Download citation
Download citation
link to html
The title compound, C33H34O2Si, has been obtained as a product in the synthesis of 6,13-bis­[(triisopropyl­silyl)ethynyl]-6,13-dihydro­penta­cene-6,13-diol. The solid-state structure reveals a dimer, with strong hydrogen bonds holding the two mol­ecules in a face-to-face arrangement [O...O = 2.746 (2) Å and O—H...O = 173 (2)°]. Within each dimer, the penta­cene units are π-stacked (the distance between the mean least-squares planes of 22 C atoms is 3.60 Å).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106008262/gg3004sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106008262/gg3004Isup2.hkl
Contains datablock I

CCDC reference: 295896

Comment top

The design of photo- and redox-active systems with potential application as photocatalysts for solar energy conversion is a research imperative for the 21s t century (Eisenberg & Nocera, 2005). With the aim of designing photocatalytic systems involving redox- and photoactive transition metal complexes, we have focused on a modular approach using {M(tpy)2} metallotectons (tpy is 2,2':6',2''-terpyridine). We have shown that pendant or bridging aromatic units may be used to control energy- and electron-transfer processes (Constable et al., 2005; Figgemeier et al., 2003; Hjelm et al., 2005, and references therein). In the course of our synthetic programme to tune the highest occupied molecular orbital–lowest unoccupied molecular orbital properties and band gap of bridging aromatic moieties, our attention has turned to pentacene units, which have attractive energetic properties (Meng et al., 2005; Sakamoto et al., 2004; Swartz et al., 2005). In this paper, we report the structure of the title compound, (I), a product obtained in the synthesis of 6,13-bis(ethynyl)pentacene.

We required 6,13-bis(ethynyl)pentacene, (V), to introduce it as a spacer between two {M(tpy)2} units, and used minor variations on the literature procedure to prepare 6,13-bis[(triisopropylsilyl)ethynyl]pentacene, (II) (Anthony et al., 2001, 2002; Payne, Delcamp et al., 2004; Swartz et al., 2005). Pentacene-6,13-dione, (III), was prepared as a yellow solid from the reaction of cyclopentane-1,4-dione with 1,2-benzenedicarboxaldehyde in ethanolic KOH in 95% yield (Ried & Anthöfer, 1953). Reaction of (III) with (triisopropylsilyl)ethynyllithium (TIPSCCLi) in tetrahydrofuran gave a green solid comprising the desired diol, 6,13-bis[(triisopropylsilyl)ethynyl]-6,13-dihydropentacene-6,13-diol, (IV), and a highly fluorescent (λem 434 nm) product, characterized as 13-hydroxy-13-[(trisisopropylsilyl)ethynyl]pentacen-6(13H)-one, (I). We have subsequently optimized the yield of orange (I) by reaction of (III) with one equivalent of TIPSCCLi.

We have determined the solid-state crystal structure of compound (I). Fig. 1 shows the structure of a molecule of (I), together with the numbering scheme adopted. The bond distances and angles in (I) are unexceptional; the Si1—C1/C4/C7 distances lie in the range 1.880 (3)–1.883 (3) Å, with Si1—C10 being shorter at 1.837 (2) Å. Five of the C—Si—C bond angles fall in the range 105.9 (1)–110.7 (1)°, while C4—Si1—C7 is larger [115.4 (1)°].

Relatively few pentacene derivatives have been structurally characterized to date (Anthony et al., 2001; Borgen, 1966; Campbell et al., 1962; Chan et al., 2005; Dzyabchenko et al., 1979; Holmes et al., 1999; Klarner et al., 2001; Mattheus et al., 2001, 2002; Meng et al., 2005; Miller et al., 2003; Ohkita et al., 2000; Payne, Odom et al., 2004; Sakamoto et al., 2004; Siegrist et al., 2001; Swartz et al., 2005; Uno et al., 2005). As expected on the basis of hydrogen bonding (see later) and the non-aromatic ring structure, the carbonyl C—O bond in (I) is slightly longer [C23—O2 = 1.238 (3) Å] than that in the quinone pentacene-6,13-dione (1.215 Å; Dzyabchenko et al., 1979). Within the pentacene system, the aromatic rings exhibit typical delocalized C—C bond distances in the range 1.358 (4)–1.424 (3) Å, similar to those of the aromatic rings in other pentacenes and 6,13-dihydropentacenes. In the central ring, the C—C bonds to the carbonyl group are a little longer [1.476 (3) and 1.474 (3) Å] and similar in length to those in pentacene-6,13-dione (1.483 Å; Dzyabchenko et al., 1979). The formally single C—C bonds to C12 in the central ring show distances of 1.528 (3) and 1.535 (3) Å, which are similar to, if slightly longer than, those in 6,13-dihydropentacene (1.475 and 1.524 Å; Mattheus et al., 2002). In contrast with 6,13-dihydropentacene, where the least-squares planes through the `naphthalene' units intersect at the sp3 C atoms at an angle of 28° (Mattheus et al., 2002), the pentacene ring system in (I) is nearly planar, with the deviation of the sp3 atom C12 from the least-squares plane of the aromatic rings being only 0.16 Å.

The molecules of (I) form a hydrogen-bonded dimer in the solid state (Fig. 2), in which the hydroxy group of one molecule is strongly hydrogen-bonded to the carbonyl O atom of a second [O1···O2i = 2.746 (2) Å and O1—H1···O2i = 173 (2)°; symmetry code:(i) −x, −y, −z]. The consequence of this tight hydrogen bonding is efficient offset face-to-face π-stacking of the two pentacene rings; the distance between least-squares planes, each of 22 C atoms, is 3.60 Å. The dimers are linked along the b axis by hydrogen-bonded interactions [C16—H161···O2ii, with C16···O2ii = 3.447 (3) Å, and C27—H271···O1iii, with C27···O1iii = 3.318 (3) Å; symmetry codes: (ii) ?; (iii) ? Please complete]. When viewed along the b axis (Fig. 3), the solid-state structure reveals packing of the dimers into columns. The dimers are π-stacked with offset face-to-face π-stacking of pentacene rings (the distance between least-squares planes, each of 22 C atoms, is 3.52 Å). The (triisopropyl)silyl (TIPS) substituents are directed outwards from these columns and form an intermeshed assembly between them.

Of the 26 4-hydroxycyclohexa-2,5-dienones present in the Cambridge Structural Database (Version 5.2.7; Allen, 2002; Bruno et al., 2002), the majority exhibit extended or linear hydrogen-bond connectivity, and in only two cases is a dimeric structure related to (I) observed. In the case of 4-ethynyl-4-hydroxy-2,3,5,6-tetramethylcyclohexa-2,5-dienone (Bilton et al., 2000), the monomer unit is related to (I) and the dimer has similar metrical parameters, although the hydrogen bond is significantly weaker [O—H···O = 1.94 (3) and 1.96 (3) Å; O···O = 2.826 (2) and 2.786 (2) Å; O—H···O = 172 (2) and 178 (3)°]. Once again, the hydrogen-bonding facilitates offset face-to-face π-stacking, and the distance between the least-squares planes of the aromatic rings in the dimer is 3.54 Å. The second example is found in 4,5,7-trichloro-3a-hydroxy-1-(4-methylphenyl)-2-(4-methylphenylimino)-2,3,3a,6-tetrahydro-1H-indol-6-one (Doepp et al., 1995), in which strong hydrogen bonds (O···O = 2.722 Å) also support the coplanar arrangement of aromatic rings (the distance between the least-squares planes of the aromatic rings is 3.38 Å), although these are slipped such that there is no direct ring overlap.

Experimental top

Pentacene-6,13-dione (5.00 g, 16.2 mmol) was dissolved in freshly distilled diethyl ether (50 ml) and the solution was added to a mixture of (triisopropylsilyl)ethyne (6.00 ml, 4.88 g, 26.7 mmol) and n-BuLi (5 ml, 1.6 M in tetrahydrofuran, 8 mmol) in tetrahydrofuran (10 ml). The mixture was stirred at room temperature under nitrogen for 24 h, and then the solvent was removed in vacuo and the residue purified by chromatography over silica gel (hexanes–CHCl3 1:1) to give 13-hydroxy-13-[(triisopropylsilyl)ethynyl]pentacen-6(13H)-one, (I), as a green solid (5.50 g, 69.2%; m.p. > 673 K), together with some 6,13-bis[(triisopropylsilyl)ethynyl]pentacene (1.26 g, 11.7%). Spectroscopic analysis: 1H NMR (250 MHz, CDCl3, 297 K, δ, p.p.m.): 8.811 (HP5,7, s, 2H), 8.722 (HP12,14, s, 2H), 8.03 (HP4,8, d, 2H, J = 8.2 Hz), 7.92 (HP1,11, d, 2H, J = 8.2 Hz), 7.62 (HP2,10, d, 2H, J = 8.2, 6.8 and 1.3 Hz), 7.60 (HP3,9, d, 2H, J = 8.2, 6.8 and 1.3 Hz), 1.78 (HTIPS, m, 3H), 1.15 (HTIPS, m, 18H); 13C NMR (CDCl3, 62.5 MHz, 297 K, δ, p.p.m.): 206.9, 138.8, 135.6, 132.8, 129.7, 129.6, 128.9, 128.6, 128.2, 127.3, 127.2, 108.2, 90.0, 68.6, 18.6, 11.2; EIMS: m/z 474.1 [M+H]+; UV–VIS (nm): 266, 276, 320, 356; Emission (nm): 434 (λex 356 nm).

Refinement top

Hydroxy atom H1 was located in a difference map and refined freely. All other H atoms were treated as riding, with C—H distances of 1.00 Å and with Uiso(H) = 1.5Ueq(C). [Please check added text]

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. A view of a single molecule of (I), showing the numbering scheme adopted. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The dimeric assembly of two molecules of (I) in the crystal structure. H atoms other than those involved in hydrogen bonding have been omitted, as have the (triisopropyl)silyl groups. [Symmetry code: (i) −x, −y, −z.]
[Figure 3] Fig. 3. A space-filling diagram of (I), viewed down the b axis, showing the packing of the dimers into columns, between which lie the (triisopropyl)silyl groups.
13-hydroxy-13-[(triisopropylsilyl)ethynyl]pentacen-6(13H)-one top
Crystal data top
C33H34O2SiZ = 2
Mr = 490.72F(000) = 524
Triclinic, P1Dx = 1.201 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8875 (3) ÅCell parameters from 5830 reflections
b = 8.9910 (3) Åθ = 1–27°
c = 17.6023 (7) ŵ = 0.11 mm1
α = 90.406 (2)°T = 173 K
β = 92.2227 (19)°Plate, colourless
γ = 105.032 (2)°0.40 × 0.34 × 0.02 mm
V = 1357.19 (9) Å3
Data collection top
Nonius Kappa area-detector CCD
diffractometer
3673 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.96, Tmax = 1.00k = 1111
11207 measured reflectionsl = 2222
6138 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ(F) + 0.04P]
where P = [max(Fo,0) + 2Fc]/3
S = 1.07(Δ/σ)max = 0.000204
3673 reflectionsΔρmax = 0.30 e Å3
329 parametersΔρmin = 0.22 e Å3
2 restraints
Crystal data top
C33H34O2Siγ = 105.032 (2)°
Mr = 490.72V = 1357.19 (9) Å3
Triclinic, P1Z = 2
a = 8.8875 (3) ÅMo Kα radiation
b = 8.9910 (3) ŵ = 0.11 mm1
c = 17.6023 (7) ÅT = 173 K
α = 90.406 (2)°0.40 × 0.34 × 0.02 mm
β = 92.2227 (19)°
Data collection top
Nonius Kappa area-detector CCD
diffractometer
6138 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
3673 reflections with I > 3σ(I)
Tmin = 0.96, Tmax = 1.00Rint = 0.015
11207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.30 e Å3
3673 reflectionsΔρmin = 0.22 e Å3
329 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.67081 (8)0.77144 (8)0.34415 (4)0.0337
O11.05215 (18)0.75981 (18)0.13917 (10)0.0347
O20.8191 (2)0.23865 (19)0.00023 (10)0.0411
C10.7094 (3)0.6404 (3)0.42131 (15)0.0482
C20.6365 (5)0.4710 (4)0.4004 (2)0.0794
C30.8841 (4)0.6686 (5)0.4409 (2)0.0775
C40.7663 (3)0.9783 (3)0.37053 (16)0.0464
C50.7399 (4)1.0248 (4)0.45210 (19)0.0643
C60.7254 (4)1.0935 (3)0.31480 (19)0.0573
C70.4566 (3)0.7267 (3)0.31777 (14)0.0339
C80.3618 (3)0.7656 (3)0.38301 (16)0.0445
C90.4186 (3)0.8003 (3)0.24335 (15)0.0437
C100.7644 (3)0.7220 (3)0.25978 (14)0.0346
C110.8276 (3)0.6826 (3)0.20661 (14)0.0325
C120.9130 (3)0.6359 (3)0.14352 (13)0.0309
C130.8160 (3)0.6219 (3)0.06896 (14)0.0325
C140.7609 (3)0.7449 (3)0.04626 (14)0.0359
C150.6725 (3)0.7404 (3)0.02269 (14)0.0358
C160.6140 (3)0.8663 (3)0.04628 (16)0.0449
C170.5245 (3)0.8552 (3)0.11228 (16)0.0481
C180.4908 (3)0.7209 (3)0.15789 (16)0.0495
C190.5461 (3)0.5987 (3)0.13749 (15)0.0430
C200.6382 (3)0.6051 (3)0.06913 (14)0.0364
C210.6963 (3)0.4807 (3)0.04522 (14)0.0352
C220.7836 (3)0.4872 (3)0.02178 (13)0.0318
C230.8420 (3)0.3531 (3)0.04289 (14)0.0331
C240.9284 (3)0.3572 (3)0.11640 (14)0.0317
C250.9820 (3)0.2311 (3)0.13689 (15)0.0354
C261.0618 (3)0.2265 (3)0.20697 (15)0.0360
C271.1146 (3)0.0965 (3)0.22980 (17)0.0427
C281.1856 (3)0.0943 (3)0.29933 (18)0.0486
C291.2097 (3)0.2221 (3)0.34961 (17)0.0477
C301.1623 (3)0.3492 (3)0.32941 (16)0.0432
C311.0875 (3)0.3559 (3)0.25764 (15)0.0363
C321.0347 (3)0.4851 (3)0.23450 (14)0.0347
C330.9578 (3)0.4879 (3)0.16589 (14)0.0314
H11.097 (3)0.752 (3)0.0919 (9)0.058 (7)*
H110.65900.66450.46800.0608*
H210.65920.40500.44260.0972*
H220.68170.44430.35260.0972*
H230.52110.45280.39240.0972*
H310.90000.59720.48190.0980*
H320.92790.77760.45880.0980*
H330.93850.64920.39460.0980*
H410.88110.99110.36770.0539*
H510.79431.13590.46150.0746*
H520.78220.96030.48900.0746*
H530.62561.00850.45890.0746*
H610.78011.20080.33210.0668*
H620.61011.08090.31300.0668*
H630.75911.07410.26290.0668*
H710.42050.61270.30920.0404*
H810.24890.74010.36660.0538*
H820.39920.87780.39620.0538*
H830.37580.70380.42850.0538*
H910.30310.77160.23300.0526*
H920.45770.91480.24820.0526*
H930.47010.76240.20050.0526*
H1410.78410.83970.07930.0412*
H1610.63810.96290.01450.0519*
H1710.48300.94400.12820.0567*
H1810.42550.71490.20590.0566*
H1910.52140.50390.17060.0492*
H2110.67330.38500.07770.0398*
H2510.96280.14080.10100.0415*
H2711.09870.00570.19450.0520*
H2811.22130.00190.31500.0580*
H2911.26250.21940.40060.0562*
H3011.18050.43870.36570.0505*
H3211.05460.57690.26940.0406*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0307 (4)0.0414 (4)0.0299 (4)0.0107 (3)0.0037 (3)0.0042 (3)
O10.0320 (9)0.0325 (9)0.0343 (10)0.0012 (7)0.0047 (7)0.0081 (7)
O20.0432 (10)0.0371 (10)0.0391 (11)0.0029 (8)0.0069 (8)0.0140 (8)
C10.0516 (17)0.0682 (19)0.0318 (15)0.0278 (14)0.0047 (12)0.0054 (13)
C20.111 (3)0.063 (2)0.071 (2)0.034 (2)0.001 (2)0.0235 (18)
C30.065 (2)0.127 (3)0.054 (2)0.051 (2)0.0079 (17)0.007 (2)
C40.0334 (14)0.0525 (17)0.0494 (17)0.0042 (12)0.0066 (12)0.0162 (13)
C50.065 (2)0.065 (2)0.056 (2)0.0065 (16)0.0051 (16)0.0272 (16)
C60.0535 (18)0.0390 (16)0.074 (2)0.0006 (13)0.0164 (16)0.0026 (15)
C70.0309 (12)0.0355 (13)0.0351 (14)0.0078 (10)0.0041 (10)0.0012 (10)
C80.0355 (14)0.0529 (16)0.0471 (17)0.0140 (12)0.0099 (12)0.0001 (13)
C90.0377 (14)0.0531 (16)0.0405 (16)0.0125 (12)0.0015 (12)0.0004 (12)
C100.0294 (12)0.0394 (14)0.0356 (15)0.0098 (10)0.0035 (11)0.0035 (11)
C110.0298 (12)0.0320 (12)0.0340 (14)0.0054 (10)0.0003 (10)0.0030 (10)
C120.0264 (11)0.0306 (12)0.0324 (13)0.0015 (9)0.0039 (10)0.0073 (10)
C130.0273 (12)0.0320 (13)0.0340 (14)0.0000 (9)0.0054 (10)0.0055 (10)
C140.0362 (13)0.0350 (13)0.0328 (14)0.0026 (10)0.0037 (11)0.0070 (10)
C150.0305 (12)0.0392 (14)0.0336 (14)0.0008 (10)0.0073 (10)0.0007 (11)
C160.0472 (16)0.0421 (15)0.0423 (16)0.0056 (12)0.0028 (13)0.0014 (12)
C170.0484 (16)0.0511 (17)0.0427 (17)0.0088 (13)0.0022 (13)0.0103 (13)
C180.0416 (16)0.0652 (19)0.0361 (16)0.0039 (13)0.0005 (12)0.0070 (14)
C190.0372 (14)0.0512 (16)0.0353 (15)0.0019 (12)0.0044 (12)0.0022 (12)
C200.0287 (12)0.0406 (14)0.0334 (14)0.0032 (10)0.0067 (10)0.0022 (11)
C210.0296 (12)0.0397 (13)0.0309 (14)0.0015 (10)0.0073 (10)0.0087 (10)
C220.0250 (12)0.0347 (13)0.0307 (13)0.0017 (9)0.0073 (10)0.0074 (10)
C230.0277 (12)0.0327 (13)0.0343 (14)0.0015 (9)0.0115 (10)0.0082 (10)
C240.0245 (11)0.0314 (12)0.0353 (14)0.0008 (9)0.0102 (10)0.0063 (10)
C250.0311 (12)0.0296 (13)0.0423 (15)0.0012 (10)0.0097 (11)0.0100 (11)
C260.0276 (12)0.0308 (13)0.0465 (16)0.0011 (10)0.0099 (11)0.0051 (11)
C270.0380 (14)0.0309 (13)0.0588 (19)0.0073 (11)0.0108 (13)0.0042 (12)
C280.0459 (16)0.0393 (15)0.062 (2)0.0135 (12)0.0036 (14)0.0067 (13)
C290.0471 (16)0.0432 (16)0.0513 (18)0.0096 (12)0.0024 (13)0.0034 (13)
C300.0439 (15)0.0377 (14)0.0456 (17)0.0067 (11)0.0004 (12)0.0049 (12)
C310.0307 (13)0.0323 (13)0.0435 (15)0.0036 (10)0.0054 (11)0.0034 (11)
C320.0340 (13)0.0290 (12)0.0388 (15)0.0045 (10)0.0013 (11)0.0086 (10)
C330.0258 (12)0.0307 (12)0.0353 (14)0.0024 (9)0.0072 (10)0.0071 (10)
Geometric parameters (Å, º) top
Si1—C11.883 (3)C12—C331.535 (3)
Si1—C41.880 (3)C13—C141.376 (3)
Si1—C71.880 (2)C13—C221.424 (3)
Si1—C101.837 (2)C14—C151.415 (3)
O1—C121.439 (3)C14—H1411.000
O1—H10.944 (10)C15—C161.421 (4)
O2—C231.238 (3)C15—C201.420 (3)
C1—C21.529 (5)C16—C171.370 (4)
C1—C31.532 (4)C16—H1611.000
C1—H111.000C17—C181.405 (4)
C2—H211.000C17—H1711.000
C2—H221.000C18—C191.359 (4)
C2—H231.000C18—H1811.000
C3—H311.000C19—C201.421 (4)
C3—H321.000C19—H1911.000
C3—H331.000C20—C211.409 (4)
C4—C51.536 (4)C21—C221.379 (3)
C4—C61.533 (4)C21—H2111.000
C4—H411.000C22—C231.476 (3)
C5—H511.000C23—C241.474 (3)
C5—H521.000C24—C251.384 (3)
C5—H531.000C24—C331.420 (3)
C6—H611.000C25—C261.405 (4)
C6—H621.000C25—H2511.000
C6—H631.000C26—C271.422 (3)
C7—C81.540 (3)C26—C311.426 (3)
C7—C91.536 (3)C27—C281.358 (4)
C7—H711.000C27—H2711.000
C8—H811.000C28—C291.412 (4)
C8—H821.000C28—H2811.000
C8—H831.000C29—C301.361 (4)
C9—H911.000C29—H2911.000
C9—H921.000C30—C311.413 (4)
C9—H931.000C30—H3011.000
C10—C111.206 (3)C31—C321.418 (3)
C11—C121.486 (3)C32—C331.368 (3)
C12—C131.528 (3)C32—H3211.000
C1—Si1—C4110.52 (14)C11—C12—C33108.54 (19)
C1—Si1—C7110.67 (12)O1—C12—C33109.28 (18)
C4—Si1—C7115.38 (12)C13—C12—C33114.05 (18)
C1—Si1—C10105.87 (12)C12—C13—C14118.7 (2)
C4—Si1—C10107.88 (11)C12—C13—C22122.1 (2)
C7—Si1—C10105.95 (11)C14—C13—C22119.2 (2)
C12—O1—H1108.5 (18)C13—C14—C15121.6 (2)
Si1—C1—C2111.6 (2)C13—C14—H141119.2
Si1—C1—C3111.7 (2)C15—C14—H141119.2
C2—C1—C3110.7 (3)C14—C15—C16122.0 (2)
Si1—C1—H11107.6C14—C15—C20119.2 (2)
C2—C1—H11107.5C16—C15—C20118.8 (2)
C3—C1—H11107.5C15—C16—C17120.1 (3)
C1—C2—H21109.4C15—C16—H161119.8
C1—C2—H22109.4C17—C16—H161120.1
H21—C2—H22109.5C16—C17—C18120.8 (3)
C1—C2—H23109.6C16—C17—H171119.5
H21—C2—H23109.5C18—C17—H171119.7
H22—C2—H23109.5C17—C18—C19120.8 (3)
C1—C3—H31109.4C17—C18—H181119.7
C1—C3—H32109.6C19—C18—H181119.6
H31—C3—H32109.5C18—C19—C20120.2 (3)
C1—C3—H33109.4C18—C19—H191119.9
H31—C3—H33109.5C20—C19—H191119.9
H32—C3—H33109.5C19—C20—C15119.4 (2)
Si1—C4—C5114.6 (2)C19—C20—C21122.2 (2)
Si1—C4—C6113.70 (19)C15—C20—C21118.4 (2)
C5—C4—C6109.5 (2)C20—C21—C22121.7 (2)
Si1—C4—H41106.1C20—C21—H211119.1
C5—C4—H41106.1C22—C21—H211119.2
C6—C4—H41106.2C13—C22—C21119.9 (2)
C4—C5—H51109.5C13—C22—C23121.4 (2)
C4—C5—H52109.6C21—C22—C23118.8 (2)
H51—C5—H52109.5C22—C23—O2121.2 (2)
C4—C5—H53109.3C22—C23—C24118.7 (2)
H51—C5—H53109.5O2—C23—C24120.2 (2)
H52—C5—H53109.5C23—C24—C25118.9 (2)
C4—C6—H61109.5C23—C24—C33121.2 (2)
C4—C6—H62109.4C25—C24—C33119.8 (2)
H61—C6—H62109.5C24—C25—C26121.7 (2)
C4—C6—H63109.5C24—C25—H251119.1
H61—C6—H63109.5C26—C25—H251119.2
H62—C6—H63109.5C25—C26—C27122.5 (2)
Si1—C7—C8112.09 (17)C25—C26—C31118.5 (2)
Si1—C7—C9113.94 (17)C27—C26—C31119.0 (2)
C8—C7—C9110.9 (2)C26—C27—C28120.6 (2)
Si1—C7—H71106.4C26—C27—H271119.7
C8—C7—H71106.5C28—C27—H271119.7
C9—C7—H71106.4C27—C28—C29120.3 (2)
C7—C8—H81109.5C27—C28—H281119.9
C7—C8—H82109.5C29—C28—H281119.8
H81—C8—H82109.5C28—C29—C30120.8 (3)
C7—C8—H83109.4C28—C29—H291119.6
H81—C8—H83109.5C30—C29—H291119.6
H82—C8—H83109.5C29—C30—C31120.7 (2)
C7—C9—H91109.5C29—C30—H301119.7
C7—C9—H92109.4C31—C30—H301119.7
H91—C9—H92109.5C26—C31—C30118.7 (2)
C7—C9—H93109.5C26—C31—C32118.7 (2)
H91—C9—H93109.5C30—C31—C32122.6 (2)
H92—C9—H93109.5C31—C32—C33122.0 (2)
Si1—C10—C11176.3 (2)C31—C32—H321118.9
C10—C11—C12177.1 (2)C33—C32—H321119.1
C11—C12—O1104.51 (17)C12—C33—C24122.2 (2)
C11—C12—C13110.18 (18)C12—C33—C32118.50 (19)
O1—C12—C13109.83 (19)C24—C33—C32119.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.94 (2)1.81 (2)2.746 (2)173 (?)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC33H34O2Si
Mr490.72
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.8875 (3), 8.9910 (3), 17.6023 (7)
α, β, γ (°)90.406 (2), 92.2227 (19), 105.032 (2)
V3)1357.19 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.34 × 0.02
Data collection
DiffractometerNonius Kappa area-detector CCD
diffractometer
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.96, 1.00
No. of measured, independent and
observed [I > 3σ(I)] reflections
11207, 6138, 3673
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.064, 1.07
No. of reflections3673
No. of parameters329
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: COLLECT (Nonius, 2001), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997), CRYSTALS.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.944 (19)1.807 (19)2.746 (2)173(?)
Symmetry code: (i) x+2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds