Download citation
Download citation
link to html
In the title two-dimensional coordination polymer, [Yb2(C8H4O4)3(H2O)6]n, the unique YbIII ion is eight-coordinated in a distorted dodeca­hedral coordination geometry by three water O atoms and five O atoms from carboxyl­ate groups belonging to four different terephthalate ligands. One of the terephthalate ligands is located around an inversion center. The coordination polymers are parallel to (121) and are connected by O—H...O hydrogen bonds into a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680905171X/gk2241sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680905171X/gk2241Isup2.hkl
Contains datablock I

CCDC reference: 766658

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.020
  • wR factor = 0.048
  • Data-to-parameter ratio = 11.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C5 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.41 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.599 61
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9 PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.15 Ratio PLAT804_ALERT_5_G ARU-Pack Problem in PLATON Analysis ............ 1 Times
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Terephthalic acid as a dicarboxylate ligand may exhibit various coordination modes with transition metals or lanthanide ions that result in one-, two- or three-dimensional metal-organic frameworks (MOFs). As an extension of this research we report here the structure of the title two-dimensional coordination polymer of YbIII which is isostructural with LuIII and ErIII complexes (Daiguebonne et al., 2006; Xie et al., 2008) .

The asymmetric unit of the title compound (Fig. 1) contains one YbIII ion, one and a half of terephthalate ligand, and three coordinated water molecules. The YbIII ion is eight-coordinate with a dodecahedral coordination polyhedron made of three oxygen atoms from three coordination water molecules and five oxygen atoms from carboxylate groups of four different terephthalate ligands.

The coordination polymers are joined by O—H···O hydrogen bonds between coordinated water molecules and carboxylate groups of terephthalate ligands (Table 1).

Related literature top

Forthe isostructural erbium(III) and lutetium(III) complexes, see: Daiguebonne et al. (2006); Xie et al. (2008).

Experimental top

A mixture of AgNO3(0.057 g, 0.33 mmol), Yb2O3(0.116 g, 0.33 mmol), 2-pyrazinecarboxylic acid(0.165 g, 1.33 mmol), terephthalic acid (0.166 g, 1.0 mmol), H2O(7 ml), and HClO4(0.257 mmol)(pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days and then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals were suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms of the water molecules were found from difference Fourier maps and refined with restraints imposed on the O-H and H···H distances [O—H = 0.82 (1) Å and H···H = 1.29 (1) Å] and displacement parameters set to 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) 1 - x, -y, 3 - z.;(B) -x, 1 - y, 2 - z; (C) 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.
Poly[hexaaquabis(µ3-terephthalato)(µ2-terephthalato)diytterbium(III)] top
Crystal data top
[Yb2(C8H4O4)3(H2O)6]Z = 2
Mr = 473.26F(000) = 452
Triclinic, P1Dx = 2.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8413 (7) ÅCell parameters from 2800 reflections
b = 9.5545 (8) Åθ = 2.6–27.8°
c = 10.6561 (9) ŵ = 6.77 mm1
α = 68.827 (1)°T = 296 K
β = 71.024 (1)°Block, colorless
γ = 75.206 (1)°0.21 × 0.18 × 0.17 mm
V = 695.34 (10) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2444 independent reflections
Radiation source: fine-focus sealed tube2323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 0 pixels mm-1θmax = 25.2°, θmin = 2.1°
ϕ and ω scanh = 97
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1011
Tmin = 0.251, Tmax = 0.316l = 1211
3564 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0237P)2 + 0.8814P]
where P = (Fo2 + 2Fc2)/3
2444 reflections(Δ/σ)max = 0.003
217 parametersΔρmax = 0.82 e Å3
9 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Yb2(C8H4O4)3(H2O)6]γ = 75.206 (1)°
Mr = 473.26V = 695.34 (10) Å3
Triclinic, P1Z = 2
a = 7.8413 (7) ÅMo Kα radiation
b = 9.5545 (8) ŵ = 6.77 mm1
c = 10.6561 (9) ÅT = 296 K
α = 68.827 (1)°0.21 × 0.18 × 0.17 mm
β = 71.024 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
2444 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2323 reflections with I > 2σ(I)
Tmin = 0.251, Tmax = 0.316Rint = 0.015
3564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0209 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.82 e Å3
2444 reflectionsΔρmin = 0.73 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.26626 (2)0.294523 (19)1.006579 (16)0.01940 (7)
C10.2794 (6)0.7548 (5)0.1682 (4)0.0244 (9)
C20.2113 (6)0.6900 (5)0.3233 (4)0.0231 (9)
C30.3017 (8)0.5574 (6)0.3942 (5)0.0546 (17)
H30.39990.50390.34440.066*
C40.2506 (8)0.5012 (6)0.5381 (5)0.0501 (15)
H40.31170.40940.58390.060*
C50.1094 (6)0.5813 (5)0.6133 (4)0.0238 (9)
C60.0601 (5)0.5283 (5)0.7702 (4)0.0210 (8)
C70.0173 (7)0.7138 (6)0.5423 (5)0.0465 (14)
H70.07910.76900.59170.056*
C80.0665 (7)0.7660 (6)0.3982 (5)0.0435 (13)
H80.00010.85400.35190.052*
C90.3969 (5)0.1538 (5)1.2422 (4)0.0221 (9)
C100.4506 (6)0.0733 (5)1.3751 (4)0.0243 (9)
C110.5442 (8)0.1424 (5)1.4211 (5)0.0406 (13)
H110.57540.23801.36780.049*
C120.4091 (8)0.0693 (6)1.4544 (5)0.0411 (13)
H120.34860.11711.42340.049*
O10.1745 (4)0.8546 (4)0.1024 (3)0.0324 (7)
O20.4422 (4)0.7076 (4)0.1137 (3)0.0361 (8)
O30.0475 (4)0.6148 (4)0.8340 (3)0.0317 (7)
O40.1368 (5)0.3988 (3)0.8290 (3)0.0336 (7)
O50.4165 (4)0.2898 (3)1.1772 (3)0.0276 (7)
O60.3249 (4)0.0831 (3)1.1957 (3)0.0271 (7)
O1W0.3026 (5)0.5482 (4)0.9349 (4)0.0387 (8)
H1W0.221 (4)0.617 (4)0.914 (6)0.058*
H2W0.393 (4)0.589 (5)0.908 (6)0.058*
O2W0.0025 (5)0.1676 (4)1.0747 (4)0.0358 (8)
H3W0.038 (7)0.168 (5)1.013 (4)0.054*
H4W0.030 (8)0.0778 (19)1.115 (5)0.054*
O3W0.3438 (5)0.0930 (3)0.9110 (3)0.0329 (7)
H5W0.451 (2)0.065 (5)0.877 (5)0.049*
H6W0.303 (5)0.014 (3)0.957 (5)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.02266 (11)0.02072 (11)0.01111 (10)0.00012 (7)0.00580 (7)0.00153 (7)
C10.027 (2)0.026 (2)0.021 (2)0.0095 (19)0.0056 (18)0.0052 (18)
C20.026 (2)0.028 (2)0.015 (2)0.0081 (18)0.0059 (16)0.0031 (17)
C30.064 (4)0.049 (3)0.019 (2)0.029 (3)0.001 (2)0.006 (2)
C40.065 (4)0.039 (3)0.017 (2)0.027 (3)0.008 (2)0.002 (2)
C50.026 (2)0.023 (2)0.018 (2)0.0040 (18)0.0057 (17)0.0023 (17)
C60.023 (2)0.022 (2)0.018 (2)0.0043 (17)0.0086 (17)0.0035 (17)
C70.036 (3)0.053 (3)0.019 (2)0.024 (2)0.002 (2)0.003 (2)
C80.034 (3)0.050 (3)0.018 (2)0.019 (2)0.005 (2)0.003 (2)
C90.021 (2)0.027 (2)0.015 (2)0.0004 (17)0.0046 (16)0.0045 (18)
C100.030 (2)0.023 (2)0.018 (2)0.0013 (18)0.0117 (17)0.0023 (17)
C110.070 (4)0.028 (3)0.029 (3)0.019 (2)0.028 (2)0.007 (2)
C120.066 (4)0.036 (3)0.033 (3)0.020 (3)0.034 (3)0.003 (2)
O10.0370 (18)0.0362 (18)0.0199 (15)0.0057 (15)0.0127 (14)0.0009 (14)
O20.0302 (18)0.046 (2)0.0226 (16)0.0030 (15)0.0006 (13)0.0083 (15)
O30.0330 (17)0.0383 (19)0.0170 (15)0.0030 (14)0.0030 (13)0.0094 (14)
O40.054 (2)0.0251 (17)0.0212 (16)0.0009 (15)0.0202 (15)0.0014 (13)
O50.0352 (17)0.0276 (17)0.0182 (15)0.0074 (13)0.0135 (13)0.0027 (13)
O60.0391 (18)0.0250 (16)0.0196 (15)0.0059 (13)0.0179 (13)0.0003 (13)
O1W0.0313 (18)0.0267 (18)0.052 (2)0.0055 (14)0.0105 (17)0.0049 (16)
O2W0.0395 (19)0.0379 (19)0.0327 (19)0.0096 (16)0.0140 (15)0.0074 (15)
O3W0.0388 (19)0.0277 (17)0.0296 (18)0.0009 (14)0.0077 (15)0.0096 (14)
Geometric parameters (Å, º) top
Yb1—O2i2.227 (3)C6—O41.261 (5)
Yb1—O42.231 (3)C7—C81.384 (6)
Yb1—O3ii2.233 (3)C7—H70.9300
Yb1—O1W2.327 (3)C8—H80.9300
Yb1—O3W2.352 (3)C9—O51.255 (5)
Yb1—O62.354 (3)C9—O61.280 (5)
Yb1—O2W2.438 (3)C9—C101.487 (5)
Yb1—O52.450 (3)C10—C121.376 (6)
Yb1—C92.773 (4)C10—C111.389 (6)
C1—O11.252 (5)C11—C12iii1.378 (6)
C1—O21.259 (5)C11—H110.9300
C1—C21.502 (5)C12—C11iii1.378 (6)
C2—C81.364 (6)C12—H120.9300
C2—C31.370 (6)O2—Yb1i2.227 (3)
C3—C41.385 (6)O3—Yb1ii2.233 (3)
C3—H30.9300O1W—H1W0.81 (4)
C4—C51.373 (6)O1W—H2W0.82 (4)
C4—H40.9300O2W—H3W0.82 (5)
C5—C71.376 (6)O2W—H4W0.82 (3)
C5—C61.507 (5)O3W—H5W0.82 (3)
C6—O31.238 (5)O3W—H6W0.82 (4)
O2i—Yb1—O498.80 (12)C5—C4—C3119.9 (4)
O2i—Yb1—O3ii144.25 (12)C5—C4—H4120.1
O4—Yb1—O3ii98.76 (12)C3—C4—H4120.1
O2i—Yb1—O1W76.69 (12)C4—C5—C7118.6 (4)
O4—Yb1—O1W77.10 (12)C4—C5—C6120.8 (4)
O3ii—Yb1—O1W77.26 (12)C7—C5—C6120.5 (4)
O2i—Yb1—O3W73.41 (12)O3—C6—O4123.7 (4)
O4—Yb1—O3W79.48 (11)O3—C6—C5118.9 (4)
O3ii—Yb1—O3W140.62 (12)O4—C6—C5117.3 (4)
O1W—Yb1—O3W138.30 (12)C5—C7—C8120.8 (4)
O2i—Yb1—O694.87 (11)C5—C7—H7119.6
O4—Yb1—O6148.87 (11)C8—C7—H7119.6
O3ii—Yb1—O685.72 (11)C2—C8—C7120.8 (4)
O1W—Yb1—O6133.53 (11)C2—C8—H8119.6
O3W—Yb1—O677.85 (11)C7—C8—H8119.6
O2i—Yb1—O2W143.67 (12)O5—C9—O6119.7 (4)
O4—Yb1—O2W74.76 (12)O5—C9—C10121.4 (4)
O3ii—Yb1—O2W71.38 (12)O6—C9—C10118.8 (4)
O1W—Yb1—O2W133.46 (12)O5—C9—Yb162.0 (2)
O3W—Yb1—O2W70.26 (12)O6—C9—Yb157.76 (19)
O6—Yb1—O2W77.66 (11)C10—C9—Yb1174.7 (3)
O2i—Yb1—O577.29 (11)C12—C10—C11118.9 (4)
O4—Yb1—O5156.47 (11)C12—C10—C9121.2 (4)
O3ii—Yb1—O574.22 (11)C11—C10—C9119.9 (4)
O1W—Yb1—O579.44 (11)C12iii—C11—C10120.0 (4)
O3W—Yb1—O5120.37 (11)C12iii—C11—H11120.0
O6—Yb1—O554.27 (9)C10—C11—H11120.0
O2W—Yb1—O5121.90 (10)C10—C12—C11iii121.1 (4)
O2i—Yb1—C986.23 (11)C10—C12—H12119.5
O4—Yb1—C9174.57 (12)C11iii—C12—H12119.5
O3ii—Yb1—C978.02 (11)C1—O2—Yb1i161.1 (3)
O1W—Yb1—C9106.19 (13)C6—O3—Yb1ii162.9 (3)
O3W—Yb1—C9100.18 (12)C6—O4—Yb1137.1 (3)
O6—Yb1—C927.39 (11)C9—O5—Yb191.1 (2)
O2W—Yb1—C999.99 (11)C9—O6—Yb194.8 (2)
O5—Yb1—C926.89 (11)Yb1—O1W—H1W121 (3)
O1—C1—O2124.3 (4)Yb1—O1W—H2W132 (3)
O1—C1—C2118.7 (4)H1W—O1W—H2W105 (5)
O2—C1—C2116.9 (4)Yb1—O2W—H3W118 (4)
C8—C2—C3118.3 (4)Yb1—O2W—H4W109 (4)
C8—C2—C1121.2 (4)H3W—O2W—H4W105 (5)
C3—C2—C1120.3 (4)Yb1—O3W—H5W119 (4)
C2—C3—C4121.6 (5)Yb1—O3W—H6W119 (4)
C2—C3—H3119.2H5W—O3W—H6W104 (4)
C4—C3—H3119.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2; (iii) x+1, y, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2Wii0.81 (4)2.35 (3)3.123 (5)158 (6)
O1W—H1W···O30.81 (4)2.52 (4)3.104 (5)130 (4)
O1W—H2W···O5iv0.82 (4)1.91 (5)2.714 (4)170 (5)
O2W—H3W···O1v0.82 (5)1.97 (5)2.771 (4)167 (5)
O2W—H4W···O1vi0.82 (3)2.17 (3)2.900 (5)149 (5)
O3W—H5W···O6vii0.82 (3)2.08 (2)2.846 (4)156 (4)
O3W—H6W···O1vi0.82 (4)1.95 (4)2.746 (4)165 (5)
Symmetry codes: (ii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x, y+1, z+1; (vi) x, y1, z+1; (vii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Yb2(C8H4O4)3(H2O)6]
Mr473.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.8413 (7), 9.5545 (8), 10.6561 (9)
α, β, γ (°)68.827 (1), 71.024 (1), 75.206 (1)
V3)695.34 (10)
Z2
Radiation typeMo Kα
µ (mm1)6.77
Crystal size (mm)0.21 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.251, 0.316
No. of measured, independent and
observed [I > 2σ(I)] reflections
3564, 2444, 2323
Rint0.015
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.048, 1.04
No. of reflections2444
No. of parameters217
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.73

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2Wi0.81 (4)2.35 (3)3.123 (5)158 (6)
O1W—H1W···O30.81 (4)2.52 (4)3.104 (5)130 (4)
O1W—H2W···O5ii0.82 (4)1.91 (5)2.714 (4)170 (5)
O2W—H3W···O1iii0.82 (5)1.97 (5)2.771 (4)167 (5)
O2W—H4W···O1iv0.82 (3)2.17 (3)2.900 (5)149 (5)
O3W—H5W···O6v0.82 (3)2.08 (2)2.846 (4)156 (4)
O3W—H6W···O1iv0.82 (4)1.95 (4)2.746 (4)165 (5)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1; (iv) x, y1, z+1; (v) x+1, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds