The title compound, [CuCl(C
9H
9N
5)]
n, prepared by solvothermal synthesis, is a new homometallic Cu
I–olefin coordination polymer in which the Cu
I atoms are linked by the 3-(2-allyl-2
H-tetrazol-5-yl)pyridine ligands and are each bonded to one terminal Cl atom. The organic ligand acts as a bidentate ligand bridging two neighboring Cu centers through the bonds to the N atom of the pyridine ring and the double bond of the allyl group. Weak Cu

Cl [3.136 (8) Å), C—H

Cl and C—H

N interactions connect the coordination polymers into a three-dimensional structure.
Supporting information
CCDC reference: 696417
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean
(C-C) = 0.005 Å
- R factor = 0.045
- wR factor = 0.104
- Data-to-parameter ratio = 15.9
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.22
PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C8 - C9 ... 1.36 Ang.
PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.80
PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg.
Alert level G
ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be
replaced by the scaled T values. Since the ratio of scaled T's
is identical to the ratio of reported T values, the scaling
does not imply a change to the absorption corrections used in
the study.
Ratio of Tmax expected/reported 0.797
Tmax scaled 0.797 Tmin scaled 0.643
PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K
PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
PLAT793_ALERT_4_G Check the Absolute Configuration of C8 ..... R
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
4 ALERT level C = Check and explain
4 ALERT level G = General alerts; check
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
A mixture of 3-(2-allyl-2H-tetrazol-5-yl)pyridine(20 mg, 0.2 mmol), CuCl
(17.9 mg, 0.2 mmol) were placed in a thick Pyrex tube (ca 20 cm in length).
After addition of methanol, the tube was frozen with liquid nitrogen, evacuated
under vaccum, sealed with a torch and kept at 348 K. Colorless block-shaped
crystals suitable for X-ray analysis were obtained after 5 d (yield 61%
based on the organic ligand).
All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å
(aromatic), 0.97 Å (methylene) and 0.96Å (methyl) with Uiso(H) =
1.2Ueq(Caromatic, Cmethylene) and Uiso(H) =
1.5Ueq(Cmethyl).
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
catena-Poly[[chloridocopper(I)]-µ-
η2,
σ1-3-(2-allyl-2
H-
tetrazol-5-yl)pyridine]
top
Crystal data top
[CuCl(C9H9N5)] | Z = 2 |
Mr = 286.21 | F(000) = 288 |
Triclinic, P1 | Dx = 1.776 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3005 (15) Å | Cell parameters from 5070 reflections |
b = 7.6560 (15) Å | θ = 3.2–27.5° |
c = 9.981 (2) Å | µ = 2.27 mm−1 |
α = 80.51 (3)° | T = 293 K |
β = 77.00 (3)° | Block, colorless |
γ = 84.68 (3)° | 0.2 × 0.15 × 0.1 mm |
V = 535.23 (19) Å3 | |
Data collection top
Rigaku Mercury2 diffractometer | 2443 independent reflections |
Radiation source: fine-focus sealed tube | 1918 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
CCD_Profile_fitting scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −9→9 |
Tmin = 0.806, Tmax = 1 | l = −12→12 |
5572 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0388P)2] where P = (Fo2 + 2Fc2)/3 |
2443 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Crystal data top
[CuCl(C9H9N5)] | γ = 84.68 (3)° |
Mr = 286.21 | V = 535.23 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3005 (15) Å | Mo Kα radiation |
b = 7.6560 (15) Å | µ = 2.27 mm−1 |
c = 9.981 (2) Å | T = 293 K |
α = 80.51 (3)° | 0.2 × 0.15 × 0.1 mm |
β = 77.00 (3)° | |
Data collection top
Rigaku Mercury2 diffractometer | 2443 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1918 reflections with I > 2σ(I) |
Tmin = 0.806, Tmax = 1 | Rint = 0.047 |
5572 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.16 | Δρmax = 0.43 e Å−3 |
2443 reflections | Δρmin = −0.46 e Å−3 |
154 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.15988 (6) | −0.16243 (6) | 0.38989 (4) | 0.03499 (17) | |
Cl3 | −0.15148 (11) | −0.11291 (11) | 0.40805 (10) | 0.0362 (2) | |
N1 | 0.2905 (4) | 0.0083 (4) | 0.2319 (3) | 0.0273 (6) | |
N2 | 0.0888 (4) | 0.4924 (4) | −0.2268 (3) | 0.0288 (6) | |
N3 | 0.2403 (4) | 0.4402 (4) | −0.1738 (3) | 0.0307 (7) | |
N4 | −0.0077 (4) | 0.2863 (4) | −0.0651 (3) | 0.0365 (7) | |
N5 | −0.0620 (4) | 0.4030 (4) | −0.1640 (3) | 0.0363 (7) | |
C1 | 0.4677 (5) | 0.0501 (5) | 0.2253 (3) | 0.0345 (8) | |
H1A | 0.5306 | −0.0055 | 0.2974 | 0.039 (10)* | |
C2 | 0.5620 (5) | 0.1711 (5) | 0.1194 (4) | 0.0375 (9) | |
H2A | 0.6894 | 0.1957 | 0.1169 | 0.034 (10)* | |
C3 | 0.4697 (5) | 0.2565 (5) | 0.0182 (4) | 0.0344 (8) | |
H3A | 0.5327 | 0.3399 | −0.0568 | 0.040 (10)* | |
C4 | 0.2031 (5) | 0.0904 (4) | 0.1323 (3) | 0.0266 (7) | |
H4A | 0.0779 | 0.0591 | 0.1349 | 0.029 (9)* | |
C5 | 0.2858 (4) | 0.2174 (4) | 0.0256 (3) | 0.0256 (7) | |
C6 | 0.0802 (5) | 0.6439 (4) | −0.3365 (3) | 0.0307 (8) | |
H6A | 0.1222 | 0.7458 | −0.3100 | 0.030 (10)* | |
H6B | −0.0483 | 0.6696 | −0.3450 | 0.037 (10)* | |
C7 | 0.1745 (5) | 0.3120 (4) | −0.0734 (3) | 0.0266 (7) | |
C8 | 0.1990 (5) | 0.6128 (4) | −0.4751 (3) | 0.0303 (8) | |
H8A | 0.1838 | 0.5028 | −0.5045 | 0.028 (9)* | |
C9 | 0.3666 (5) | 0.6878 (5) | −0.5325 (4) | 0.0414 (10) | |
H9A | 0.4217 | 0.7393 | −0.4705 | 0.075 (16)* | |
H9B | 0.4567 | 0.6248 | −0.5960 | 0.066 (14)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0274 (3) | 0.0380 (3) | 0.0312 (3) | −0.00009 (18) | −0.00526 (18) | 0.01645 (19) |
Cl3 | 0.0272 (5) | 0.0346 (5) | 0.0449 (5) | −0.0015 (3) | −0.0117 (4) | 0.0051 (4) |
N1 | 0.0277 (15) | 0.0261 (14) | 0.0234 (13) | −0.0003 (11) | −0.0041 (12) | 0.0069 (11) |
N2 | 0.0307 (15) | 0.0278 (15) | 0.0243 (14) | −0.0005 (12) | −0.0062 (12) | 0.0058 (12) |
N3 | 0.0346 (16) | 0.0295 (15) | 0.0253 (14) | −0.0053 (12) | −0.0076 (13) | 0.0070 (12) |
N4 | 0.0345 (17) | 0.0377 (17) | 0.0304 (16) | −0.0084 (13) | −0.0051 (13) | 0.0160 (14) |
N5 | 0.0321 (17) | 0.0388 (18) | 0.0335 (16) | −0.0084 (13) | −0.0049 (13) | 0.0086 (14) |
C1 | 0.0304 (19) | 0.045 (2) | 0.0252 (17) | −0.0044 (16) | −0.0086 (15) | 0.0090 (16) |
C2 | 0.0280 (19) | 0.042 (2) | 0.043 (2) | −0.0100 (16) | −0.0110 (16) | 0.0004 (18) |
C3 | 0.037 (2) | 0.033 (2) | 0.0295 (18) | −0.0104 (16) | −0.0036 (16) | 0.0069 (16) |
C4 | 0.0246 (17) | 0.0270 (17) | 0.0235 (16) | −0.0051 (13) | −0.0012 (13) | 0.0061 (13) |
C5 | 0.0284 (17) | 0.0243 (16) | 0.0221 (15) | −0.0020 (13) | −0.0028 (14) | −0.0010 (13) |
C6 | 0.037 (2) | 0.0258 (18) | 0.0246 (17) | 0.0003 (15) | −0.0068 (15) | 0.0069 (14) |
C7 | 0.0304 (18) | 0.0234 (17) | 0.0223 (16) | −0.0028 (14) | −0.0014 (14) | 0.0024 (13) |
C8 | 0.036 (2) | 0.0221 (17) | 0.0275 (17) | 0.0038 (14) | −0.0066 (15) | 0.0073 (14) |
C9 | 0.0293 (19) | 0.041 (2) | 0.046 (2) | 0.0094 (16) | −0.0110 (18) | 0.0140 (18) |
Geometric parameters (Å, º) top
Cu1—N1 | 1.995 (3) | C2—H2A | 0.9600 |
Cu1—C9i | 2.026 (3) | C3—C5 | 1.386 (5) |
Cu1—C8i | 2.044 (3) | C3—H3A | 0.9600 |
Cu1—Cl3 | 2.2408 (10) | C4—C5 | 1.387 (4) |
N1—C4 | 1.340 (4) | C4—H4A | 0.9601 |
N1—C1 | 1.345 (4) | C5—C7 | 1.476 (4) |
N2—N5 | 1.327 (4) | C6—C8 | 1.501 (5) |
N2—N3 | 1.332 (4) | C6—H6A | 0.9600 |
N2—C6 | 1.465 (4) | C6—H6B | 0.9600 |
N3—C7 | 1.321 (4) | C8—C9 | 1.364 (5) |
N4—N5 | 1.323 (4) | C8—Cu1ii | 2.044 (3) |
N4—C7 | 1.344 (4) | C8—H8A | 0.9600 |
C1—C2 | 1.384 (5) | C9—Cu1ii | 2.026 (3) |
C1—H1A | 0.9599 | C9—H9A | 0.9600 |
C2—C3 | 1.382 (5) | C9—H9B | 0.9600 |
| | | |
N1—Cu1—C9i | 105.86 (13) | C5—C4—H4A | 118.6 |
N1—Cu1—C8i | 143.90 (13) | C3—C5—C4 | 118.7 (3) |
C9i—Cu1—C8i | 39.16 (14) | C3—C5—C7 | 121.7 (3) |
N1—Cu1—Cl3 | 108.44 (9) | C4—C5—C7 | 119.6 (3) |
C9i—Cu1—Cl3 | 145.70 (11) | N2—C6—C8 | 113.1 (3) |
C8i—Cu1—Cl3 | 106.88 (10) | N2—C6—H6A | 108.9 |
C4—N1—C1 | 117.8 (3) | C8—C6—H6A | 108.7 |
C4—N1—Cu1 | 121.4 (2) | N2—C6—H6B | 109.0 |
C1—N1—Cu1 | 120.7 (2) | C8—C6—H6B | 109.1 |
N5—N2—N3 | 113.9 (3) | H6A—C6—H6B | 107.9 |
N5—N2—C6 | 121.6 (3) | N3—C7—N4 | 112.9 (3) |
N3—N2—C6 | 124.2 (3) | N3—C7—C5 | 123.1 (3) |
C7—N3—N2 | 101.4 (3) | N4—C7—C5 | 123.8 (3) |
N5—N4—C7 | 106.3 (3) | C9—C8—C6 | 123.7 (4) |
N4—N5—N2 | 105.5 (3) | C9—C8—Cu1ii | 69.73 (19) |
N1—C1—C2 | 122.6 (3) | C6—C8—Cu1ii | 105.9 (2) |
N1—C1—H1A | 118.6 | C9—C8—H8A | 115.7 |
C2—C1—H1A | 118.8 | C6—C8—H8A | 115.7 |
C3—C2—C1 | 119.0 (3) | Cu1ii—C8—H8A | 116.0 |
C3—C2—H2A | 120.6 | C8—C9—Cu1ii | 71.11 (19) |
C1—C2—H2A | 120.4 | C8—C9—H9A | 115.8 |
C2—C3—C5 | 118.8 (3) | Cu1ii—C9—H9A | 116.3 |
C2—C3—H3A | 120.5 | C8—C9—H9B | 117.2 |
C5—C3—H3A | 120.7 | Cu1ii—C9—H9B | 116.7 |
N1—C4—C5 | 123.0 (3) | H9A—C9—H9B | 113.5 |
N1—C4—H4A | 118.4 | | |
Symmetry codes: (i) x, y−1, z+1; (ii) x, y+1, z−1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cl3iii | 0.96 | 2.79 | 3.675 (4) | 154 |
C2—H2A···N4iii | 0.96 | 2.59 | 3.379 (5) | 139 |
C4—H4A···N4 | 0.96 | 2.57 | 2.909 (4) | 101 |
C6—H6A···Cl3iv | 0.96 | 2.83 | 3.607 (4) | 139 |
Symmetry codes: (iii) x+1, y, z; (iv) −x, −y+1, −z. |
Experimental details
Crystal data |
Chemical formula | [CuCl(C9H9N5)] |
Mr | 286.21 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.3005 (15), 7.6560 (15), 9.981 (2) |
α, β, γ (°) | 80.51 (3), 77.00 (3), 84.68 (3) |
V (Å3) | 535.23 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.27 |
Crystal size (mm) | 0.2 × 0.15 × 0.1 |
|
Data collection |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.806, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5572, 2443, 1918 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.649 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.104, 1.16 |
No. of reflections | 2443 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.46 |
Selected geometric parameters (Å, º) topCu1—N1 | 1.995 (3) | Cu1—Cl3 | 2.2408 (10) |
Cu1—C9i | 2.026 (3) | C8—C9 | 1.364 (5) |
Cu1—C8i | 2.044 (3) | | |
| | | |
N1—Cu1—C9i | 105.86 (13) | N1—Cu1—Cl3 | 108.44 (9) |
N1—Cu1—C8i | 143.90 (13) | C9i—Cu1—Cl3 | 145.70 (11) |
C9i—Cu1—C8i | 39.16 (14) | C8i—Cu1—Cl3 | 106.88 (10) |
Symmetry code: (i) x, y−1, z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cl3ii | 0.96 | 2.79 | 3.675 (4) | 153.6 |
C2—H2A···N4ii | 0.96 | 2.59 | 3.379 (5) | 139.0 |
C4—H4A···N4 | 0.96 | 2.57 | 2.909 (4) | 100.8 |
C6—H6A···Cl3iii | 0.96 | 2.83 | 3.607 (4) | 138.5 |
Symmetry codes: (ii) x+1, y, z; (iii) −x, −y+1, −z. |
Under hydrothermal or solvothermal conditions some interesting reactions occur. Often new compounds can be obtained that cannot be synthesized using conventional solution techniques. In sealed tube, unstable copper(I) salt can exist under vacuum, and thus interesting copper(I) coordination compounds can be obtained (Ye et al., 2005, 2007). The title compound, as colorless block crystals suitable for X-ray analysis, was obtained through solvothermal treatment of CuCl and 3-(2-allyl-2H-tetrazol -5-yl)pyridine in methanol at 75°C. Isostructural product was obtained when CuBr was used for the reaction (Wang, 2008).
The 3-(2-allyl-2H-tetrazol-5-yl) pyridine ligands bind to the copper(I) centers through the N atom of pyridine and double bond of the allyl group (C8—C9 1.364 (5) Å). The copper atom is coordinated to two olefinic organic ligands and one terminal Cl atom in a trigonal environment (Fig 1, Table 1). The organic ligands link the neighboring Cu centers to form a homometallic Cu(I) coordination polymer developing along the c axis. Unfortunately, the N atoms of the tetrazole ring fail to coordinate to Cu(I)(Fig. 1).
Finally, weak Cu—Cl (3.136 Å), C–H···Cl and C–H···N interactions between the coordination polymers lead to the formation of the three-dimensional structure (Fig. 2).