Download citation
Download citation
link to html
In the title compound, 2C5H8N3+·C4H4O62−·H2O, the two cations are essentially planar [maximum deviations = 0.023 (1) and 0.026 (1) Å]. In one of the cations, the protonated N atom and one of the amino group H atoms are hydrogen bonded to one of the carboxyl groups of the dianion through a pair of N—H...O hydrogen bonds, forming an R22(8) ring motif. In the crystal structure, the tartrate anions and water mol­ecules are linked into chains along the c axis by inter­molecular O—H...O and C—H...O hydrogen bonds. The cations further link the anions and water mol­ecules into a three-dimensional extended structure by a network of N—H...O hydrogen bonds. The crystal structure is also stabilized by weak inter­molecular π–π inter­actions [centroid–centroid distance = 3.6950 (6) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809044663/hb5185sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809044663/hb5185Isup2.hkl
Contains datablock I

CCDC reference: 754478

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.048
  • wR factor = 0.137
  • Data-to-parameter ratio = 25.3

checkCIF/PLATON results

No syntax errors found



Alert level C SHFSU01_ALERT_2_C Test not performed. _refine_ls_shift/su_max and _refine_ls_shift/esd_max not present. Absolute value of the parameter shift to su ratio given 0.001 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.06 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 40
Alert level G PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 14 PLAT793_ALERT_4_G The Model has Chirality at C2 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at C3 (Verify) .... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The asymmetric unit of the title compound, (I) (Fig. 1), comprises of two 2,6-diaminopyridinium cations, a tartrate dianion and a water molecule. Two intermolecular protons transfer from the carboxylic groups of tartaric acid to atoms N1 & N4 of the 2,6-diaminopyridine moiety has resulted in the formation of ions. The protonated N1 atom and the N2 atom of the amino group are hydrogen bonded to the carboxyl group (atoms O5 & O6) via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Fig. 1, Bernstein et al., 1995). The two 2,6-diaminopyridinium cations (N1–N3/C5–C9) and (N4–N6/C10–C14) are essentially planar, with maximum devations of 0.023 (1) and 0.026 (1) Å, respectively, for atoms C6 and C11. Comparing with the unprotonated structure (De cires-Mejias et al., 2004), protonation of atoms N1 & N4 have widened the C—N—C angles to 123.51 (8) and 123.92 (9)°, respectively, for angles of C5—N1—C9 and C10—N4—C14. The bond lengths (Allen et al., 1987) and angles observed are within normal ranges and are consistent with those related structures (Al-Dajani, Abdallah et al., 2009; Al-Dajani, Salhin et al., 2009).

The crystal structure of (I) is mainly stabilized by a network of N—H···O and C—H···O hydrogen bonds. Each N atom in the cations participates in intermolecular hydrogen bonds. In the crystal structure (Fig. 2), the tartrate anions and water molecules are linked into chains along the c axis by intermolecular O1—H1O1···O4, O2—H1O2···O4, O1W—H1W1···O3, O1W—H1W1···O4, O1W—H2W1···O5 and C2—H2A···O3 hydrogen bonds (Table 1). The 2,6-diaminopyridinium cations further linked the anions and water molecules into a three-dimensional extended structure by a network of N—H···O hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular ππ interactions [Cg1···Cg1 = 3.6950 (6) Å; Cg1 is the centroid of the N1/C5–C9 pyridine ring].

Related literature top

For related structures, see: Al-Dajani, Abdallah et al. (2009); Al-Dajani, Salhin et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Tartaric acid (0.01 mol, 1.5 g) was dissolved in 50 ml of methanol in a round bottom flask. 2,6-Diaminopyridine (0.02 mol, 2.2 g) was added in small portions to the flask with stirring. The reaction mixture was left stirring for 3 h at room temperature. Brown blocks of (I) were separated, washed with methanol and dried at 353 K.

Refinement top

All the hydrogen atoms were located from difference Fourier maps and allowed to refine freely [ranges: C—H = 0.922 (18) – 0.984 (15) Å; N—H = 0.827 (18) – 0.933 (14) Å]. The highest residual electron density peak is located at 0.77 Å from atom C2 and the deepest hole is located at 1.17 Å from atom C14.

Structure description top

The asymmetric unit of the title compound, (I) (Fig. 1), comprises of two 2,6-diaminopyridinium cations, a tartrate dianion and a water molecule. Two intermolecular protons transfer from the carboxylic groups of tartaric acid to atoms N1 & N4 of the 2,6-diaminopyridine moiety has resulted in the formation of ions. The protonated N1 atom and the N2 atom of the amino group are hydrogen bonded to the carboxyl group (atoms O5 & O6) via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Fig. 1, Bernstein et al., 1995). The two 2,6-diaminopyridinium cations (N1–N3/C5–C9) and (N4–N6/C10–C14) are essentially planar, with maximum devations of 0.023 (1) and 0.026 (1) Å, respectively, for atoms C6 and C11. Comparing with the unprotonated structure (De cires-Mejias et al., 2004), protonation of atoms N1 & N4 have widened the C—N—C angles to 123.51 (8) and 123.92 (9)°, respectively, for angles of C5—N1—C9 and C10—N4—C14. The bond lengths (Allen et al., 1987) and angles observed are within normal ranges and are consistent with those related structures (Al-Dajani, Abdallah et al., 2009; Al-Dajani, Salhin et al., 2009).

The crystal structure of (I) is mainly stabilized by a network of N—H···O and C—H···O hydrogen bonds. Each N atom in the cations participates in intermolecular hydrogen bonds. In the crystal structure (Fig. 2), the tartrate anions and water molecules are linked into chains along the c axis by intermolecular O1—H1O1···O4, O2—H1O2···O4, O1W—H1W1···O3, O1W—H1W1···O4, O1W—H2W1···O5 and C2—H2A···O3 hydrogen bonds (Table 1). The 2,6-diaminopyridinium cations further linked the anions and water molecules into a three-dimensional extended structure by a network of N—H···O hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular ππ interactions [Cg1···Cg1 = 3.6950 (6) Å; Cg1 is the centroid of the N1/C5–C9 pyridine ring].

For related structures, see: Al-Dajani, Abdallah et al. (2009); Al-Dajani, Salhin et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. Intermolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the c axis, showing the three-dimensional network. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Bis(2,6-diaminopyridinium) tartrate monohydrate top
Crystal data top
2C5H8N3+·C4H4O62·H2OF(000) = 816
Mr = 386.38Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9979 reflections
a = 14.4722 (2) Åθ = 2.6–33.1°
b = 15.7270 (2) ŵ = 0.12 mm1
c = 7.8419 (1) ÅT = 296 K
β = 96.916 (1)°Block, brown
V = 1771.86 (4) Å30.44 × 0.33 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
8384 independent reflections
Radiation source: fine-focus sealed tube5761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 36.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2323
Tmin = 0.950, Tmax = 0.970k = 2524
55803 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.1774P]
where P = (Fo2 + 2Fc2)/3
8384 reflections(Δ/σ)max < 0.001
332 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
2C5H8N3+·C4H4O62·H2OV = 1771.86 (4) Å3
Mr = 386.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4722 (2) ŵ = 0.12 mm1
b = 15.7270 (2) ÅT = 296 K
c = 7.8419 (1) Å0.44 × 0.33 × 0.26 mm
β = 96.916 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
8384 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5761 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.970Rint = 0.029
55803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137All H-atom parameters refined
S = 1.04Δρmax = 0.33 e Å3
8384 reflectionsΔρmin = 0.24 e Å3
332 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14121 (5)0.62179 (5)0.37307 (9)0.03748 (15)
O20.33130 (5)0.69021 (5)0.36761 (10)0.03834 (16)
O30.09223 (6)0.78743 (6)0.35992 (11)0.0505 (2)
O40.19983 (6)0.82535 (5)0.57216 (9)0.04158 (17)
O50.28815 (5)0.55133 (5)0.71274 (9)0.04001 (16)
O60.36515 (6)0.53101 (5)0.48798 (9)0.04409 (18)
C10.15720 (6)0.77090 (6)0.47338 (11)0.03144 (17)
C20.18625 (6)0.67770 (6)0.49999 (10)0.02824 (15)
C30.29147 (6)0.66622 (6)0.51725 (10)0.02834 (15)
C40.31696 (6)0.57521 (6)0.57453 (10)0.02985 (16)
N10.39658 (5)0.44405 (5)0.90954 (9)0.02900 (14)
N20.47289 (7)0.39813 (7)0.68421 (11)0.0423 (2)
N30.31436 (7)0.50158 (7)1.11702 (12)0.0429 (2)
C50.46341 (6)0.39419 (6)0.85246 (11)0.03136 (17)
C60.51647 (7)0.34231 (7)0.97048 (14)0.0404 (2)
C70.49815 (8)0.34277 (7)1.13904 (14)0.0427 (2)
C80.43089 (8)0.39418 (7)1.19503 (12)0.0395 (2)
C90.38033 (6)0.44752 (6)1.07627 (10)0.03057 (16)
N40.07411 (6)0.29439 (6)0.34459 (12)0.03809 (18)
N50.05279 (8)0.15005 (7)0.31936 (18)0.0562 (3)
N60.07972 (10)0.44052 (8)0.3524 (2)0.0649 (3)
C100.10707 (7)0.21441 (7)0.37940 (14)0.0394 (2)
C110.19414 (8)0.20559 (8)0.47490 (18)0.0504 (3)
C120.24392 (8)0.27782 (10)0.52373 (19)0.0564 (3)
C130.20988 (9)0.35831 (9)0.48473 (18)0.0534 (3)
C140.12190 (8)0.36637 (7)0.39441 (15)0.0426 (2)
O1W0.11303 (7)0.52769 (6)0.82780 (15)0.0559 (2)
H1O10.1548 (11)0.6424 (10)0.272 (2)0.057 (4)*
H1O20.2904 (13)0.6826 (10)0.278 (2)0.067 (5)*
H1N10.3619 (9)0.4801 (8)0.8319 (18)0.044 (3)*
H1N20.5253 (12)0.3800 (10)0.650 (2)0.062 (4)*
H2N20.4425 (9)0.4390 (9)0.6238 (18)0.045 (3)*
H1N30.2911 (11)0.5406 (11)1.038 (2)0.065 (5)*
H2N30.3161 (12)0.5144 (10)1.224 (2)0.067 (5)*
H1N40.0176 (12)0.2971 (10)0.276 (2)0.059 (4)*
H1N50.0716 (12)0.1009 (12)0.338 (2)0.068 (5)*
H2N50.0001 (12)0.1605 (10)0.253 (2)0.059 (4)*
H1N60.0204 (12)0.4416 (10)0.302 (2)0.060 (4)*
H2N60.1102 (14)0.4860 (12)0.389 (3)0.079 (5)*
H2A0.1657 (8)0.6614 (7)0.6076 (14)0.030 (3)*
H3A0.3165 (9)0.7015 (7)0.6120 (16)0.034 (3)*
H6A0.5634 (12)0.3070 (10)0.937 (2)0.063 (4)*
H7A0.5370 (10)0.3053 (9)1.2187 (18)0.050 (4)*
H8A0.4196 (10)0.3943 (9)1.3120 (19)0.051 (4)*
H11A0.2168 (12)0.1515 (11)0.498 (2)0.067 (5)*
H12A0.3045 (13)0.2700 (11)0.588 (2)0.075 (5)*
H13A0.2436 (12)0.4097 (11)0.514 (2)0.069 (5)*
H1W10.1128 (16)0.5645 (16)0.907 (3)0.102 (7)*
H2W10.1669 (15)0.5349 (13)0.785 (3)0.087 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0370 (3)0.0357 (4)0.0381 (3)0.0092 (3)0.0024 (3)0.0016 (3)
O20.0333 (3)0.0438 (4)0.0384 (3)0.0046 (3)0.0061 (3)0.0108 (3)
O30.0395 (4)0.0544 (5)0.0547 (5)0.0125 (3)0.0065 (3)0.0098 (4)
O40.0576 (4)0.0305 (3)0.0367 (3)0.0000 (3)0.0057 (3)0.0021 (3)
O50.0451 (4)0.0428 (4)0.0335 (3)0.0128 (3)0.0100 (3)0.0117 (3)
O60.0569 (4)0.0413 (4)0.0360 (3)0.0153 (3)0.0133 (3)0.0013 (3)
C10.0326 (4)0.0333 (4)0.0292 (3)0.0048 (3)0.0066 (3)0.0038 (3)
C20.0298 (4)0.0285 (4)0.0261 (3)0.0009 (3)0.0020 (3)0.0011 (3)
C30.0292 (4)0.0281 (4)0.0269 (3)0.0014 (3)0.0002 (3)0.0004 (3)
C40.0315 (4)0.0315 (4)0.0257 (3)0.0023 (3)0.0001 (3)0.0008 (3)
N10.0305 (3)0.0292 (4)0.0266 (3)0.0036 (3)0.0006 (2)0.0020 (2)
N20.0456 (5)0.0480 (5)0.0346 (4)0.0104 (4)0.0100 (3)0.0000 (4)
N30.0471 (5)0.0488 (5)0.0331 (4)0.0141 (4)0.0064 (3)0.0019 (4)
C50.0311 (4)0.0300 (4)0.0325 (4)0.0013 (3)0.0018 (3)0.0028 (3)
C60.0396 (5)0.0367 (5)0.0431 (5)0.0124 (4)0.0028 (4)0.0020 (4)
C70.0485 (5)0.0359 (5)0.0398 (5)0.0078 (4)0.0106 (4)0.0039 (4)
C80.0483 (5)0.0411 (5)0.0274 (4)0.0037 (4)0.0022 (3)0.0033 (3)
C90.0322 (4)0.0317 (4)0.0270 (3)0.0004 (3)0.0004 (3)0.0007 (3)
N40.0290 (4)0.0349 (4)0.0485 (4)0.0013 (3)0.0029 (3)0.0015 (3)
N50.0403 (5)0.0351 (5)0.0901 (9)0.0016 (4)0.0046 (5)0.0084 (5)
N60.0575 (7)0.0332 (5)0.0982 (10)0.0015 (5)0.0145 (6)0.0028 (5)
C100.0319 (4)0.0352 (5)0.0508 (5)0.0024 (4)0.0031 (4)0.0024 (4)
C110.0376 (5)0.0459 (7)0.0651 (7)0.0093 (5)0.0048 (5)0.0021 (5)
C120.0339 (5)0.0639 (8)0.0670 (8)0.0027 (5)0.0123 (5)0.0004 (6)
C130.0413 (6)0.0490 (7)0.0661 (8)0.0081 (5)0.0095 (5)0.0043 (5)
C140.0388 (5)0.0365 (5)0.0512 (6)0.0026 (4)0.0003 (4)0.0007 (4)
O1W0.0539 (5)0.0414 (5)0.0734 (6)0.0122 (4)0.0114 (4)0.0059 (4)
Geometric parameters (Å, º) top
O1—C21.4257 (11)C6—H6A0.938 (17)
O1—H1O10.901 (16)C7—C81.3773 (16)
O2—C31.4194 (10)C7—H7A0.984 (15)
O2—H1O20.868 (19)C8—C91.3937 (13)
O3—C11.2418 (12)C8—H8A0.951 (14)
O4—C11.2644 (12)N4—C141.3591 (14)
O5—C41.2643 (10)N4—C101.3613 (13)
O6—C41.2426 (11)N4—H1N40.923 (17)
C1—C21.5322 (13)N5—C101.3319 (15)
C2—C31.5231 (12)N5—H1N50.827 (18)
C2—H2A0.962 (11)N5—H2N50.888 (17)
C3—C41.5318 (12)N6—C141.3390 (16)
C3—H3A0.962 (12)N6—H1N60.901 (18)
N1—C91.3572 (11)N6—H2N60.87 (2)
N1—C51.3620 (11)C10—C111.3930 (16)
N1—H1N10.933 (14)C11—C121.3747 (19)
N2—C51.3443 (12)C11—H11A0.922 (18)
N2—H1N20.881 (17)C12—C131.379 (2)
N2—H2N20.884 (14)C12—H12A0.963 (19)
N3—C91.3453 (13)C13—C141.3862 (16)
N3—H1N30.907 (17)C13—H13A0.959 (17)
N3—H2N30.859 (18)O1W—H1W10.85 (3)
C5—C61.3931 (13)O1W—H2W10.89 (2)
C6—C71.3790 (15)
C2—O1—H1O1105.3 (10)C8—C7—C6122.24 (9)
C3—O2—H1O2108.9 (11)C8—C7—H7A121.3 (8)
O3—C1—O4124.66 (9)C6—C7—H7A116.4 (8)
O3—C1—C2118.00 (9)C7—C8—C9118.34 (9)
O4—C1—C2117.31 (8)C7—C8—H8A121.2 (9)
O1—C2—C3110.92 (7)C9—C8—H8A120.4 (9)
O1—C2—C1113.58 (7)N3—C9—N1117.68 (8)
C3—C2—C1112.37 (7)N3—C9—C8123.52 (9)
O1—C2—H2A106.5 (7)N1—C9—C8118.79 (8)
C3—C2—H2A107.6 (7)C14—N4—C10123.92 (9)
C1—C2—H2A105.4 (7)C14—N4—H1N4120.8 (10)
O2—C3—C2113.34 (7)C10—N4—H1N4115.1 (10)
O2—C3—C4112.54 (7)C10—N5—H1N5118.6 (12)
C2—C3—C4109.86 (7)C10—N5—H2N5119.8 (11)
O2—C3—H3A109.4 (7)H1N5—N5—H2N5121.5 (16)
C2—C3—H3A106.2 (7)C14—N6—H1N6120.4 (11)
C4—C3—H3A104.9 (7)C14—N6—H2N6115.8 (13)
O6—C4—O5124.53 (9)H1N6—N6—H2N6123.2 (17)
O6—C4—C3119.58 (8)N5—C10—N4116.98 (10)
O5—C4—C3115.86 (8)N5—C10—C11124.84 (11)
C9—N1—C5123.51 (8)N4—C10—C11118.18 (10)
C9—N1—H1N1117.5 (8)C12—C11—C10118.51 (11)
C5—N1—H1N1118.9 (8)C12—C11—H11A123.0 (11)
C5—N2—H1N2118.3 (11)C10—C11—H11A118.4 (11)
C5—N2—H2N2117.2 (9)C11—C12—C13122.37 (11)
H1N2—N2—H2N2117.8 (13)C11—C12—H12A116.9 (11)
C9—N3—H1N3118.8 (10)C13—C12—H12A120.7 (11)
C9—N3—H2N3116.2 (11)C12—C13—C14118.61 (11)
H1N3—N3—H2N3118.1 (15)C12—C13—H13A124.2 (10)
N2—C5—N1117.16 (8)C14—C13—H13A117.1 (10)
N2—C5—C6124.46 (9)N6—C14—N4116.97 (10)
N1—C5—C6118.38 (8)N6—C14—C13124.67 (11)
C7—C6—C5118.65 (9)N4—C14—C13118.36 (11)
C7—C6—H6A119.9 (10)H1W1—O1W—H2W1106 (2)
C5—C6—H6A121.5 (10)
O3—C1—C2—O17.58 (11)C5—C6—C7—C81.59 (17)
O4—C1—C2—O1174.21 (7)C6—C7—C8—C90.26 (17)
O3—C1—C2—C3134.52 (9)C5—N1—C9—N3177.76 (9)
O4—C1—C2—C347.27 (10)C5—N1—C9—C83.54 (14)
O1—C2—C3—O265.36 (10)C7—C8—C9—N3178.63 (10)
C1—C2—C3—O262.99 (9)C7—C8—C9—N12.75 (15)
O1—C2—C3—C461.50 (9)C14—N4—C10—N5178.83 (11)
C1—C2—C3—C4170.15 (7)C14—N4—C10—C111.42 (17)
O2—C3—C4—O62.16 (12)N5—C10—C11—C12177.88 (13)
C2—C3—C4—O6125.14 (9)N4—C10—C11—C122.39 (19)
O2—C3—C4—O5176.12 (8)C10—C11—C12—C131.4 (2)
C2—C3—C4—O556.57 (10)C11—C12—C13—C140.6 (2)
C9—N1—C5—N2178.91 (9)C10—N4—C14—N6179.17 (12)
C9—N1—C5—C61.66 (14)C10—N4—C14—C130.63 (17)
N2—C5—C6—C7178.45 (10)C12—C13—C14—N6178.15 (14)
N1—C5—C6—C70.93 (15)C12—C13—C14—N41.64 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O4i0.900 (16)1.840 (16)2.7315 (10)170.9 (15)
O2—H1O2···O4i0.871 (17)1.957 (17)2.8260 (11)175.6 (15)
N1—H1N1···O50.933 (13)1.740 (13)2.6660 (11)171.4 (13)
N2—H1N2···O2ii0.882 (17)2.369 (17)3.2254 (13)163.7 (14)
N2—H1N2···O6ii0.882 (17)2.461 (17)3.0531 (13)125.0 (13)
N2—H2N2···O60.884 (14)2.048 (14)2.9306 (13)176.7 (12)
N3—H1N3···O50.908 (16)2.552 (16)3.2431 (12)133.4 (13)
N3—H1N3···O4iii0.908 (16)2.519 (17)3.1842 (13)130.5 (13)
N3—H2N3···O6iv0.860 (16)2.122 (16)2.9499 (12)161.3 (16)
N4—H1N4···O3v0.924 (17)1.810 (17)2.7294 (12)172.5 (15)
N5—H1N5···O1Wvi0.827 (19)2.114 (19)2.9265 (15)167.7 (15)
N5—H2N5···O1v0.888 (17)2.243 (17)3.0557 (14)152.0 (14)
N5—H2N5···O3v0.888 (17)2.503 (16)3.2154 (15)137.8 (13)
N6—H1N6···O1Wvii0.901 (17)2.127 (17)3.0131 (18)167.5 (14)
N6—H2N6···O10.87 (2)2.189 (19)2.9851 (15)152 (2)
O1W—H1W1···O3iii0.85 (2)2.37 (3)2.9371 (13)125 (2)
O1W—H1W1···O4iii0.85 (2)2.42 (2)3.1642 (13)146 (2)
O1W—H2W1···O50.89 (2)1.93 (2)2.8153 (13)175 (2)
C2—H2A···O3iii0.963 (11)2.490 (11)3.3232 (12)144.8 (9)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x, y, z+1; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C5H8N3+·C4H4O62·H2O
Mr386.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.4722 (2), 15.7270 (2), 7.8419 (1)
β (°) 96.916 (1)
V3)1771.86 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.44 × 0.33 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.950, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
55803, 8384, 5761
Rint0.029
(sin θ/λ)max1)0.829
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.04
No. of reflections8384
No. of parameters332
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O4i0.900 (16)1.840 (16)2.7315 (10)170.9 (15)
O2—H1O2···O4i0.871 (17)1.957 (17)2.8260 (11)175.6 (15)
N1—H1N1···O50.933 (13)1.740 (13)2.6660 (11)171.4 (13)
N2—H1N2···O2ii0.882 (17)2.369 (17)3.2254 (13)163.7 (14)
N2—H1N2···O6ii0.882 (17)2.461 (17)3.0531 (13)125.0 (13)
N2—H2N2···O60.884 (14)2.048 (14)2.9306 (13)176.7 (12)
N3—H1N3···O50.908 (16)2.552 (16)3.2431 (12)133.4 (13)
N3—H1N3···O4iii0.908 (16)2.519 (17)3.1842 (13)130.5 (13)
N3—H2N3···O6iv0.860 (16)2.122 (16)2.9499 (12)161.3 (16)
N4—H1N4···O3v0.924 (17)1.810 (17)2.7294 (12)172.5 (15)
N5—H1N5···O1Wvi0.827 (19)2.114 (19)2.9265 (15)167.7 (15)
N5—H2N5···O1v0.888 (17)2.243 (17)3.0557 (14)152.0 (14)
N5—H2N5···O3v0.888 (17)2.503 (16)3.2154 (15)137.8 (13)
N6—H1N6···O1Wvii0.901 (17)2.127 (17)3.0131 (18)167.5 (14)
N6—H2N6···O10.87 (2)2.189 (19)2.9851 (15)152 (2)
O1W—H1W1···O3iii0.85 (2)2.37 (3)2.9371 (13)125 (2)
O1W—H1W1···O4iii0.85 (2)2.42 (2)3.1642 (13)146 (2)
O1W—H2W1···O50.89 (2)1.93 (2)2.8153 (13)175 (2)
C2—H2A···O3iii0.963 (11)2.490 (11)3.3232 (12)144.8 (9)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x, y, z+1; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds