Download citation
Download citation
link to html
The complete mol­ecule of the title compound, C14H20Br2O2, is generated by crystallographic inversion symmetry and the 4-bromo­but­oxy side chain adopts an extended conformation. In the crystal, weak C—H...π inter­actions are observed, which help to consolidate a herringbone packing motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2414314617010045/hb4156sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2414314617010045/hb4156Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2414314617010045/hb4156Isup3.cml
Supplementary material

CCDC reference: 1560690

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.024
  • wR factor = 0.052
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.11 Ratio PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) Still 70 % Note PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 1 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

1,4-Bis(4-bromobutoxy)benzene top
Crystal data top
C14H20Br2O2F(000) = 380
Mr = 380.12Dx = 1.702 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0845 (10) ÅCell parameters from 3047 reflections
b = 5.3436 (5) Åθ = 2.7–24.9°
c = 15.3509 (15) ŵ = 5.46 mm1
β = 95.567 (4)°T = 296 K
V = 741.68 (13) Å3Block, colourless
Z = 20.35 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1310 independent reflections
Radiation source: fine-focus sealed tube1126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.525, Tmax = 0.745k = 66
7040 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0214P)2 + 0.4039P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1310 reflectionsΔρmax = 0.32 e Å3
82 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were included in the refinement at calculated positions (C—H = 0.93–0.98 Å), with Uiso(H) = 1.2Ueq(C) using a riding-model approximation.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0397 (3)1.4815 (5)0.34901 (18)0.0487 (7)
H1A0.12201.57070.32770.058*
H1B0.07961.36420.39340.058*
C20.0404 (3)1.3397 (4)0.27508 (15)0.0354 (6)
H2A0.08121.45610.23060.043*
H2B0.12161.24720.29620.043*
C30.0642 (3)1.1585 (4)0.23511 (15)0.0343 (6)
H3A0.14311.25230.21190.041*
H3B0.10851.04780.28040.041*
C40.0151 (3)1.0047 (4)0.16294 (15)0.0323 (5)
H4A0.09740.91620.18450.039*
H4B0.05321.11210.11500.039*
C50.0386 (3)0.6709 (4)0.06653 (14)0.0288 (5)
C60.1050 (3)0.6624 (4)0.02794 (15)0.0305 (5)
H60.17590.77080.04640.037*
C70.1431 (3)0.4919 (4)0.03832 (14)0.0307 (5)
H70.23990.48640.06420.037*
O10.08882 (18)0.8306 (3)0.13368 (11)0.0376 (4)
Br10.08821 (3)1.72008 (5)0.40166 (2)0.04831 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (17)0.0559 (16)0.0491 (16)0.0108 (13)0.0028 (13)0.0206 (13)
C20.0386 (15)0.0339 (12)0.0338 (13)0.0018 (11)0.0035 (11)0.0026 (10)
C30.0347 (15)0.0358 (13)0.0324 (13)0.0015 (11)0.0027 (11)0.0056 (10)
C40.0335 (14)0.0322 (12)0.0314 (12)0.0024 (10)0.0038 (11)0.0037 (10)
C50.0323 (13)0.0283 (11)0.0256 (12)0.0017 (10)0.0021 (10)0.0006 (9)
C60.0274 (13)0.0322 (12)0.0321 (12)0.0037 (10)0.0035 (10)0.0028 (10)
C70.0248 (13)0.0353 (12)0.0313 (12)0.0012 (10)0.0001 (10)0.0015 (10)
O10.0323 (10)0.0402 (9)0.0390 (9)0.0043 (8)0.0022 (8)0.0147 (8)
Br10.0566 (2)0.04394 (17)0.04603 (18)0.00749 (13)0.01338 (13)0.01054 (12)
Geometric parameters (Å, º) top
C1—C21.494 (3)C4—O11.428 (3)
C1—Br11.952 (2)C4—H4A0.9700
C1—H1A0.9700C4—H4B0.9700
C1—H1B0.9700C5—C61.381 (3)
C2—C31.526 (3)C5—O11.381 (3)
C2—H2A0.9700C5—C7i1.387 (3)
C2—H2B0.9700C6—C71.384 (3)
C3—C41.506 (3)C6—H60.9300
C3—H3A0.9700C7—C5i1.387 (3)
C3—H3B0.9700C7—H70.9300
C2—C1—Br1112.34 (19)H3A—C3—H3B107.9
C2—C1—H1A109.1O1—C4—C3107.66 (19)
Br1—C1—H1A109.1O1—C4—H4A110.2
C2—C1—H1B109.1C3—C4—H4A110.2
Br1—C1—H1B109.1O1—C4—H4B110.2
H1A—C1—H1B107.9C3—C4—H4B110.2
C1—C2—C3110.6 (2)H4A—C4—H4B108.5
C1—C2—H2A109.5C6—C5—O1124.8 (2)
C3—C2—H2A109.5C6—C5—C7i119.5 (2)
C1—C2—H2B109.5O1—C5—C7i115.7 (2)
C3—C2—H2B109.5C5—C6—C7119.7 (2)
H2A—C2—H2B108.1C5—C6—H6120.2
C4—C3—C2111.7 (2)C7—C6—H6120.2
C4—C3—H3A109.3C6—C7—C5i120.8 (2)
C2—C3—H3A109.3C6—C7—H7119.6
C4—C3—H3B109.3C5i—C7—H7119.6
C2—C3—H3B109.3C5—O1—C4117.18 (18)
Br1—C1—C2—C3179.19 (17)C5—C6—C7—C5i0.0 (4)
C1—C2—C3—C4177.5 (2)C6—C5—O1—C42.2 (3)
C2—C3—C4—O1176.29 (18)C7i—C5—O1—C4178.59 (18)
O1—C5—C6—C7179.2 (2)C3—C4—O1—C5179.55 (19)
C7i—C5—C6—C70.0 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg1ii0.972.843.664 (3)144
Symmetry code: (ii) x1/2, y1/2, z3/2.
 

Follow IUCrData
Sign up for e-alerts
Follow IUCrData on Twitter
Follow us on facebook
Sign up for RSS feeds