Download citation
Download citation
link to html
In the title solvated salt, (C10H10NO)[SnCl4(C9H6NO)]·CH3CN, the SnIV atom is chelated by the N,O-bidentate 8-hydroxy­quinolinate ligand and four chloride ions, generating a distorted SnONCl4 octa­hedral coordination geometry for the metal. In the crystal, the cations are linked to the anions and the solvent mol­ecules by O—H...O and N—H...N hydrogen bonds, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681000810X/hb5348sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681000810X/hb5348Isup2.hkl
Contains datablock I

CCDC reference: 774122

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.023
  • wR factor = 0.064
  • Data-to-parameter ratio = 19.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT919_ALERT_3_B Reflection(s) # Likely Affected by the Beamstop 1
Alert level C PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 2 PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT193_ALERT_1_C Cell and Diffraction Temperatures differ by .... 3 Deg PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C20 PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.849(10) ...... 3.00 su-Ra O2 -H2O 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Ra O2 -H2O 1.555 1.555
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C21 H19 Cl4 N3 O2 Sn1 Atom count from _chemical_formula_moiety: PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2 PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The 8-hydroxyquinoline anion furnishes a number of compounds with both inorganic tin(IV) and organotin(IV) systems; for example, the crystal structure of dichlorobis(quinolin-8-olato)tin has been known some time back (Archer et al., 1987). The presence of a methyl substituent in the 2-position introduces steric problems (Mohammadnezhad et al., 2010); this may affect the ability of the complexes to crystallize well so that fewer such complexes have been reported. The crystal structure of dichlorobis(2-methylquinolin-8-olato)tin has only recently been reported (Lo & Ng, 2009). On the other hand, mixed chelate complexes are difficult to synthesize as the compounds disproportionate into the symmetrical derivatives.

The reaction of tin(IV) chloride with 8-hydroxyquinoline and 2-methyl-8-hydroxyquinoline in acetonitrile yields instead the salt, 8-hydroxy-2-methylquinolinium tetrachloro(quinolin-8-olato)stannate as the acetonitrile solvate (Scheme I, Fig. 1). Owing to the steric bulk of the methyl group, the 2-methy-8-hydroxyquinoline component does not engage in binding to the tin atom but merely functions as a proton abstractor. In the salt, the tin atom is chelated by the 8-hydroxyquinolinato unit and it exists in an octahedral coordination geometry. The tin-chlorine bonds trans to the chelating atoms are significantly shorter than the other tin-chlorine bonds (Table 1). The cation is linked to the anion by an O–H···O hydrogen bond; the cation is linked to solvent molecule by an N–H···N hydrogen bond (Table 2). The stannate has been spectroscopically characterized in other salts (Cunningham et al., 1977; Douek et al., 1967; Frazer & Goffer, 1996; Frazer & Rimmer, 1968; Greenwood & Ruddick, 1967).

Related literature top

For the spectroscopic characterization of the tetrachlorido(quinolinato)stannate(IV) anion in other salts, see: Cunningham et al. (1977); Douek et al. (1967); Frazer & Goffer (1996); Frazer & Rimmer (1968); Greenwood & Ruddick (1967). For the structures of dichlorobis(quinolin-8-olato)tin and dichloridobis(2-methylquinolin-8-olato)tin, see: Archer et al. (1987); Lo & Ng (2009). For a related structure, see: Mohammadnezhad et al. (2010).

Experimental top

Stannic chloride pentahydrate(1 mmol, 0.35 g), 8-hydroxyquinoline (1 mmol, 0.15 g) and 2-methyl-8-hydroxyquinoline (1 mmol, 0.16 g) were placed in a convection tube; the tube was filled with acetonitrile and kept at 333 K. Yellow prisms of (I) were collected after a week.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The nitrogen- and oxygen-bound ones were located in a difference Fourier map, and were refined with distance restraints of N–H = O–H 0.86±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I): displacement ellipsoids are drawn at the 50% probability level and H atoms are of arbitrary radius.
8-Hydroxy-2-methylquinolinium tetrachlorido(quinolin-8-olato-κ2N,O)stannate(IV) acetonitrile monosolvate top
Crystal data top
(C10H10NO)[SnCl4(C9H6NO)]·C2H3NF(000) = 2400
Mr = 605.88Dx = 1.653 Mg m3
Monoclinic, C2/cMelting point: 408 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 29.1672 (14) ÅCell parameters from 9937 reflections
b = 10.9415 (5) Åθ = 2.3–28.3°
c = 15.4907 (8) ŵ = 1.51 mm1
β = 99.9411 (6)°T = 296 K
V = 4869.4 (4) Å3Prism, yellow
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
5594 independent reflections
Radiation source: fine-focus sealed tube4663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3737
Tmin = 0.583, Tmax = 0.752k = 1414
22804 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0319P)2 + 3.2971P]
where P = (Fo2 + 2Fc2)/3
5594 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.54 e Å3
Crystal data top
(C10H10NO)[SnCl4(C9H6NO)]·C2H3NV = 4869.4 (4) Å3
Mr = 605.88Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.1672 (14) ŵ = 1.51 mm1
b = 10.9415 (5) ÅT = 296 K
c = 15.4907 (8) Å0.40 × 0.30 × 0.20 mm
β = 99.9411 (6)°
Data collection top
Bruker SMART APEX
diffractometer
5594 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4663 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.752Rint = 0.027
22804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0232 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
5594 reflectionsΔρmin = 0.54 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.395979 (5)0.698425 (12)0.408891 (9)0.03485 (6)
Cl10.37060 (2)0.76784 (6)0.53800 (4)0.05477 (15)
Cl20.40349 (2)0.89500 (5)0.34322 (5)0.06272 (18)
Cl30.476603 (19)0.70536 (6)0.47849 (4)0.04984 (14)
Cl40.31714 (2)0.68113 (6)0.33007 (4)0.05257 (15)
O10.39266 (5)0.51704 (12)0.44682 (9)0.0390 (3)
O20.34376 (6)0.38174 (17)0.54651 (13)0.0573 (5)
H2O0.3527 (11)0.436 (2)0.5137 (19)0.092 (12)*
N10.41915 (6)0.60155 (16)0.29942 (11)0.0395 (4)
N20.29662 (7)0.20670 (18)0.61441 (12)0.0443 (4)
H2N0.3234 (5)0.197 (2)0.6006 (16)0.044 (7)*
N30.38826 (10)0.1151 (2)0.58312 (19)0.0753 (7)
C10.43162 (9)0.6467 (3)0.22790 (15)0.0533 (6)
H10.43060.73080.21910.064*
C20.44621 (9)0.5712 (3)0.16521 (16)0.0621 (7)
H20.45490.60500.11540.075*
C30.44759 (9)0.4489 (3)0.17715 (16)0.0614 (7)
H30.45710.39870.13510.074*
C40.43490 (8)0.3968 (2)0.25239 (15)0.0488 (6)
C50.43577 (10)0.2710 (3)0.2723 (2)0.0648 (8)
H50.44470.21490.23320.078*
C60.42365 (10)0.2317 (2)0.3480 (2)0.0618 (7)
H60.42480.14840.36030.074*
C70.40938 (8)0.31228 (19)0.40858 (17)0.0453 (5)
H70.40150.28210.46020.054*
C80.40704 (7)0.43536 (18)0.39199 (14)0.0358 (4)
C90.42052 (7)0.47834 (19)0.31345 (13)0.0364 (4)
C100.30128 (11)0.0040 (3)0.6638 (2)0.0714 (8)
H10A0.31280.02700.61170.107*
H10B0.28030.06570.67770.107*
H10C0.32690.00420.71160.107*
C110.27629 (9)0.1142 (2)0.64902 (15)0.0547 (6)
C120.23234 (10)0.1348 (3)0.67019 (19)0.0693 (8)
H120.21730.07190.69460.083*
C130.21137 (9)0.2439 (3)0.65597 (19)0.0687 (8)
H130.18210.25490.67070.082*
C140.23274 (8)0.3424 (3)0.61921 (15)0.0530 (6)
C150.21283 (10)0.4587 (3)0.6017 (2)0.0702 (8)
H150.18310.47460.61290.084*
C160.23708 (11)0.5477 (3)0.5685 (2)0.0718 (8)
H160.22400.62510.55880.086*
C170.28137 (10)0.5257 (3)0.54830 (18)0.0617 (7)
H170.29710.58790.52470.074*
C180.30146 (8)0.4131 (2)0.56320 (15)0.0456 (5)
C190.27715 (8)0.3204 (2)0.59882 (14)0.0431 (5)
C200.42250 (11)0.0664 (2)0.58977 (18)0.0582 (7)
C210.46668 (12)0.0043 (3)0.5990 (3)0.0996 (13)
H21A0.46390.06520.56060.149*
H21B0.47580.02240.65850.149*
H21C0.48980.05920.58400.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03691 (9)0.02715 (8)0.04003 (8)0.00082 (5)0.00535 (6)0.00091 (5)
Cl10.0529 (3)0.0571 (4)0.0555 (3)0.0079 (3)0.0127 (3)0.0166 (3)
Cl20.0668 (4)0.0322 (3)0.0873 (5)0.0024 (3)0.0084 (3)0.0155 (3)
Cl30.0356 (3)0.0614 (4)0.0513 (3)0.0017 (2)0.0039 (2)0.0024 (3)
Cl40.0404 (3)0.0569 (4)0.0562 (3)0.0032 (2)0.0035 (2)0.0031 (3)
O10.0508 (9)0.0289 (7)0.0405 (8)0.0029 (6)0.0172 (6)0.0023 (6)
O20.0440 (9)0.0543 (11)0.0803 (13)0.0083 (8)0.0295 (9)0.0185 (9)
N10.0414 (10)0.0411 (10)0.0362 (9)0.0020 (8)0.0074 (7)0.0025 (7)
N20.0389 (10)0.0557 (12)0.0395 (9)0.0072 (9)0.0099 (8)0.0046 (8)
N30.0781 (18)0.0534 (14)0.099 (2)0.0056 (13)0.0267 (15)0.0007 (13)
C10.0574 (15)0.0613 (16)0.0421 (12)0.0056 (12)0.0111 (11)0.0116 (11)
C20.0541 (15)0.099 (2)0.0353 (12)0.0032 (15)0.0130 (11)0.0036 (13)
C30.0488 (14)0.095 (2)0.0413 (13)0.0014 (14)0.0098 (11)0.0218 (14)
C40.0411 (12)0.0569 (15)0.0481 (13)0.0005 (11)0.0069 (10)0.0171 (11)
C50.0618 (17)0.0542 (16)0.0785 (19)0.0066 (13)0.0119 (14)0.0315 (14)
C60.0592 (16)0.0318 (12)0.093 (2)0.0027 (11)0.0107 (15)0.0111 (13)
C70.0413 (12)0.0335 (11)0.0608 (14)0.0005 (9)0.0079 (10)0.0024 (10)
C80.0314 (10)0.0326 (10)0.0429 (11)0.0017 (8)0.0049 (8)0.0023 (8)
C90.0305 (10)0.0399 (11)0.0382 (10)0.0002 (8)0.0038 (8)0.0053 (8)
C100.084 (2)0.0607 (18)0.0682 (18)0.0182 (16)0.0103 (15)0.0090 (14)
C110.0583 (15)0.0628 (16)0.0432 (12)0.0222 (13)0.0089 (11)0.0087 (11)
C120.0610 (17)0.087 (2)0.0643 (17)0.0347 (17)0.0225 (14)0.0148 (16)
C130.0393 (14)0.105 (2)0.0656 (17)0.0219 (16)0.0196 (12)0.0243 (17)
C140.0364 (12)0.0810 (18)0.0420 (12)0.0035 (12)0.0073 (10)0.0158 (12)
C150.0425 (14)0.103 (2)0.0658 (17)0.0164 (16)0.0119 (13)0.0178 (17)
C160.0644 (18)0.079 (2)0.0728 (19)0.0302 (16)0.0144 (15)0.0023 (16)
C170.0585 (16)0.0626 (17)0.0656 (17)0.0112 (13)0.0152 (13)0.0048 (13)
C180.0381 (11)0.0555 (14)0.0443 (12)0.0036 (10)0.0102 (9)0.0019 (10)
C190.0350 (11)0.0592 (14)0.0345 (10)0.0042 (10)0.0044 (9)0.0085 (9)
C200.0721 (19)0.0400 (13)0.0665 (17)0.0085 (13)0.0229 (14)0.0031 (12)
C210.068 (2)0.070 (2)0.167 (4)0.0003 (17)0.036 (2)0.001 (2)
Geometric parameters (Å, º) top
Sn1—N12.203 (2)C6—H60.9300
Sn1—O12.077 (1)C7—C81.371 (3)
Sn1—Cl12.3741 (6)C7—H70.9300
Sn1—Cl22.4055 (6)C8—C91.422 (3)
Sn1—Cl32.4130 (6)C10—C111.482 (4)
Sn1—Cl42.4176 (6)C10—H10A0.9600
O1—C81.349 (2)C10—H10B0.9600
O2—C181.348 (3)C10—H10C0.9600
O2—H2O0.849 (10)C11—C121.395 (4)
N1—C11.320 (3)C12—C131.341 (5)
N1—C91.365 (3)C12—H120.9300
N2—C111.332 (3)C13—C141.413 (4)
N2—C191.371 (3)C13—H130.9300
N2—H2N0.852 (10)C14—C191.406 (3)
N3—C201.121 (4)C14—C151.406 (4)
C1—C21.396 (4)C15—C161.356 (4)
C1—H10.9300C15—H150.9300
C2—C31.351 (4)C16—C171.401 (4)
C2—H20.9300C16—H160.9300
C3—C41.403 (4)C17—C181.367 (3)
C3—H30.9300C17—H170.9300
C4—C51.410 (4)C18—C191.404 (3)
C4—C91.415 (3)C20—C211.442 (4)
C5—C61.352 (4)C21—H21A0.9600
C5—H50.9300C21—H21B0.9600
C6—C71.402 (4)C21—H21C0.9600
O1—Sn1—N178.08 (6)O1—C8—C9118.80 (18)
O1—Sn1—Cl191.77 (4)C7—C8—C9118.2 (2)
N1—Sn1—Cl1169.83 (5)N1—C9—C4121.3 (2)
O1—Sn1—Cl2170.48 (4)N1—C9—C8117.27 (18)
N1—Sn1—Cl292.42 (5)C4—C9—C8121.4 (2)
Cl1—Sn1—Cl297.74 (3)C11—C10—H10A109.5
O1—Sn1—Cl389.60 (4)C11—C10—H10B109.5
N1—Sn1—Cl387.37 (5)H10A—C10—H10B109.5
Cl1—Sn1—Cl392.01 (2)C11—C10—H10C109.5
Cl2—Sn1—Cl390.45 (2)H10A—C10—H10C109.5
O1—Sn1—Cl488.93 (4)H10B—C10—H10C109.5
N1—Sn1—Cl488.00 (5)N2—C11—C12117.6 (3)
Cl1—Sn1—Cl492.45 (2)N2—C11—C10118.9 (2)
Cl2—Sn1—Cl490.26 (2)C12—C11—C10123.5 (3)
Cl3—Sn1—Cl4175.34 (2)C13—C12—C11121.1 (3)
C8—O1—Sn1114.85 (12)C13—C12—H12119.4
C18—O2—H2O109 (2)C11—C12—H12119.4
C1—N1—C9119.9 (2)C12—C13—C14121.6 (3)
C1—N1—Sn1129.17 (17)C12—C13—H13119.2
C9—N1—Sn1110.92 (13)C14—C13—H13119.2
C11—N2—C19124.1 (2)C19—C14—C15118.5 (3)
C11—N2—H2N119.6 (16)C19—C14—C13116.6 (3)
C19—N2—H2N116.3 (16)C15—C14—C13124.9 (3)
N1—C1—C2121.6 (3)C16—C15—C14119.9 (3)
N1—C1—H1119.2C16—C15—H15120.1
C2—C1—H1119.2C14—C15—H15120.1
C3—C2—C1119.8 (2)C15—C16—C17121.5 (3)
C3—C2—H2120.1C15—C16—H16119.2
C1—C2—H2120.1C17—C16—H16119.2
C2—C3—C4120.7 (2)C18—C17—C16120.1 (3)
C2—C3—H3119.7C18—C17—H17119.9
C4—C3—H3119.7C16—C17—H17119.9
C3—C4—C5125.5 (2)O2—C18—C17125.2 (2)
C3—C4—C9116.8 (2)O2—C18—C19115.6 (2)
C5—C4—C9117.7 (2)C17—C18—C19119.1 (2)
C6—C5—C4120.2 (2)N2—C19—C18120.2 (2)
C6—C5—H5119.9N2—C19—C14119.0 (2)
C4—C5—H5119.9C18—C19—C14120.8 (2)
C5—C6—C7122.2 (2)N3—C20—C21179.5 (4)
C5—C6—H6118.9C20—C21—H21A109.5
C7—C6—H6118.9C20—C21—H21B109.5
C8—C7—C6120.2 (2)H21A—C21—H21B109.5
C8—C7—H7119.9C20—C21—H21C109.5
C6—C7—H7119.9H21A—C21—H21C109.5
O1—C8—C7122.9 (2)H21B—C21—H21C109.5
N1—Sn1—O1—C82.45 (13)C3—C4—C9—N10.0 (3)
Cl1—Sn1—O1—C8176.95 (13)C5—C4—C9—N1179.4 (2)
Cl3—Sn1—O1—C884.95 (13)C3—C4—C9—C8179.8 (2)
Cl4—Sn1—O1—C890.63 (13)C5—C4—C9—C80.5 (3)
O1—Sn1—N1—C1179.6 (2)O1—C8—C9—N11.6 (3)
Cl1—Sn1—N1—C1177.0 (2)C7—C8—C9—N1178.21 (19)
Cl2—Sn1—N1—C10.1 (2)O1—C8—C9—C4178.54 (18)
Cl3—Sn1—N1—C190.3 (2)C7—C8—C9—C41.6 (3)
Cl4—Sn1—N1—C190.2 (2)C19—N2—C11—C120.3 (3)
O1—Sn1—N1—C91.57 (13)C19—N2—C11—C10179.2 (2)
Cl1—Sn1—N1—C91.8 (4)N2—C11—C12—C130.1 (4)
Cl2—Sn1—N1—C9178.93 (13)C10—C11—C12—C13179.6 (3)
Cl3—Sn1—N1—C988.58 (13)C11—C12—C13—C140.1 (4)
Cl4—Sn1—N1—C990.90 (13)C12—C13—C14—C190.3 (4)
C9—N1—C1—C20.2 (3)C12—C13—C14—C15179.4 (3)
Sn1—N1—C1—C2178.98 (17)C19—C14—C15—C162.0 (4)
N1—C1—C2—C30.2 (4)C13—C14—C15—C16178.2 (3)
C1—C2—C3—C40.6 (4)C14—C15—C16—C172.0 (5)
C2—C3—C4—C5178.9 (3)C15—C16—C17—C181.0 (5)
C2—C3—C4—C90.5 (4)C16—C17—C18—O2179.9 (3)
C3—C4—C5—C6178.6 (3)C16—C17—C18—C190.0 (4)
C9—C4—C5—C60.7 (4)C11—N2—C19—C18179.1 (2)
C4—C5—C6—C70.8 (4)C11—N2—C19—C140.8 (3)
C5—C6—C7—C80.4 (4)O2—C18—C19—N20.0 (3)
Sn1—O1—C8—C7176.79 (17)C17—C18—C19—N2179.9 (2)
Sn1—O1—C8—C93.1 (2)O2—C18—C19—C14179.8 (2)
C6—C7—C8—O1178.6 (2)C17—C18—C19—C140.1 (3)
C6—C7—C8—C91.6 (3)C15—C14—C19—N2179.1 (2)
C1—N1—C9—C40.3 (3)C13—C14—C19—N20.7 (3)
Sn1—N1—C9—C4179.30 (16)C15—C14—C19—C181.1 (3)
C1—N1—C9—C8179.5 (2)C13—C14—C19—C18179.1 (2)
Sn1—N1—C9—C80.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O10.85 (1)1.91 (2)2.715 (2)158 (3)
N2—H2n···N30.85 (1)2.15 (1)2.972 (3)162 (2)

Experimental details

Crystal data
Chemical formula(C10H10NO)[SnCl4(C9H6NO)]·C2H3N
Mr605.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)29.1672 (14), 10.9415 (5), 15.4907 (8)
β (°) 99.9411 (6)
V3)4869.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.583, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
22804, 5594, 4663
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.064, 1.02
No. of reflections5594
No. of parameters290
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Sn1—N12.203 (2)Sn1—Cl22.4055 (6)
Sn1—O12.077 (1)Sn1—Cl32.4130 (6)
Sn1—Cl12.3741 (6)Sn1—Cl42.4176 (6)
O1—Sn1—N178.08 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O10.85 (1)1.91 (2)2.715 (2)158 (3)
N2—H2n···N30.85 (1)2.15 (1)2.972 (3)162 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds