Download citation
Download citation
link to html
In the title monomeric manganese(II) complex, [Mn(CH3COO)2(C10H8N2)(H2O)2], the metal ion is coordinated by a bidentate 2,2′-bi­pyridine (bpy) ligand, two water mol­ecules and two axial acetate anions, resulting in a highly distorted octa­hedral environment. The aqua ligands are stabilized by the formation of strong intra­molecular hydrogen bonds with the uncoordinated acetate O atoms, giving rise to pseudo-bridging arrangement of the terminal acetate groups. In the crystal, the mol­ecules form [010] zigzag chains via O—H...O hydrogen bonds involving the aqua ligands and acetate O atoms. Further, the water and bpy ligands are trans to each other, and are arranged in an off-set fashion showing inter­molecular π–π stacking between nearly parallel bi­py rings, the centroid–centroid separations being 3.8147 (12) and 3.9305 (13) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814017814/gw2147sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814017814/gw2147Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S1600536814017814/gw2147Isup3.cdx
Supplementary material

CCDC reference: 1006361

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.076
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT013_ALERT_1_A No _shelx_hkl_checksum found in CIF........... Please Check
Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 -- O3 .. 6.6 su PLAT314_ALERT_2_C Check Small Angle for H2O: Metal-O3 -H3X 94.97 Degree PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 14 Report
Alert level G PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 77 %
1 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 2 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The co-existence of solvent and bpy molecules in certain metal complexes have been reported in several lanthanide (III) complexes containing bpy and carboxylate ligands, (Chen et al., 1995) while the transition metal ions complexes, e.g., CoII(bpy)(OAc)2(H2O)2, NiII(bpy)(OAc)2(H2O)2 and NiII(bpy)(pda)2(H2O)2 complexes with mixed bpy, acetate and solvate molecules, is also established (Ye et al., 1998; Carballo et al., 2001; Hu et al., 2011). We describe herein the crystal structure of divalent manganese complex, viz. MnII(bpy)(OAc)2(H2O)2 with 2,2'-bipyridine, acetate and solvate molecule as the coordinating ligands, and the intermolecular hydrogen bonding interaction between the coordinated acetates and the solvent molecules.

The crystal structure of the complex 1 is illustrated in Fig. 1. The metal ion in the title complex is coordinated by bidentate bpy ligand, two water molecules and two axial acetate anions coordinated trans to each other resulting in a highly distorted octahedral [MnN2O4] coordination geometry. The Mn—N bond lengths range from 2.2679 (15)–2.2869 (16) Å and the shortest Mn—OAc axial bonds range from 2.163 (15)–2.173 (15) Å, may partially be ascribed to the mutual strong coordination between the anionic ligands to the divalent manganese center, as evidenced by the fact that the pyridine ring coordinates to the metal atom in a non planar fashion with the torsion angle Mn(1)—N(1)—C(2)—C(3) = 170.8°. The Mn—Npy (2.2679 (15) Å); Mn—OAc (2.2038 (16) Å), and Mn—O(w) (2.1918 (15) Å) bonds in 1 are longer than that of the respective Co- and Ni-analogues, viz., CoII(bpy)(OAc)2(H2O)2 and NiII(bpy)(OAc)2(H2O)2, with symmetrical M—N bonds (Co—Npy= 2.122 (14) Å); Ni—Npy= 2.069 (2) Å). Similarly, the Mn—O(w) and Mn—OAc bonds in MnII(bpy)(OAc)2(H2O)2 are also longer than the corresponding Co- and Ni-analogues (Co—OAc = 2.097 (13) Å; Ni—OAc = 2.079 (2) Å); Co—O(w) = 2.125 (13) Å; Ni—O(w) = 2.082 (2) Å), revealing the largest repulsion of hexacoordinated divalent manganese center due to its larger radius (0.97 Å), (Shannon, 1976) as compared to the analogous M(bpy)(OAc)2(H2O)2 complexes containing divalent cobalt (0.89 Å) and divalent nickel (0.83 Å). The most distorted O(2)—Mn—O(3) = 102.72° bond angles from an idealized octahedron resulting from the water molecules coordinated trans to bipyridine moiety.

In crystal lattice of MnII(bpy)(OAc)2(H2O)2, the coordinated water molecule showing significant intermolecular hydrogen bonding interaction with axially coordinated acetate anion and bpy ligands are arranged in a stacking interaction with close interplanar contacts of ca. 3.40 Å and the separation between the planes of each pair of adjacent pyridyl rings is ca. 8.14 Å (Fig. 2). Such relatively short interplanar contacts are indicative of extensive ππ stacking interaction between the pyridine rings. The existence of intermolecular hydrogen bonding and stacking interaction of bpy ligands is very important in stabilizing molecular structure in the solid state as shown in Fig. 1 and Fig. 2. A similar behavior was also noticed for mononuclear nickel complexes assembled into two-dimensional networks via hydrogen bonds and showing significant ππ stacking interactions where the close interchain bipyridyl groups, being a rranged in an off-set fashion, have an average face-to-face distance of 3.44 Å for Ni(bipy)(OAc)2(H2O)2 and 3.60 Å for Ni(dmbipy)(OAc)2(H2O)2 (Ye et al. 1998).

Related literature top

For complexes with the same ligands as the title complex, see: Chen et al. (1995); Carballo et al. (2001); Hu et al. (2011); Ye et al. (1998); Zhao et al. (2009). For ionic radii, see: Shannon (1976).

Experimental top

Synthesis of MnII(bpy)(OAc)2(H2O)2: Manganous acetate tetrahydrate (0.245 g, 1.0 mmol) was dissolved in an dry methanol (20 ml) and then an methanolic solution (10 ml) of 2,2'-bipyridine (0.156 g, 1.0 mmol) was added drop-wise with continuous stirring. The resulting mixture was refluxed for an hour and then filtered to remove the brownish precipitate. The light yellow filtrate was allowed to stand undisturbed for two weeks or so at room temperature, during which brown crystals of 1, suitable for X-ray diffraction analysis, were deposited in ca 60% yield (based on Mn). Anal. Calcd. (%) for C14H20MnN2O6: C, 45.79; H, 5.49; N, 7.63. Found (%): C, 45.34; H, 5.37; N, 7.66.

Refinement top

All H atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms[C—H=0.93–0.97%A and Uiso=1.2Ueq].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. Molecular packing of complex 1 viewed along b axis.
Bis(acetato-κO)diaqua(2,2'-bipyridine-κ2N,N')manganese(II) top
Crystal data top
[Mn(C2H3O2)2(C10H8N2)(H2O)2]F(000) = 756
Mr = 365.24Dx = 1.505 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.8494 (8) ÅCell parameters from 6258 reflections
b = 8.1434 (5) Åθ = 2.2–28.2°
c = 15.5918 (10) ŵ = 0.85 mm1
β = 98.926 (2)°T = 296 K
V = 1611.73 (18) Å3Rectangular, brown
Z = 40.30 × 0.25 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2469 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 1.9°
Tmin = 0.775, Tmax = 0.873h = 1515
11092 measured reflectionsk = 98
2820 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.7672P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.26 e Å3
2820 reflectionsΔρmin = 0.21 e Å3
226 parameters
Crystal data top
[Mn(C2H3O2)2(C10H8N2)(H2O)2]V = 1611.73 (18) Å3
Mr = 365.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.8494 (8) ŵ = 0.85 mm1
b = 8.1434 (5) ÅT = 296 K
c = 15.5918 (10) Å0.30 × 0.25 × 0.16 mm
β = 98.926 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2820 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2469 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.873Rint = 0.023
11092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
2820 reflectionsΔρmin = 0.21 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40953 (16)0.3913 (3)1.13971 (13)0.0389 (5)
H10.35530.41521.17090.047*
C20.51018 (17)0.4448 (3)1.17221 (15)0.0476 (6)
H20.52380.50181.22440.057*
C30.58959 (17)0.4107 (3)1.12467 (15)0.0501 (6)
H30.65790.44691.14390.060*
C40.56718 (15)0.3231 (3)1.04872 (14)0.0428 (5)
H40.62030.29871.01650.051*
C50.46481 (14)0.2714 (2)1.02057 (13)0.0316 (4)
C60.43430 (14)0.1760 (3)0.93939 (12)0.0327 (4)
C70.50731 (16)0.1105 (3)0.89147 (14)0.0437 (6)
H70.57910.12440.91020.052*
C80.47254 (19)0.0249 (3)0.81621 (15)0.0506 (6)
H80.52060.01840.78350.061*
C90.36604 (19)0.0042 (3)0.78996 (14)0.0500 (6)
H90.34080.05290.73930.060*
C100.29791 (17)0.0702 (3)0.84067 (13)0.0434 (5)
H100.22600.05550.82330.052*
C110.11250 (15)0.5562 (3)0.92173 (12)0.0327 (5)
C120.11895 (19)0.7383 (3)0.90939 (18)0.0539 (6)
H12A0.09990.76430.84890.081*
H12B0.18960.77480.92930.081*
H12C0.07150.79240.94210.081*
C130.18311 (15)0.0662 (3)1.12096 (13)0.0358 (5)
C140.21073 (19)0.2375 (3)1.15213 (17)0.0507 (6)
H14A0.22820.30221.10490.076*
H14B0.15160.28581.17360.076*
H14C0.27000.23401.19790.076*
Mn10.21987 (2)0.23631 (4)1.00781 (2)0.03042 (11)
N10.38666 (12)0.3072 (2)1.06586 (10)0.0314 (4)
N20.32980 (12)0.1546 (2)0.91379 (10)0.0341 (4)
O10.19541 (10)0.48188 (18)0.95383 (9)0.0409 (4)
O20.08066 (12)0.1747 (2)0.91193 (12)0.0501 (4)
O30.14983 (11)0.3191 (2)1.11986 (10)0.0396 (4)
O40.23998 (10)0.00016 (18)1.07180 (9)0.0399 (3)
O50.02567 (10)0.48655 (18)0.89735 (10)0.0411 (4)
O60.10520 (12)0.0026 (2)1.14539 (12)0.0529 (4)
H2X0.056 (2)0.276 (4)0.9014 (17)0.063 (9)*
H1X0.034 (2)0.109 (4)0.9040 (18)0.070 (10)*
H4X0.096 (2)0.392 (4)1.1099 (17)0.074 (9)*
H3X0.131 (2)0.230 (4)1.1320 (17)0.054 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0341 (11)0.0412 (13)0.0416 (11)0.0004 (9)0.0067 (9)0.0019 (10)
C20.0427 (13)0.0515 (15)0.0458 (12)0.0095 (11)0.0023 (10)0.0010 (11)
C30.0290 (11)0.0636 (17)0.0547 (14)0.0136 (11)0.0033 (10)0.0107 (12)
C40.0204 (9)0.0604 (15)0.0478 (13)0.0004 (10)0.0065 (9)0.0129 (11)
C50.0212 (9)0.0355 (12)0.0385 (11)0.0021 (8)0.0056 (8)0.0123 (9)
C60.0247 (9)0.0384 (12)0.0359 (10)0.0054 (9)0.0074 (8)0.0114 (9)
C70.0297 (11)0.0552 (15)0.0485 (12)0.0116 (10)0.0135 (9)0.0120 (11)
C80.0550 (14)0.0572 (16)0.0443 (13)0.0194 (12)0.0231 (11)0.0063 (11)
C90.0593 (15)0.0561 (16)0.0358 (11)0.0080 (12)0.0115 (10)0.0001 (11)
C100.0378 (11)0.0534 (15)0.0383 (11)0.0008 (11)0.0039 (9)0.0017 (10)
C110.0308 (11)0.0349 (12)0.0335 (10)0.0036 (9)0.0088 (8)0.0018 (9)
C120.0463 (14)0.0355 (14)0.0749 (17)0.0024 (10)0.0067 (12)0.0028 (12)
C130.0258 (10)0.0354 (12)0.0454 (12)0.0028 (9)0.0029 (9)0.0009 (9)
C140.0516 (14)0.0412 (14)0.0615 (15)0.0047 (11)0.0155 (12)0.0103 (11)
Mn10.01912 (16)0.03294 (19)0.03953 (19)0.00163 (12)0.00552 (12)0.00237 (13)
N10.0227 (8)0.0343 (10)0.0371 (9)0.0002 (7)0.0048 (7)0.0050 (7)
N20.0268 (8)0.0405 (11)0.0355 (9)0.0034 (7)0.0065 (7)0.0054 (8)
O10.0266 (7)0.0363 (9)0.0582 (9)0.0029 (6)0.0015 (6)0.0088 (7)
O20.0291 (8)0.0373 (10)0.0783 (12)0.0018 (8)0.0089 (8)0.0034 (9)
O30.0303 (8)0.0364 (10)0.0546 (9)0.0052 (8)0.0140 (7)0.0024 (8)
O40.0316 (7)0.0356 (8)0.0548 (9)0.0042 (6)0.0143 (6)0.0086 (7)
O50.0268 (7)0.0379 (9)0.0571 (9)0.0032 (6)0.0024 (6)0.0031 (7)
O60.0374 (8)0.0409 (10)0.0865 (12)0.0016 (7)0.0284 (8)0.0067 (8)
Geometric parameters (Å, º) top
C1—N11.333 (3)C11—O11.260 (2)
C1—C21.384 (3)C11—C121.499 (3)
C1—H10.9300C12—H12A0.9600
C2—C31.379 (3)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.374 (3)C13—O61.257 (2)
C3—H30.9300C13—O41.260 (2)
C4—C51.386 (3)C13—C141.501 (3)
C4—H40.9300C14—H14A0.9600
C5—N11.346 (2)C14—H14B0.9600
C5—C61.485 (3)C14—H14C0.9600
C6—N21.351 (2)Mn1—O42.1634 (15)
C6—C71.393 (3)Mn1—O12.1736 (15)
C7—C81.378 (3)Mn1—O32.1918 (15)
C7—H70.9300Mn1—O22.2038 (16)
C8—C91.376 (3)Mn1—N12.2679 (15)
C8—H80.9300Mn1—N22.2869 (16)
C9—C101.377 (3)O2—H2X0.89 (3)
C9—H90.9300O2—H1X0.79 (3)
C10—N21.340 (3)O3—H4X0.91 (3)
C10—H100.9300O3—H3X0.80 (3)
C11—O51.257 (2)
N1—C1—C2123.1 (2)O6—C13—O4123.9 (2)
N1—C1—H1118.4O6—C13—C14118.38 (19)
C2—C1—H1118.4O4—C13—C14117.72 (19)
C3—C2—C1117.9 (2)C13—C14—H14A109.5
C3—C2—H2121.1C13—C14—H14B109.5
C1—C2—H2121.1H14A—C14—H14B109.5
C4—C3—C2119.60 (19)C13—C14—H14C109.5
C4—C3—H3120.2H14A—C14—H14C109.5
C2—C3—H3120.2H14B—C14—H14C109.5
C3—C4—C5119.5 (2)O4—Mn1—O1174.99 (5)
C3—C4—H4120.3O4—Mn1—O386.57 (6)
C5—C4—H4120.3O1—Mn1—O388.46 (6)
N1—C5—C4121.1 (2)O4—Mn1—O297.86 (7)
N1—C5—C6116.15 (16)O1—Mn1—O283.88 (6)
C4—C5—C6122.74 (18)O3—Mn1—O2102.72 (6)
N2—C6—C7120.87 (19)O4—Mn1—N190.26 (6)
N2—C6—C5115.98 (16)O1—Mn1—N189.49 (6)
C7—C6—C5123.15 (18)O3—Mn1—N194.76 (6)
C8—C7—C6119.6 (2)O2—Mn1—N1161.08 (6)
C8—C7—H7120.2O4—Mn1—N289.74 (6)
C6—C7—H7120.2O1—Mn1—N294.94 (6)
C9—C8—C7119.4 (2)O3—Mn1—N2166.23 (6)
C9—C8—H8120.3O2—Mn1—N290.92 (6)
C7—C8—H8120.3N1—Mn1—N271.97 (6)
C8—C9—C10118.2 (2)C1—N1—C5118.82 (17)
C8—C9—H9120.9C1—N1—Mn1122.94 (13)
C10—C9—H9120.9C5—N1—Mn1118.11 (13)
N2—C10—C9123.5 (2)C10—N2—C6118.44 (17)
N2—C10—H10118.3C10—N2—Mn1123.85 (13)
C9—C10—H10118.3C6—N2—Mn1117.22 (13)
O5—C11—O1124.03 (19)C11—O1—Mn1131.20 (13)
O5—C11—C12118.15 (18)Mn1—O2—H2X98.4 (17)
O1—C11—C12117.79 (19)Mn1—O2—H1X140 (2)
C11—C12—H12A109.5H2X—O2—H1X111 (3)
C11—C12—H12B109.5Mn1—O3—H4X117.6 (17)
H12A—C12—H12B109.5Mn1—O3—H3X94.8 (19)
C11—C12—H12C109.5H4X—O3—H3X113 (3)
H12A—C12—H12C109.5C13—O4—Mn1128.52 (13)
H12B—C12—H12C109.5
N1—C1—C2—C31.0 (4)C2—C1—N1—Mn1175.33 (17)
C1—C2—C3—C41.4 (4)C4—C5—N1—C11.2 (3)
C2—C3—C4—C50.6 (4)C6—C5—N1—C1179.38 (18)
C3—C4—C5—N10.8 (3)C4—C5—N1—Mn1174.66 (15)
C3—C4—C5—C6179.9 (2)C6—C5—N1—Mn14.7 (2)
N1—C5—C6—N28.5 (3)C9—C10—N2—C60.1 (3)
C4—C5—C6—N2170.84 (19)C9—C10—N2—Mn1171.77 (17)
N1—C5—C6—C7171.14 (19)C7—C6—N2—C100.7 (3)
C4—C5—C6—C79.5 (3)C5—C6—N2—C10179.61 (19)
N2—C6—C7—C81.1 (3)C7—C6—N2—Mn1171.52 (16)
C5—C6—C7—C8179.3 (2)C5—C6—N2—Mn18.2 (2)
C6—C7—C8—C90.6 (4)O5—C11—O1—Mn116.3 (3)
C7—C8—C9—C100.2 (4)C12—C11—O1—Mn1165.72 (16)
C8—C9—C10—N20.5 (4)O6—C13—O4—Mn14.4 (3)
C2—C1—N1—C50.3 (3)C14—C13—O4—Mn1175.79 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1X···O6i0.80 (3)2.05 (3)2.815 (2)161 (3)
O2—H2X···O50.89 (3)1.76 (3)2.636 (2)169 (2)
O3—H3X···O60.80 (3)1.90 (3)2.684 (2)168 (3)
O3—H4X···O5ii0.91 (3)1.84 (3)2.734 (2)169 (3)
Symmetry codes: (i) x, y, z+2; (ii) x, y+1, z+2.
Selected bond lengths (Å) top
Mn1—O42.1634 (15)Mn1—O22.2038 (16)
Mn1—O12.1736 (15)Mn1—N12.2679 (15)
Mn1—O32.1918 (15)Mn1—N22.2869 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1X···O6i0.80 (3)2.05 (3)2.815 (2)161 (3)
O2—H2X···O50.89 (3)1.76 (3)2.636 (2)169 (2)
O3—H3X···O60.80 (3)1.90 (3)2.684 (2)168 (3)
O3—H4X···O5ii0.91 (3)1.84 (3)2.734 (2)169 (3)
Symmetry codes: (i) x, y, z+2; (ii) x, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds