Download citation
Download citation
link to html
In the mol­ecule of the title compound, C17H16N2OS, the almost planar methyl­sulfanylquinazoline group [the methyl C atom deviates by 0.032 (2) Å from the plane through the ring system] forms an inter­planar angle of 76.26 (4)° with the plane of the phenyl group. An intra­molecular O—H...N hydrogen bond is present between the quinazoline and hy­droxy groups. In the crystal, mol­ecules are stacked along the b-axis direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814019990/gg2141sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814019990/gg2141Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536814019990/gg2141Isup3.cml
Supplementary material

CCDC reference: 1022918

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • R factor = 0.032
  • wR factor = 0.094
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

In C17H16N2OS (Fig. 1), the methylsulfanylquinazoline group is planar and is oriented at an angle of 76.26 (4)° with the phenyl group. The hydroxyl group forms an intramolecular hydrogen bond to one of the quinazoline ring nitrogen atoms (Table 1) whereas the second N atom is not involved in hydrogen bonding. In the crystal structure, molecules are stacked along the b-axis direction (Fig. 2).

Related literature top

For the synthesis of 4-(methylsulfanyl)quinazoline derivatives, see: Smith et al. (2005a,b); Leonard & Curtin (1946); Meerwein et al. (1956). For the X-ray structures of related compounds, see: Alshammari et al. (2014a,b).

Experimental top

Synthesis and crystallization: 2-(2-hydroxy-2-phenylethyl)-4-(methylsulfanyl)quinazoline was obtained in 83% yield from lithiation of 2-methyl-4-(methylsulfanyl)quinazoline with n-butyllithium at 78°C in anhydrous THF under nitrogen followed by reaction with benzaldehyde (Smith et al., 2005b). Crystallization from a mixture of ethyl acetate and diethyl ether (1:3 by volume) gave the title compound as colorless crystals. The NMR and low and high resolution mass spectra for the title compound were consistent with those reported (Smith et al., 2005b).

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq(C) except for the methyl group where it was 1.5 times with free rotation about the C—C bond. For the OH group, Uiso(H) 1.5 times Ueq(O) was used with free rotation about the C—O bond.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al. 2006), ORTEP-3 for Windows (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001); software used to prepare material for publication: publCIF, (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A molecule of C17H16N2OS with atom labels and 50% probability displacement ellipsoids for nonhydrogen atoms.
[Figure 2] Fig. 2. Crystal structure packing viewed down the b axis.
2-[4-(Methylsulfanyl)quinazolin-2-yl]-1-phenylethanol top
Crystal data top
C17H16N2OSF(000) = 624
Mr = 296.38Dx = 1.328 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 15.6142 (3) ÅCell parameters from 5816 reflections
b = 5.6142 (1) Åθ = 3.5–73.7°
c = 17.2355 (3) ŵ = 1.93 mm1
β = 101.138 (2)°T = 293 K
V = 1482.43 (5) Å3Block, colourless
Z = 40.32 × 0.19 × 0.14 mm
Data collection top
Agilent SuperNova (Dual, Cu at 0, Atlas)
diffractometer
2688 reflections with I > 2σ(I)
ω scansRint = 0.014
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
θmax = 74.0°, θmin = 3.5°
Tmin = 0.867, Tmax = 1.000h = 1919
9606 measured reflectionsk = 66
2938 independent reflectionsl = 1121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.2343P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2938 reflectionsΔρmax = 0.16 e Å3
192 parametersΔρmin = 0.28 e Å3
Crystal data top
C17H16N2OSV = 1482.43 (5) Å3
Mr = 296.38Z = 4
Monoclinic, P21/nCu Kα radiation
a = 15.6142 (3) ŵ = 1.93 mm1
b = 5.6142 (1) ÅT = 293 K
c = 17.2355 (3) Å0.32 × 0.19 × 0.14 mm
β = 101.138 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at 0, Atlas)
diffractometer
2938 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
2688 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 1.000Rint = 0.014
9606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
2938 reflectionsΔρmin = 0.28 e Å3
192 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction in SCALE3 ABSPACK.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67633 (8)0.0261 (2)0.10297 (7)0.0458 (3)
C20.68632 (8)0.1600 (2)0.04845 (7)0.0450 (3)
C30.62090 (9)0.3225 (3)0.01440 (8)0.0553 (3)
H30.56520.31100.02580.066*
C40.63923 (10)0.4967 (3)0.03523 (9)0.0601 (4)
H40.59610.60480.05690.072*
C50.72249 (10)0.5136 (3)0.05366 (8)0.0569 (3)
H50.73420.63360.08730.068*
C60.78660 (9)0.3561 (3)0.02273 (8)0.0523 (3)
H60.84130.36690.03630.063*
C70.76994 (8)0.1775 (2)0.02961 (7)0.0444 (3)
C80.81859 (8)0.1354 (2)0.11131 (7)0.0445 (3)
C90.59215 (12)0.3019 (3)0.19721 (11)0.0734 (5)
H9A0.63920.26260.24000.110*
H9B0.54010.33120.21760.110*
H9C0.60700.44210.17080.110*
C100.88942 (8)0.3057 (2)0.14745 (8)0.0479 (3)
H10A0.88700.32610.20290.058*
H10B0.87750.45950.12200.058*
C110.98167 (8)0.2298 (2)0.14133 (7)0.0429 (3)
H110.99410.07640.16830.051*
C121.04767 (8)0.4094 (2)0.18105 (7)0.0414 (3)
C131.06970 (9)0.6065 (2)0.14024 (8)0.0483 (3)
H131.04410.62800.08730.058*
C141.12977 (9)0.7713 (2)0.17802 (9)0.0538 (3)
H141.14490.90110.14990.065*
C151.16716 (9)0.7448 (2)0.25659 (9)0.0544 (3)
H151.20750.85560.28150.065*
C161.14426 (9)0.5519 (3)0.29825 (8)0.0541 (3)
H161.16810.53500.35170.065*
C171.08585 (8)0.3841 (2)0.26030 (8)0.0477 (3)
H171.07200.25260.28830.057*
N10.83603 (7)0.0253 (2)0.06177 (6)0.0475 (3)
N20.74020 (7)0.1686 (2)0.13399 (6)0.0475 (3)
O10.99198 (7)0.2036 (2)0.06187 (6)0.0606 (3)
H10.95630.10700.03930.091*
S10.57374 (2)0.05921 (7)0.12865 (2)0.06185 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (6)0.0551 (7)0.0426 (6)0.0077 (5)0.0110 (5)0.0052 (5)
C20.0415 (6)0.0531 (7)0.0399 (6)0.0044 (5)0.0071 (5)0.0040 (5)
C30.0463 (7)0.0683 (9)0.0517 (7)0.0049 (6)0.0101 (6)0.0006 (6)
C40.0609 (8)0.0649 (8)0.0529 (8)0.0122 (7)0.0070 (6)0.0060 (6)
C50.0654 (9)0.0565 (8)0.0487 (7)0.0011 (7)0.0105 (6)0.0077 (6)
C60.0504 (7)0.0597 (8)0.0474 (7)0.0065 (6)0.0107 (5)0.0063 (6)
C70.0414 (6)0.0508 (7)0.0405 (6)0.0059 (5)0.0065 (5)0.0007 (5)
C80.0398 (6)0.0514 (7)0.0418 (6)0.0076 (5)0.0072 (5)0.0004 (5)
C90.0777 (11)0.0691 (10)0.0845 (11)0.0061 (8)0.0435 (9)0.0105 (8)
C100.0431 (6)0.0510 (7)0.0492 (7)0.0052 (5)0.0078 (5)0.0062 (5)
C110.0433 (6)0.0459 (6)0.0410 (6)0.0028 (5)0.0123 (5)0.0009 (5)
C120.0376 (6)0.0434 (6)0.0451 (6)0.0061 (5)0.0129 (5)0.0006 (5)
C130.0508 (7)0.0475 (7)0.0482 (6)0.0057 (5)0.0139 (5)0.0037 (5)
C140.0538 (7)0.0434 (6)0.0691 (8)0.0010 (6)0.0244 (6)0.0017 (6)
C150.0451 (7)0.0510 (7)0.0677 (8)0.0014 (6)0.0123 (6)0.0110 (6)
C160.0479 (7)0.0604 (8)0.0517 (7)0.0045 (6)0.0038 (6)0.0037 (6)
C170.0468 (6)0.0489 (7)0.0477 (6)0.0037 (5)0.0098 (5)0.0039 (5)
N10.0390 (5)0.0554 (6)0.0482 (5)0.0046 (4)0.0084 (4)0.0067 (5)
N20.0429 (5)0.0546 (6)0.0462 (5)0.0072 (5)0.0116 (4)0.0021 (5)
O10.0655 (6)0.0740 (7)0.0477 (5)0.0177 (5)0.0247 (4)0.0148 (5)
S10.0459 (2)0.0755 (3)0.0698 (2)0.00317 (16)0.02499 (17)0.00692 (17)
Geometric parameters (Å, º) top
C1—N21.3092 (17)C9—H9C0.9600
C1—C21.4340 (18)C10—C111.5252 (16)
C1—S11.7521 (13)C10—H10A0.9700
C2—C71.4083 (17)C10—H10B0.9700
C2—C31.4100 (19)C11—O11.4173 (14)
C3—C41.365 (2)C11—C121.5082 (17)
C3—H30.9300C11—H110.9800
C4—C51.400 (2)C12—C171.3880 (17)
C4—H40.9300C12—C131.3894 (18)
C5—C61.365 (2)C13—C141.3873 (19)
C5—H50.9300C13—H130.9300
C6—C71.4065 (18)C14—C151.375 (2)
C6—H60.9300C14—H140.9300
C7—N11.3713 (17)C15—C161.384 (2)
C8—N11.3067 (16)C15—H150.9300
C8—N21.3678 (16)C16—C171.3843 (19)
C8—C101.5032 (18)C16—H160.9300
C9—S11.7902 (17)C17—H170.9300
C9—H9A0.9600O1—H10.8200
C9—H9B0.9600
N2—C1—C2122.82 (11)C11—C10—H10A108.5
N2—C1—S1119.58 (10)C8—C10—H10B108.5
C2—C1—S1117.60 (10)C11—C10—H10B108.5
C7—C2—C3119.24 (12)H10A—C10—H10B107.5
C7—C2—C1115.14 (11)O1—C11—C12108.24 (10)
C3—C2—C1125.62 (12)O1—C11—C10112.40 (10)
C4—C3—C2120.08 (13)C12—C11—C10110.70 (10)
C4—C3—H3120.0O1—C11—H11108.5
C2—C3—H3120.0C12—C11—H11108.5
C3—C4—C5120.48 (13)C10—C11—H11108.5
C3—C4—H4119.8C17—C12—C13118.57 (12)
C5—C4—H4119.8C17—C12—C11120.28 (11)
C6—C5—C4120.70 (13)C13—C12—C11121.12 (11)
C6—C5—H5119.7C14—C13—C12120.31 (12)
C4—C5—H5119.7C14—C13—H13119.8
C5—C6—C7120.01 (13)C12—C13—H13119.8
C5—C6—H6120.0C15—C14—C13120.65 (13)
C7—C6—H6120.0C15—C14—H14119.7
N1—C7—C6119.03 (12)C13—C14—H14119.7
N1—C7—C2121.49 (11)C14—C15—C16119.52 (13)
C6—C7—C2119.47 (12)C14—C15—H15120.2
N1—C8—N2126.28 (12)C16—C15—H15120.2
N1—C8—C10118.73 (11)C15—C16—C17119.99 (13)
N2—C8—C10114.98 (11)C15—C16—H16120.0
S1—C9—H9A109.5C17—C16—H16120.0
S1—C9—H9B109.5C16—C17—C12120.92 (12)
H9A—C9—H9B109.5C16—C17—H17119.5
S1—C9—H9C109.5C12—C17—H17119.5
H9A—C9—H9C109.5C8—N1—C7117.30 (11)
H9B—C9—H9C109.5C1—N2—C8116.95 (11)
C8—C10—C11115.00 (10)C11—O1—H1109.5
C8—C10—H10A108.5C1—S1—C9102.08 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.122.7531 (15)134
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.122.7531 (15)134
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds