Download citation
Download citation
link to html
In the title compound, C13H14N4O2S, the dihedral angle between the aromatic rings is 55.42 (14)°. In the crystal structure, an N—H...O hydrogen bond leads to chains of mol­ecules along [001].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808009331/hb2717sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808009331/hb2717Isup2.hkl
Contains datablock I

CCDC reference: 688925

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.046
  • wR factor = 0.104
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - O2 .. 5.09 su PLAT318_ALERT_2_C Check Hybridisation of N1 in Main Residue . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As part of our ongoing studies of aroylhydrazones as possible ligands (Tai et al., 2008), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The dihedral angle between the aromatic ring planes is 55.42 (14)°. Otherwise, the geometrical parameters for (I) are normal. In the crystal of (I), an N-H···O hydrogen bond (Table 1) leads to [001] chains.

Related literature top

For related literature, see: Tai et al. (2008).

Experimental top

1 mmol of 2-Acetyl-3-methylpyrazine (1 mmol) was added to a solution of benzenesulfonyl hydrazide (1 mmol) in 5 ml of 95% ethanol. The mixture was continuously stirred for 4 h at refluxing temperature, evaporating some ethanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 67%). Clear blocks of (I) were obtained by evaporation from a methanol solution after 3 days.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids for the non-hydrogen atoms.
2-Acetyl-3-methylpyrazine phenylsulfonylhydrazone top
Crystal data top
C13H14N4O2SF(000) = 608
Mr = 290.34Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1439 reflections
a = 10.9848 (15) Åθ = 3.0–22.9°
b = 16.7921 (18) ŵ = 0.24 mm1
c = 7.4817 (10) ÅT = 298 K
β = 97.264 (1)°Block, colourless
V = 1369.0 (3) Å30.50 × 0.28 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2402 independent reflections
Radiation source: fine-focus sealed tube1499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 138
Tmin = 0.888, Tmax = 0.967k = 1917
6807 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
2402 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C13H14N4O2SV = 1369.0 (3) Å3
Mr = 290.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9848 (15) ŵ = 0.24 mm1
b = 16.7921 (18) ÅT = 298 K
c = 7.4817 (10) Å0.50 × 0.28 × 0.14 mm
β = 97.264 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1499 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.967Rint = 0.061
6807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
2402 reflectionsΔρmin = 0.31 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.76385 (18)0.24028 (12)0.7039 (3)0.0401 (6)
H10.77850.28850.73890.048*
N20.64583 (19)0.21106 (12)0.6591 (3)0.0386 (6)
N30.3511 (2)0.28276 (13)0.5461 (3)0.0504 (7)
N40.2852 (2)0.12465 (14)0.5560 (3)0.0552 (7)
O10.98156 (16)0.21805 (11)0.7451 (3)0.0528 (6)
O20.85153 (17)0.14561 (10)0.5061 (2)0.0508 (5)
S10.87236 (6)0.17593 (4)0.68486 (10)0.0412 (2)
C10.8548 (2)0.09773 (15)0.8320 (4)0.0385 (7)
C20.7922 (3)0.03023 (16)0.7692 (4)0.0539 (8)
H20.76310.02490.64750.065*
C30.7734 (3)0.02929 (19)0.8895 (6)0.0704 (10)
H3A0.73180.07540.84940.084*
C40.8160 (3)0.0204 (2)1.0670 (6)0.0723 (11)
H40.80100.06021.14790.087*
C50.8807 (3)0.0460 (2)1.1294 (4)0.0660 (10)
H50.91140.05051.25060.079*
C60.8996 (3)0.10584 (17)1.0104 (4)0.0516 (8)
H60.94250.15151.05080.062*
C70.5726 (3)0.34525 (15)0.7167 (4)0.0500 (8)
H7A0.60310.34970.84230.075*
H7B0.49480.37180.69350.075*
H7C0.62980.36940.64620.075*
C80.5571 (2)0.25952 (15)0.6673 (3)0.0361 (7)
C90.4326 (2)0.22753 (15)0.6112 (3)0.0370 (7)
C100.3985 (3)0.14763 (16)0.6207 (4)0.0427 (7)
C110.2074 (3)0.17989 (19)0.4865 (4)0.0581 (9)
H110.12860.16500.43800.070*
C120.2400 (3)0.2581 (2)0.4845 (4)0.0588 (9)
H120.18170.29530.43810.071*
C130.4793 (3)0.08310 (16)0.7054 (4)0.0641 (10)
H13A0.42960.03950.73680.096*
H13B0.52720.10310.81210.096*
H13C0.53290.06510.62200.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0289 (14)0.0326 (12)0.0566 (16)0.0015 (10)0.0026 (11)0.0017 (11)
N20.0279 (14)0.0445 (13)0.0413 (15)0.0002 (11)0.0037 (11)0.0015 (11)
N30.0346 (16)0.0528 (15)0.0610 (18)0.0029 (12)0.0043 (13)0.0027 (13)
N40.0402 (17)0.0594 (16)0.0645 (18)0.0082 (13)0.0006 (13)0.0014 (14)
O10.0291 (12)0.0601 (13)0.0667 (14)0.0069 (9)0.0033 (10)0.0065 (11)
O20.0515 (13)0.0615 (13)0.0383 (12)0.0083 (10)0.0008 (9)0.0039 (10)
S10.0308 (4)0.0479 (4)0.0439 (5)0.0027 (3)0.0003 (3)0.0018 (4)
C10.0321 (17)0.0405 (16)0.0429 (19)0.0085 (12)0.0042 (13)0.0010 (14)
C20.044 (2)0.0517 (19)0.063 (2)0.0042 (15)0.0036 (16)0.0007 (18)
C30.065 (2)0.049 (2)0.096 (3)0.0003 (16)0.007 (2)0.013 (2)
C40.080 (3)0.057 (2)0.086 (3)0.019 (2)0.037 (2)0.025 (2)
C50.085 (3)0.069 (2)0.047 (2)0.034 (2)0.0166 (19)0.004 (2)
C60.061 (2)0.0464 (18)0.048 (2)0.0134 (15)0.0079 (16)0.0043 (16)
C70.0441 (19)0.0471 (18)0.056 (2)0.0026 (13)0.0027 (15)0.0038 (15)
C80.0340 (17)0.0413 (16)0.0323 (17)0.0031 (13)0.0014 (13)0.0011 (13)
C90.0316 (17)0.0447 (17)0.0342 (17)0.0030 (13)0.0019 (13)0.0008 (14)
C100.0374 (18)0.0484 (17)0.0422 (18)0.0012 (14)0.0045 (14)0.0009 (15)
C110.0324 (19)0.073 (2)0.066 (2)0.0047 (17)0.0047 (16)0.0056 (19)
C120.032 (2)0.069 (2)0.071 (2)0.0059 (16)0.0084 (16)0.0003 (18)
C130.050 (2)0.0490 (19)0.090 (3)0.0034 (15)0.0032 (18)0.0134 (19)
Geometric parameters (Å, º) top
N1—N21.387 (3)C4—H40.9300
N1—S11.628 (2)C5—C61.376 (4)
N1—H10.8600C5—H50.9300
N2—C81.277 (3)C6—H60.9300
N3—C121.316 (3)C7—C81.491 (3)
N3—C91.337 (3)C7—H7A0.9600
N4—C111.323 (3)C7—H7B0.9600
N4—C101.334 (3)C7—H7C0.9600
O1—S11.4163 (18)C8—C91.480 (3)
O2—S11.4220 (19)C9—C101.397 (3)
S1—C11.740 (3)C10—C131.490 (3)
C1—C61.370 (4)C11—C121.361 (4)
C1—C21.377 (3)C11—H110.9300
C2—C31.378 (4)C12—H120.9300
C2—H20.9300C13—H13A0.9600
C3—C41.359 (5)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C4—C51.372 (4)
N2—N1—S1114.60 (16)C5—C6—H6120.2
N2—N1—H1122.7C8—C7—H7A109.5
S1—N1—H1122.7C8—C7—H7B109.5
C8—N2—N1117.3 (2)H7A—C7—H7B109.5
C12—N3—C9117.2 (2)C8—C7—H7C109.5
C11—N4—C10117.8 (3)H7A—C7—H7C109.5
O1—S1—O2120.49 (13)H7B—C7—H7C109.5
O1—S1—N1103.92 (12)N2—C8—C9116.0 (2)
O2—S1—N1106.70 (11)N2—C8—C7124.3 (2)
O1—S1—C1109.44 (12)C9—C8—C7119.5 (2)
O2—S1—C1107.89 (12)N3—C9—C10120.9 (2)
N1—S1—C1107.71 (12)N3—C9—C8113.8 (2)
C6—C1—C2121.1 (3)C10—C9—C8125.3 (2)
C6—C1—S1119.1 (2)N4—C10—C9120.2 (2)
C2—C1—S1119.7 (2)N4—C10—C13115.0 (2)
C1—C2—C3118.9 (3)C9—C10—C13124.8 (2)
C1—C2—H2120.6N4—C11—C12121.5 (3)
C3—C2—H2120.6N4—C11—H11119.2
C4—C3—C2119.8 (3)C12—C11—H11119.2
C4—C3—H3A120.1N3—C12—C11122.3 (3)
C2—C3—H3A120.1N3—C12—H12118.9
C3—C4—C5121.4 (3)C11—C12—H12118.9
C3—C4—H4119.3C10—C13—H13A109.5
C5—C4—H4119.3C10—C13—H13B109.5
C4—C5—C6119.2 (3)H13A—C13—H13B109.5
C4—C5—H5120.4C10—C13—H13C109.5
C6—C5—H5120.4H13A—C13—H13C109.5
C1—C6—C5119.5 (3)H13B—C13—H13C109.5
C1—C6—H6120.2
S1—N1—N2—C8178.3 (2)N1—N2—C8—C9177.5 (2)
N2—N1—S1—O1177.34 (18)N1—N2—C8—C71.7 (4)
N2—N1—S1—O254.3 (2)C12—N3—C9—C102.9 (4)
N2—N1—S1—C161.3 (2)C12—N3—C9—C8176.5 (3)
O1—S1—C1—C630.8 (3)N2—C8—C9—N3152.2 (3)
O2—S1—C1—C6163.6 (2)C7—C8—C9—N323.8 (4)
N1—S1—C1—C681.6 (2)N2—C8—C9—C1027.2 (4)
O1—S1—C1—C2151.7 (2)C7—C8—C9—C10156.8 (3)
O2—S1—C1—C218.9 (3)C11—N4—C10—C91.1 (4)
N1—S1—C1—C296.0 (2)C11—N4—C10—C13177.0 (3)
C6—C1—C2—C30.9 (4)N3—C9—C10—N43.5 (4)
S1—C1—C2—C3176.5 (2)C8—C9—C10—N4175.9 (3)
C1—C2—C3—C40.3 (5)N3—C9—C10—C13174.4 (3)
C2—C3—C4—C51.8 (5)C8—C9—C10—C136.3 (5)
C3—C4—C5—C62.0 (5)C10—N4—C11—C121.6 (5)
C2—C1—C6—C50.7 (4)C9—N3—C12—C110.2 (5)
S1—C1—C6—C5176.8 (2)N4—C11—C12—N32.1 (5)
C4—C5—C6—C10.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.343.027 (3)137
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H14N4O2S
Mr290.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.9848 (15), 16.7921 (18), 7.4817 (10)
β (°) 97.264 (1)
V3)1369.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.28 × 0.14
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.888, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
6807, 2402, 1499
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.103, 1.03
No. of reflections2402
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.343.027 (3)137
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds