Download citation
Download citation
link to html
In the title compound, [Cu(NCS)2(C6H6N2O)2(H2O)], the Cu atom adopts a square-based pyramidal CuN4O coordination, with the water O atom in the apical position. The pairs of N-bonded nicotinamide ligands and thio­cyanate anions in the basal plane are in a trans configuration. In the crystal structure, the mol­ecules are connected into sheets by N—H...O and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807068511/hb2684sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807068511/hb2684Isup2.hkl
Contains datablock I

CCDC reference: 677432

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.032
  • wR factor = 0.090
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - C13 .. 6.60 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O3 .. 8.21 su
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Due to their inherent coordination and hydrogen bonding donor/acceptor functionalities, nicotinamide ligands have been used in crystal engineering to construct extended frameworks sustained both by hydrogen bonds and coordination bonds (Beatty 2001; Christer et al., 2004). In this paper, we report the synthesis and crystal structure of the title compound, (I).

In compound (I), the metal center occupies a general position, and is coordinated with four nitrogen atoms from two trans-nicotinamide ligands and two trans-NCS anions in a square-planar geometry, as shown in Fig 1. The amide moieties are oriented in same directions. The two pyridine rings coordinated to the Cu centre are twisted by 3.63 (2)°. The distance between Cu center and the O atom of the aqua ligand is 2.442 (4) Å, which suggests a weak non-covalent interaction (Table 1). The Cu complex units are connected via N—H···O hydrogen bonds in a head-to-head fashion, resulting in chains in the crystal. The chains are further linked via O—H···O hydrogen bonds between the coordinated water molecules and amide groups to lead to infinite sheets, as shown in Fig 2.

Related literature top

For related literature, see: Beatty (2001); Christer et al. (2004).

Experimental top

CuCl2.6H2O (1 mmol), nicotinamide (2 mmol) and NaNCS (1 mmol) were dissolved in water and blue blocks of (I) were obtained by slow evaporation at room temperature about 5 days in 82% yield.

Refinement top

The H atoms attached to C or N atoms were placed in idealized positions (C—H = 0.93 Å, N–H = 0.86 Å), and refined as riding with Uiso(H) = 1.2Ueq(C or N).

The O-bound H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. The layered hydrogen-bonded network in (I) viewed down the b axis direction. Hydrogen bonds are shown as dashed lines.
Aquabis(nicotinamide-κN)(thiocyanato-κN)copper(II) top
Crystal data top
[Cu(NCS)2(C6H6N2O)2(H2O)]F(000) = 900
Mr = 441.97Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10592 reflections
a = 11.078 (5) Åθ = 12–18°
b = 8.950 (4) ŵ = 1.43 mm1
c = 18.702 (9) ÅT = 293 K
β = 90.333 (8)°Block, blue
V = 1854.3 (15) Å30.42 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4041 independent reflections
Radiation source: fine-focus sealed tube3292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1414
Tmin = 0.542, Tmax = 0.663k = 118
10592 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.045P)2 + 0.9888P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4041 reflectionsΔρmax = 0.35 e Å3
236 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (5)
Crystal data top
[Cu(NCS)2(C6H6N2O)2(H2O)]V = 1854.3 (15) Å3
Mr = 441.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.078 (5) ŵ = 1.43 mm1
b = 8.950 (4) ÅT = 293 K
c = 18.702 (9) Å0.42 × 0.35 × 0.30 mm
β = 90.333 (8)°
Data collection top
Bruker SMART CCD
diffractometer
4041 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3292 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 0.663Rint = 0.019
10592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
4041 reflectionsΔρmin = 0.36 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.70192 (3)0.10898 (3)0.092940 (14)0.03511 (11)
S10.56142 (6)0.14977 (7)0.11161 (3)0.04101 (16)
S20.72370 (6)0.27895 (8)0.33102 (3)0.04644 (17)
O10.96149 (19)0.1681 (2)0.29467 (12)0.0631 (6)
O20.96200 (17)0.76310 (19)0.03689 (11)0.0528 (5)
O30.91522 (15)0.06510 (18)0.06824 (9)0.0398 (4)
H3A0.92890.02710.05370.048*
H3B0.94610.11640.03420.048*
N10.70065 (17)0.0949 (2)0.14278 (10)0.0354 (4)
N20.8973 (2)0.3974 (3)0.32101 (14)0.0633 (7)
H2A0.95420.41070.35190.076*
H2B0.84530.46700.31330.076*
N30.72932 (17)0.3169 (2)0.04894 (10)0.0349 (4)
N41.0166 (2)0.5956 (2)0.12020 (13)0.0503 (6)
H4A1.07550.65080.13460.060*
H4B1.00360.51070.14020.060*
N50.65964 (18)0.0179 (2)0.00029 (10)0.0391 (4)
N60.7224 (2)0.2002 (2)0.18720 (11)0.0467 (5)
C10.7870 (2)0.1250 (3)0.19112 (12)0.0351 (5)
H1A0.84830.05540.19810.042*
C20.7894 (2)0.2552 (3)0.23123 (12)0.0345 (5)
C30.6977 (2)0.3586 (3)0.22028 (13)0.0394 (5)
H3C0.69650.44750.24600.047*
C40.6086 (2)0.3276 (3)0.17083 (15)0.0451 (6)
H4C0.54620.39520.16290.054*
C50.6128 (2)0.1952 (3)0.13314 (13)0.0394 (5)
H5A0.55230.17510.09980.047*
C60.8898 (2)0.2704 (3)0.28559 (13)0.0404 (5)
C70.6561 (2)0.3698 (3)0.00225 (14)0.0429 (6)
H7A0.59260.31040.01820.052*
C80.6714 (3)0.5085 (3)0.03205 (15)0.0508 (7)
H8A0.61800.54310.06680.061*
C90.7665 (2)0.5957 (3)0.00991 (14)0.0447 (6)
H9A0.77920.68890.03050.054*
C100.8437 (2)0.5437 (2)0.04359 (12)0.0340 (5)
C110.8209 (2)0.4028 (2)0.07201 (12)0.0335 (5)
H11A0.87100.36690.10820.040*
C120.9465 (2)0.6412 (2)0.06743 (14)0.0379 (5)
C130.6193 (2)0.0526 (2)0.04580 (12)0.0326 (5)
C140.7230 (2)0.2317 (2)0.24690 (13)0.0353 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04718 (19)0.02743 (16)0.03065 (17)0.00594 (12)0.00671 (12)0.00229 (10)
S10.0488 (4)0.0379 (3)0.0363 (3)0.0021 (3)0.0041 (3)0.0064 (2)
S20.0540 (4)0.0510 (4)0.0343 (3)0.0064 (3)0.0001 (3)0.0033 (3)
O10.0675 (13)0.0435 (11)0.0777 (15)0.0095 (10)0.0353 (11)0.0047 (10)
O20.0603 (12)0.0309 (9)0.0673 (13)0.0082 (8)0.0081 (10)0.0094 (8)
O30.0437 (9)0.0324 (8)0.0432 (9)0.0031 (7)0.0032 (7)0.0007 (7)
N10.0378 (10)0.0320 (10)0.0364 (10)0.0048 (8)0.0049 (8)0.0045 (8)
N20.0633 (16)0.0509 (15)0.0754 (18)0.0085 (12)0.0333 (14)0.0199 (12)
N30.0431 (11)0.0284 (9)0.0331 (10)0.0021 (8)0.0024 (8)0.0022 (8)
N40.0463 (12)0.0393 (12)0.0653 (15)0.0105 (10)0.0087 (11)0.0048 (10)
N50.0452 (11)0.0387 (11)0.0333 (10)0.0053 (9)0.0055 (8)0.0001 (8)
N60.0654 (14)0.0382 (11)0.0364 (12)0.0099 (10)0.0068 (10)0.0004 (9)
C10.0358 (12)0.0320 (11)0.0376 (12)0.0039 (9)0.0038 (9)0.0025 (9)
C20.0369 (12)0.0320 (11)0.0346 (12)0.0016 (9)0.0000 (9)0.0008 (9)
C30.0448 (13)0.0309 (12)0.0423 (13)0.0025 (10)0.0019 (10)0.0066 (10)
C40.0436 (13)0.0375 (13)0.0541 (15)0.0115 (11)0.0082 (11)0.0054 (11)
C50.0392 (12)0.0364 (12)0.0425 (13)0.0037 (10)0.0089 (10)0.0043 (10)
C60.0431 (13)0.0376 (13)0.0405 (13)0.0050 (10)0.0055 (10)0.0007 (10)
C70.0502 (14)0.0362 (13)0.0423 (14)0.0020 (11)0.0104 (11)0.0031 (10)
C80.0602 (16)0.0420 (14)0.0498 (15)0.0032 (12)0.0162 (13)0.0090 (12)
C90.0555 (15)0.0311 (12)0.0475 (15)0.0021 (11)0.0011 (12)0.0092 (10)
C100.0392 (12)0.0259 (10)0.0368 (12)0.0032 (9)0.0061 (9)0.0006 (9)
C110.0379 (12)0.0264 (11)0.0362 (12)0.0002 (9)0.0012 (9)0.0028 (9)
C120.0384 (12)0.0263 (11)0.0492 (14)0.0007 (9)0.0114 (10)0.0009 (10)
C130.0363 (11)0.0287 (11)0.0329 (11)0.0008 (9)0.0018 (9)0.0049 (9)
C140.0402 (12)0.0270 (11)0.0386 (13)0.0017 (9)0.0039 (10)0.0040 (9)
Geometric parameters (Å, º) top
Cu1—N61.955 (2)N5—C131.156 (3)
Cu1—N51.969 (2)N6—C141.151 (3)
Cu1—N12.049 (2)C1—C21.386 (3)
Cu1—N32.058 (2)C1—H1A0.9300
Cu1—O32.442 (4)C2—C31.389 (3)
S1—C131.635 (2)C2—C61.509 (3)
S2—C141.629 (3)C3—C41.377 (3)
O1—C61.223 (3)C3—H3C0.9300
O2—C121.244 (3)C4—C51.380 (3)
O3—H3A0.8821C4—H4C0.9300
O3—H3B0.8574C5—H5A0.9300
N1—C51.336 (3)C7—C81.372 (4)
N1—C11.340 (3)C7—H7A0.9300
N2—C61.318 (3)C8—C91.373 (4)
N2—H2A0.8600C8—H8A0.9300
N2—H2B0.8600C9—C101.393 (3)
N3—C71.337 (3)C9—H9A0.9300
N3—C111.342 (3)C10—C111.392 (3)
N4—C121.317 (3)C10—C121.501 (3)
N4—H4A0.8600C11—H11A0.9300
N4—H4B0.8600
N6—Cu1—N5172.90 (9)C4—C3—H3C120.5
N6—Cu1—N187.87 (9)C2—C3—H3C120.5
N5—Cu1—N191.70 (9)C3—C4—C5119.3 (2)
N6—Cu1—N388.06 (9)C3—C4—H4C120.3
N5—Cu1—N393.28 (8)C5—C4—H4C120.3
N1—Cu1—N3171.32 (8)N1—C5—C4122.4 (2)
O3—Cu1—N187.25 (7)N1—C5—H5A118.8
O3—Cu1—N385.68 (7)C4—C5—H5A118.8
O3—Cu1—N589.57 (7)O1—C6—N2122.5 (2)
O3—Cu1—N697.49 (8)O1—C6—C2120.1 (2)
H3A—O3—H3B101.7N2—C6—C2117.4 (2)
C5—N1—C1118.2 (2)N3—C7—C8122.4 (2)
C5—N1—Cu1122.97 (16)N3—C7—H7A118.8
C1—N1—Cu1118.66 (15)C8—C7—H7A118.8
C6—N2—H2A120.0C7—C8—C9119.2 (2)
C6—N2—H2B120.0C7—C8—H8A120.4
H2A—N2—H2B120.0C9—C8—H8A120.4
C7—N3—C11118.8 (2)C8—C9—C10119.6 (2)
C7—N3—Cu1121.07 (16)C8—C9—H9A120.2
C11—N3—Cu1120.14 (15)C10—C9—H9A120.2
C12—N4—H4A120.0C11—C10—C9117.7 (2)
C12—N4—H4B120.0C11—C10—C12123.5 (2)
H4A—N4—H4B120.0C9—C10—C12118.8 (2)
C13—N5—Cu1166.17 (19)N3—C11—C10122.3 (2)
C14—N6—Cu1167.6 (2)N3—C11—H11A118.9
N1—C1—C2123.1 (2)C10—C11—H11A118.9
N1—C1—H1A118.5O2—C12—N4122.2 (2)
C2—C1—H1A118.5O2—C12—C10118.7 (2)
C1—C2—C3118.0 (2)N4—C12—C10119.1 (2)
C1—C2—C6116.9 (2)N5—C13—S1179.0 (2)
C3—C2—C6125.1 (2)N6—C14—S2179.1 (2)
C4—C3—C2119.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.881.942.815 (3)171
O3—H3B···O2ii0.862.002.848 (3)172
N2—H2A···O3iii0.862.092.944 (3)176
N4—H4B···O1iv0.862.052.857 (3)157
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C6H6N2O)2(H2O)]
Mr441.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.078 (5), 8.950 (4), 18.702 (9)
β (°) 90.333 (8)
V3)1854.3 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.42 × 0.35 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.542, 0.663
No. of measured, independent and
observed [I > 2σ(I)] reflections
10592, 4041, 3292
Rint0.019
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.07
No. of reflections4041
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1997).

Selected bond lengths (Å) top
Cu1—N61.955 (2)Cu1—N32.058 (2)
Cu1—N51.969 (2)Cu1—O32.442 (4)
Cu1—N12.049 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.881.942.815 (3)171
O3—H3B···O2ii0.862.002.848 (3)172
N2—H2A···O3iii0.862.092.944 (3)176
N4—H4B···O1iv0.862.052.857 (3)157
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds