Download citation
Download citation
link to html
In the centrosymmetric title complex, [Ni(C7H3FNO3S)2(H2O)4], the NiII atom exhibits a slightly distorted trans-NiN2O4 octa­hedral coordination. The nitro­gen donors are provided by two 5-fluoro­saccharinate ligands and the oxygen donors are provided by four water mol­ecules. The crystal structure features O—H...O and bifurcated O—H...(F,O) hydrogen bonds, the latter involving the F atom of the 5-fluoro­saccharinate ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809007053/hb2907sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809007053/hb2907Isup2.hkl
Contains datablock I

CCDC reference: 726223

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.024
  • wR factor = 0.065
  • Data-to-parameter ratio = 11.5

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 150.000 Value of melting point given = 0.000 PLAT432_ALERT_2_C Short Inter X...Y Contact O3 .. C4 .. 2.94 Ang. PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.89 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5A .. F1 .. 2.59 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.895 Tmax scaled 0.895 Tmin scaled 0.794 PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 = 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The study of metal saccharinate complexes has been of current interest with respect to their incorporation into novel coordination polymers (Falvello et al., 2001). As a continuation of our own efforts in this area (Khalil et al., 2005), we have deemed it worthwhile to explore the solid state structures of metal organic compounds containing fluorinated saccharinates. The choice of fluorinated saccharinates stems from the novel types of interactions in which carbon bound fluorine may participate (Plenio, 1997). Our initial studies have led to the preparation of the title nickel complex (I) that contains 5-fluorosaccharinate (5-fsacch) as an anionic ligand.

The crystal structure of (I) consists of monomeric Ni(5-fsacch)2(H2O)4 molecular units, as shown in Figure 1. The NiII atom, which lies on an inversion center, is octahedrally coordinated by a pair of trans N atoms from two equivalent 5-fsacch ligands, and by four O atoms from two pairs that contain equivalent water molecules (Table 1).

The average Ni—N and Ni—O bond distances in (I) are 2.086 Å (1) and 2.076 (2) Å, respectively. By comparison to a similar structure, in (I) the average Ni—N distance is shorter whereas the average Ni—O distance is longer than their corresponding values in the previously reported nickel saccharinate complex, namely Ni(sacch)2(H2O)4.2(H2O) (II) (sacch = saccharinate) (Haider et al., 1983). In (II) the average Ni—N distance is 2.154 (1) Å, while the average Ni—O distance is 2.069 (2) Å. All angles in (I) are normal and are comparable to their corresponding values in (II).

The crystal structure in (I) features extensive hydrogen bonding (Table 2) in which both the carbonyl and sulfonyl O atoms of 5-fsacch, as well its carbon bound fluorine, act as hydrogen bond acceptors for the water H atoms, as shown in Fig. 2. This hydrogen bonding scheme is different from that of (II) for two major reasons. First, there is the presence of the previously mentioned C—F···H hydrogen bonding in (I) that is obviously absent in (II). Second, in (II) there exists hydrogen bonding involving lattice water molecules, which because of their absence in (I) precludes such interactions.

Related literature top

For a related structure; see: Haider et al. (1983). For background, see: Falvello et al. (2001); Khalil et al. (2005); Plenio (1997).

Experimental top

All chemicals and solvents were purchased from commercial sources and used without further purification. The synthesis of sodium 5-fluorosaccharinate will be described elsewhere. A 10 ml solution of sodium 5-fluorosaccharinate (0.10 mmol) was added dropwise to a 10.0 ml solution of nickel(II) chloride tetrahydrate (0.050 mmol). Light blue, block-like crystals of (I) were formed in about three weeks by slow evaporation after the solution volume was reduced to 5.0 ml under ambient conditions.

Refinement top

Hydrogen atoms bonded to carbon were placed in geometrically idealized positions and included as riding atoms with refined isotropic displacement parameters. The water H atoms were located in difference maps and refined freely.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of Ni(II) in (I), with the atom-labeling scheme. The H atoms of 5-fsacch are omitted for clarity. Displacement ellipsoids for nonhydrogen atoms are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines.
[Figure 2] Fig. 2. View of the crystal packing in (I). All H atoms except for those of water are omitted for clarity. Hydrogen bonds are represented by dashed lines.
Tetraquabis(5-fluorosaccharinato)nickel(II) top
Crystal data top
[Ni(C7H3FNO3S)2(H2O)4]Z = 1
Mr = 531.10F(000) = 270
Triclinic, P1Dx = 1.942 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9649 (3) ÅCell parameters from 4507 reflections
b = 8.0484 (3) Åθ = 2.4–26.4°
c = 9.5877 (4) ŵ = 1.38 mm1
α = 101.780 (1)°T = 150 K
β = 105.983 (1)°Block, light blue
γ = 110.973 (1)°0.22 × 0.18 × 0.08 mm
V = 454.18 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
1858 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 88
Tmin = 0.887, Tmax = 1.000k = 1010
6861 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.065Only H-atom displacement parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2342P]
where P = (Fo2 + 2Fc2)/3
1858 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C7H3FNO3S)2(H2O)4]γ = 110.973 (1)°
Mr = 531.10V = 454.18 (3) Å3
Triclinic, P1Z = 1
a = 6.9649 (3) ÅMo Kα radiation
b = 8.0484 (3) ŵ = 1.38 mm1
c = 9.5877 (4) ÅT = 150 K
α = 101.780 (1)°0.22 × 0.18 × 0.08 mm
β = 105.983 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1858 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1769 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.022
6861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065Only H-atom displacement parameters refined
S = 1.06Δρmax = 0.38 e Å3
1858 reflectionsΔρmin = 0.37 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.01450 (11)
S10.01342 (6)0.32955 (6)0.24583 (5)0.01495 (12)
C10.2752 (3)0.2997 (2)0.1523 (2)0.0176 (4)
C20.0749 (3)0.2377 (2)0.0098 (2)0.0164 (3)
C30.0542 (3)0.1736 (2)0.1416 (2)0.0179 (3)
H30.17240.16210.16700.020 (5)*
C40.1482 (3)0.1274 (2)0.2531 (2)0.0179 (3)
C50.3263 (3)0.1414 (3)0.2223 (2)0.0217 (4)
H50.46130.10900.30410.036 (6)*
C60.3043 (3)0.2036 (3)0.0695 (2)0.0209 (4)
H60.42320.21320.04380.026 (6)*
C70.1013 (3)0.2507 (2)0.04337 (19)0.0169 (3)
F10.17280 (17)0.06728 (16)0.40248 (12)0.0230 (2)
N10.2420 (2)0.3605 (2)0.28345 (17)0.0172 (3)
O10.4490 (2)0.2954 (2)0.15047 (15)0.0258 (3)
O20.1302 (2)0.18308 (18)0.29833 (15)0.0210 (3)
O30.01877 (19)0.50819 (17)0.30498 (14)0.0193 (3)
O40.2988 (2)0.3398 (2)0.59836 (16)0.0197 (3)
H4A0.190 (5)0.249 (4)0.535 (4)0.048 (8)*
H4B0.254 (5)0.396 (4)0.646 (3)0.043 (8)*
O50.4047 (2)0.71025 (18)0.54925 (17)0.0187 (3)
H5A0.284 (5)0.685 (4)0.490 (3)0.046 (8)*
H5B0.412 (4)0.742 (4)0.637 (3)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01254 (16)0.01878 (18)0.01260 (17)0.00792 (13)0.00498 (12)0.00392 (12)
S10.0128 (2)0.0187 (2)0.0134 (2)0.00758 (17)0.00549 (16)0.00357 (17)
C10.0179 (8)0.0214 (9)0.0152 (8)0.0101 (7)0.0070 (7)0.0056 (7)
C20.0156 (8)0.0175 (8)0.0163 (9)0.0077 (7)0.0058 (7)0.0058 (7)
C30.0183 (8)0.0192 (8)0.0183 (9)0.0092 (7)0.0086 (7)0.0066 (7)
C40.0228 (8)0.0174 (8)0.0126 (8)0.0079 (7)0.0073 (7)0.0043 (7)
C50.0173 (8)0.0242 (9)0.0189 (9)0.0081 (7)0.0031 (7)0.0052 (7)
C60.0168 (8)0.0261 (9)0.0190 (9)0.0096 (7)0.0070 (7)0.0052 (7)
C70.0180 (8)0.0181 (8)0.0135 (8)0.0079 (7)0.0063 (7)0.0030 (7)
F10.0246 (5)0.0294 (6)0.0125 (5)0.0113 (5)0.0064 (4)0.0040 (4)
N10.0129 (6)0.0241 (8)0.0148 (7)0.0100 (6)0.0050 (6)0.0040 (6)
O10.0188 (6)0.0437 (8)0.0177 (7)0.0188 (6)0.0073 (5)0.0061 (6)
O20.0216 (6)0.0228 (7)0.0200 (7)0.0090 (5)0.0109 (5)0.0073 (5)
O30.0170 (6)0.0202 (6)0.0196 (6)0.0096 (5)0.0062 (5)0.0030 (5)
O40.0184 (6)0.0213 (7)0.0188 (7)0.0082 (6)0.0087 (6)0.0044 (6)
O50.0170 (6)0.0229 (7)0.0163 (7)0.0105 (5)0.0060 (5)0.0042 (5)
Geometric parameters (Å, º) top
Ni1—O5i2.0440 (13)C2—C31.385 (2)
Ni1—O52.0440 (13)C3—C41.379 (2)
Ni1—N12.0856 (14)C3—H30.9500
Ni1—N1i2.0856 (14)C4—F11.355 (2)
Ni1—O42.1084 (13)C4—C51.388 (2)
Ni1—O4i2.1084 (13)C5—C61.394 (3)
S1—O21.4443 (13)C5—H50.9500
S1—O31.4515 (13)C6—C71.385 (2)
S1—N11.6277 (14)C6—H60.9500
S1—C71.7635 (17)O4—H4A0.81 (3)
C1—O11.228 (2)O4—H4B0.78 (3)
C1—N11.366 (2)O5—H5A0.80 (3)
C1—C21.495 (2)O5—H5B0.81 (3)
C2—C71.385 (2)
O5i—Ni1—O5180.0C3—C2—C1127.30 (15)
O5i—Ni1—N187.50 (6)C4—C3—C2116.09 (15)
O5—Ni1—N192.50 (6)C4—C3—H3122.0
O5i—Ni1—N1i92.50 (6)C2—C3—H3122.0
O5—Ni1—N1i87.50 (6)F1—C4—C3117.60 (15)
N1—Ni1—N1i180.0F1—C4—C5118.11 (16)
O5i—Ni1—O488.53 (5)C3—C4—C5124.28 (17)
O5—Ni1—O491.47 (5)C4—C5—C6119.03 (16)
N1—Ni1—O490.65 (6)C4—C5—H5120.5
N1i—Ni1—O489.35 (6)C6—C5—H5120.5
O5i—Ni1—O4i91.47 (5)C7—C6—C5117.06 (16)
O5—Ni1—O4i88.53 (5)C7—C6—H6121.5
N1—Ni1—O4i89.35 (6)C5—C6—H6121.5
N1i—Ni1—O4i90.65 (6)C2—C7—C6122.86 (16)
O4—Ni1—O4i180.0C2—C7—S1107.03 (13)
O2—S1—O3114.08 (7)C6—C7—S1130.10 (13)
O2—S1—N1110.96 (8)C1—N1—S1111.66 (12)
O3—S1—N1110.42 (7)C1—N1—Ni1122.66 (11)
O2—S1—C7111.32 (8)S1—N1—Ni1125.40 (8)
O3—S1—C7112.14 (8)Ni1—O4—H4A113 (2)
N1—S1—C796.63 (8)Ni1—O4—H4B113 (2)
O1—C1—N1124.25 (16)H4A—O4—H4B106 (3)
O1—C1—C2123.43 (16)Ni1—O5—H5A113 (2)
N1—C1—C2112.32 (14)Ni1—O5—H5B113.5 (19)
C7—C2—C3120.66 (16)H5A—O5—H5B110 (3)
C7—C2—C1112.04 (15)
O1—C1—C2—C7177.99 (17)O3—S1—C7—C661.72 (19)
N1—C1—C2—C71.9 (2)N1—S1—C7—C6176.96 (18)
O1—C1—C2—C32.1 (3)O1—C1—N1—S1174.70 (15)
N1—C1—C2—C3178.04 (16)C2—C1—N1—S15.15 (19)
C7—C2—C3—C40.8 (3)O1—C1—N1—Ni111.1 (3)
C1—C2—C3—C4179.07 (16)C2—C1—N1—Ni1169.10 (11)
C2—C3—C4—F1178.87 (14)O2—S1—N1—C1110.32 (13)
C2—C3—C4—C50.0 (3)O3—S1—N1—C1122.18 (13)
F1—C4—C5—C6179.76 (16)C7—S1—N1—C15.56 (14)
C3—C4—C5—C60.9 (3)O2—S1—N1—Ni175.62 (11)
C4—C5—C6—C70.9 (3)O3—S1—N1—Ni151.87 (12)
C3—C2—C7—C60.7 (3)C7—S1—N1—Ni1168.50 (10)
C1—C2—C7—C6179.18 (16)O5i—Ni1—N1—C148.82 (14)
C3—C2—C7—S1178.11 (14)O5—Ni1—N1—C1131.18 (14)
C1—C2—C7—S11.98 (18)O4—Ni1—N1—C1137.32 (14)
C5—C6—C7—C20.2 (3)O4i—Ni1—N1—C142.68 (14)
C5—C6—C7—S1178.74 (14)O5i—Ni1—N1—S1137.74 (10)
O2—S1—C7—C2111.27 (13)O5—Ni1—N1—S142.26 (10)
O3—S1—C7—C2119.56 (12)O4—Ni1—N1—S149.24 (10)
N1—S1—C7—C24.32 (14)O4i—Ni1—N1—S1130.76 (10)
O2—S1—C7—C667.46 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.81 (3)2.51 (3)3.1436 (19)137 (3)
O4—H4A···F1ii0.81 (3)2.54 (3)3.0910 (19)127 (3)
O4—H4B···O3iii0.78 (3)2.17 (3)2.8985 (18)158 (3)
O5—H5A···O30.80 (3)2.10 (3)2.8346 (18)155 (3)
O5—H5A···F1iv0.80 (3)2.59 (3)3.1050 (17)124 (2)
O5—H5B···O1i0.81 (3)2.13 (3)2.793 (2)139 (2)
O5—H5B···O2iii0.81 (3)2.44 (3)2.9541 (18)122 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z; (iii) x, y+1, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C7H3FNO3S)2(H2O)4]
Mr531.10
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.9649 (3), 8.0484 (3), 9.5877 (4)
α, β, γ (°)101.780 (1), 105.983 (1), 110.973 (1)
V3)454.18 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.22 × 0.18 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6861, 1858, 1769
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.06
No. of reflections1858
No. of parameters161
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.37

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O52.0440 (13)Ni1—O42.1084 (13)
Ni1—N12.0856 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.81 (3)2.51 (3)3.1436 (19)137 (3)
O4—H4A···F1i0.81 (3)2.54 (3)3.0910 (19)127 (3)
O4—H4B···O3ii0.78 (3)2.17 (3)2.8985 (18)158 (3)
O5—H5A···O30.80 (3)2.10 (3)2.8346 (18)155 (3)
O5—H5A···F1iii0.80 (3)2.59 (3)3.1050 (17)124 (2)
O5—H5B···O1iv0.81 (3)2.13 (3)2.793 (2)139 (2)
O5—H5B···O2ii0.81 (3)2.44 (3)2.9541 (18)122 (2)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds