
C14—C13—C17—C1632.5 (5)C62—C63—C67—C66149.2 (5)
C12—C13—C17—C16146.8 (4)C68—C63—C67—C6683.4 (5)
C18—C13—C17—C1686.3 (5)C64—C63—C67—C6633.7 (5)
C16—C17—C20—C229.7 (5)C66—C67—C70—C727.3 (5)
C13—C17—C20—C22125.6 (5)C63—C67—C70—C72123.4 (5)
C16—C17—C20—C21136.4 (5)C66—C67—C70—C71134.0 (5)
C13—C17—C20—C21107.7 (6)C63—C67—C70—C71109.9 (5)
C21—C20—C22—O22157.4 (5)C71—C70—C72—O72156.0 (5)
C17—C20—C22—O2230.9 (5)C67—C70—C72—O7230.1 (5)
C21—C20—C22—O2639.9 (7)C71—C70—C72—O7637.2 (6)
C17—C20—C22—O2686.5 (5)C67—C70—C72—O7688.7 (5)
C21—C20—C22—C2383.6 (6)C71—C70—C72—C7384.4 (6)
C17—C20—C22—C23150.0 (4)C67—C70—C72—C73149.6 (4)
O26—C22—O22—C1674.3 (5)O76—C72—O72—C6674.0 (5)
C20—C22—O22—C1641.7 (5)C70—C72—O72—C6642.5 (5)
C23—C22—O22—C16165.9 (4)C73—C72—O72—C66166.8 (4)
C15—C16—O22—C22151.7 (4)C65—C66—O72—C72154.1 (4)
C17—C16—O22—C2234.4 (5)C67—C66—O72—C7236.6 (5)
O22—C22—C23—C2466.6 (6)O72—C72—C73—C7464.8 (6)
O26—C22—C23—C2453.2 (7)O76—C72—C73—C7455.7 (6)
C20—C22—C23—C24175.7 (5)C70—C72—C73—C74176.6 (5)
C22—C23—C24—C2553.1 (7)C72—C73—C74—C7554.9 (6)
C23—C24—C25—C27173.9 (5)C73—C74—C75—C77175.4 (5)
C23—C24—C25—C2653.4 (7)C73—C74—C75—C7653.6 (6)
C27—C25—C26—O26178.7 (5)C77—C75—C76—O76179.3 (5)
C24—C25—C26—O2656.7 (6)C74—C75—C76—O7656.9 (6)
C25—C26—O26—C2261.2 (6)C75—C76—O76—C7261.9 (6)
O22—C22—O26—C2660.9 (5)O72—C72—O76—C7659.6 (5)
C20—C22—O26—C26175.4 (4)C70—C72—O76—C76175.4 (4)
C23—C22—O26—C2657.6 (6)C73—C72—O76—C7659.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3i0.87 (2)2.01 (2)2.873 (6)175 (6)
O1W—H1W···O53i0.87 (2)2.17 (3)3.028 (6)169 (5)
O3—H3···O1W0.90 (7)1.93 (7)2.812 (6)167 (6)
O53—H53···O3i0.93 (7)2.00 (7)2.881 (6)158 (6)
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC27H42O3·0.5H2O
Mr423.61
Crystal system, space groupOrthorhombic, P212121
Temperature (K)136
a, b, c (Å)7.3483 (5), 19.698 (2), 33.440 (3)
V3)4840.3 (8)
Z8
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.50 × 0.17 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.821, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
17450, 4918, 3573
Rint0.131
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.177, 1.13
No. of reflections4918
No. of parameters570
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3i0.87 (2)2.01 (2)2.873 (6)175 (6)
O1W—H1W···O53i0.87 (2)2.17 (3)3.028 (6)169 (5)
O3—H3···O1W0.90 (7)1.93 (7)2.812 (6)167 (6)
O53—H53···O3i0.93 (7)2.00 (7)2.881 (6)158 (6)
Symmetry code: (i) x+1/2, y+3/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds