Download citation
Download citation
link to html
In the title salt, C6H9N2+·C7H4ClO2, the 2-amino-4-methyl­pyridinium cation is almost planar, with a maximum deviation of 0.010 (1) Å. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H...O hydrogen bonds, forming an R22(8) ring motif. The ion pairs are further connected via N—H...O and C—H...O hydrogen bonds, forming a two-dimensional network parallel to the bc plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681002444X/hb5503sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681002444X/hb5503Isup2.hkl
Contains datablock I

CCDC reference: 786738

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.029
  • wR factor = 0.117
  • Data-to-parameter ratio = 25.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT112_ALERT_2_B ADDSYM Detects Additional (Pseudo) Symm. Elem... X
Alert level C SHFSU01_ALERT_2_C Test not performed. _refine_ls_shift/su_max and _refine_ls_shift/esd_max not present. Absolute value of the parameter shift to su ratio given 0.001 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 6 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 18 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 6 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 7
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 32.49 From the CIF: _reflns_number_total 4207 Count of symmetry unique reflns 2376 Completeness (_total/calc) 177.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1831 Fraction of Friedel pairs measured 0.771 Are heavy atom types Z>Si present yes PLAT916_ALERT_2_G Hooft y and Flack x Parameter values differ by . 0.51 PLAT917_ALERT_2_G The FCF is likely NOT based on a BASF/TWIN Flack !
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, much attention has been devoted to the design and synthesis of supramolecular architectures assembled via various weak noncovalent interactions, such as hydrogen bonds, π···π stacking and C—H···π interactions (Remenar et al., 2003; Aakeroÿ et al., 2001; Sokolov et al., 2006). 2-Aminopyridine and its derivatives are used in the manufacture of pharmaceuticals, hair dyes and other dyes. They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-4-methyl pyridine (Kvick & Noordik, 1977) and 2-amino-4-methylpyridinium 4-aminobenzoate (Shen et al., 2008) have been reported. We have recently reported the crystal structures of 2-amino-4-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010a) and 2-Amino-4-methylpyridinium trifluoroacetate (Hemamalini & Fun, 2010b) from our laboratory. In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title salt has been undertaken.

The asymmetric unit of the title compound, (Fig 1), contains a protonated 2-amino-4-methylpyridinium cation and a 3-chlorobenzoate anion. The 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.010 (1) Å for atom C1. The protonated N1 atom has lead to a slight increase in the C1—N1—C5 angle to 121.66 (11)°, compared to the corresponding angle of 117.3 (1)° in neutral 2-amino-4-methylpyridine (Kvick & Noordik, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing, (Fig. 2), the protonated N atom and 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds leading to the formation of a R22(8) ring (Bernstein et al., 1995). Furthermore, these motifs are connected via N2—H2C···O2 and C5—H5A···O1 hydrogen bonds to form two-dimensional networks parallel to the bc-plane.

Related literature top

For details of non-covalent interactions, see: Remenar et al. (2003); Aakeroÿ et al. (2001); Sokolov et al. (2006). For related structures, see: Kvick & Noordik (1977); Shen et al. (2008); Hemamalini & Fun (2010a,b). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (54 mg, Aldrich) and 3-chlorobenzoic acid (78 mg, Merck) were mixed and warmed over a heating magnetic-stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group. 1860 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) 2D networks parallel to the bc-plane.
2-Amino-4-methylpyridinium 3-chlorobenzoate top
Crystal data top
C6H9N2+·C7H4ClO2F(000) = 276
Mr = 264.70Dx = 1.432 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6601 reflections
a = 7.9930 (6) Åθ = 3.9–35.1°
b = 6.8608 (5) ŵ = 0.31 mm1
c = 11.2148 (9) ÅT = 100 K
β = 93.526 (2)°Needle, colourless
V = 613.84 (8) Å30.28 × 0.17 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII DUO CCD
diffractometer
4207 independent reflections
Radiation source: fine-focus sealed tube4076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 32.5°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.919, Tmax = 0.971k = 1010
9325 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0801P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
4207 reflectionsΔρmax = 0.64 e Å3
164 parametersΔρmin = 0.54 e Å3
1 restraintAbsolute structure: Flack (1983), 1860 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Crystal data top
C6H9N2+·C7H4ClO2V = 613.84 (8) Å3
Mr = 264.70Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.9930 (6) ŵ = 0.31 mm1
b = 6.8608 (5) ÅT = 100 K
c = 11.2148 (9) Å0.28 × 0.17 × 0.10 mm
β = 93.526 (2)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
4207 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4076 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.971Rint = 0.019
9325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.64 e Å3
S = 1.22Δρmin = 0.54 e Å3
4207 reflectionsAbsolute structure: Flack (1983), 1860 Friedel pairs
164 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03584 (4)1.13218 (6)0.91629 (3)0.02460 (10)
O10.36548 (12)0.41445 (16)0.66474 (7)0.01744 (18)
O20.36855 (12)0.47553 (16)0.86099 (7)0.01876 (19)
C70.18473 (15)0.7570 (2)0.61091 (10)0.0158 (2)
H7A0.21310.67820.54780.019*
C80.09543 (15)0.9288 (2)0.58796 (11)0.0197 (2)
H8A0.06540.96480.50960.024*
C90.05103 (16)1.0466 (2)0.68188 (12)0.0195 (2)
H9A0.00781.16180.66710.023*
C100.09626 (15)0.9890 (2)0.79852 (10)0.0159 (2)
C110.18604 (14)0.8195 (2)0.82290 (10)0.0148 (2)
H11A0.21550.78380.90140.018*
C120.23182 (14)0.70259 (19)0.72825 (10)0.01258 (19)
C130.32902 (14)0.51628 (19)0.75345 (10)0.0131 (2)
N10.53373 (13)1.07928 (17)0.70756 (8)0.01350 (18)
H1A0.47861.18630.69790.016*
N20.53701 (13)1.1268 (3)0.91147 (8)0.0185 (2)
H2B0.48371.23440.89860.022*
H2C0.56381.09020.98350.022*
C10.57797 (14)1.01721 (19)0.82012 (10)0.0133 (2)
C20.66378 (14)0.8378 (2)0.83484 (10)0.0144 (2)
H2A0.69360.79190.91120.017*
C30.70348 (14)0.73057 (19)0.73661 (10)0.0141 (2)
C40.65921 (14)0.8046 (2)0.62099 (10)0.0152 (2)
H4A0.68780.73640.55350.018*
C50.57458 (14)0.9762 (2)0.60956 (9)0.0143 (2)
H5A0.54411.02390.53370.017*
C60.79035 (16)0.5371 (2)0.75110 (12)0.0195 (2)
H6A0.90160.54720.72390.029*
H6B0.72860.44040.70480.029*
H6C0.79640.50020.83380.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02597 (15)0.02386 (18)0.02371 (15)0.00755 (12)0.00058 (10)0.00950 (12)
O10.0271 (4)0.0139 (4)0.0114 (3)0.0054 (3)0.0016 (3)0.0014 (3)
O20.0299 (4)0.0157 (5)0.0104 (3)0.0044 (4)0.0002 (3)0.0000 (3)
C70.0166 (4)0.0184 (6)0.0123 (4)0.0012 (4)0.0013 (3)0.0016 (4)
C80.0203 (5)0.0227 (7)0.0160 (5)0.0047 (5)0.0006 (4)0.0050 (5)
C90.0189 (5)0.0184 (7)0.0213 (5)0.0041 (4)0.0007 (4)0.0019 (5)
C100.0147 (4)0.0158 (6)0.0173 (4)0.0005 (4)0.0016 (3)0.0023 (4)
C110.0159 (4)0.0148 (6)0.0135 (4)0.0000 (4)0.0007 (3)0.0009 (4)
C120.0131 (4)0.0126 (5)0.0121 (4)0.0009 (4)0.0013 (3)0.0007 (4)
C130.0175 (4)0.0108 (5)0.0109 (4)0.0016 (4)0.0013 (3)0.0000 (4)
N10.0177 (4)0.0123 (5)0.0106 (4)0.0005 (3)0.0009 (3)0.0017 (3)
N20.0292 (5)0.0162 (5)0.0100 (4)0.0049 (4)0.0009 (3)0.0003 (4)
C10.0164 (4)0.0130 (5)0.0104 (4)0.0015 (4)0.0017 (3)0.0018 (4)
C20.0175 (4)0.0135 (6)0.0123 (4)0.0005 (4)0.0012 (3)0.0027 (4)
C30.0138 (4)0.0133 (6)0.0152 (4)0.0010 (4)0.0016 (3)0.0007 (4)
C40.0161 (4)0.0164 (6)0.0130 (4)0.0008 (4)0.0012 (3)0.0014 (4)
C50.0169 (4)0.0161 (6)0.0099 (4)0.0021 (4)0.0012 (3)0.0001 (4)
C60.0199 (5)0.0158 (6)0.0228 (5)0.0032 (4)0.0024 (4)0.0010 (4)
Geometric parameters (Å, º) top
Cl1—C101.7383 (13)N1—H1A0.8600
O1—C131.2643 (14)N2—C11.3280 (18)
O2—C131.2593 (14)N2—H2B0.8600
C7—C81.3934 (19)N2—H2C0.8600
C7—C121.3972 (16)C1—C21.4138 (18)
C7—H7A0.9300C2—C31.3779 (16)
C8—C91.3909 (19)C2—H2A0.9300
C8—H8A0.9300C3—C41.4170 (16)
C9—C101.3927 (17)C3—C61.5019 (19)
C9—H9A0.9300C4—C51.3599 (18)
C10—C111.3849 (19)C4—H4A0.9300
C11—C121.3968 (17)C5—H5A0.9300
C11—H11A0.9300C6—H6A0.9600
C12—C131.5134 (18)C6—H6B0.9600
N1—C11.3582 (14)C6—H6C0.9600
N1—C51.3636 (15)
C8—C7—C12120.35 (12)C1—N2—H2B120.0
C8—C7—H7A119.8C1—N2—H2C120.0
C12—C7—H7A119.8H2B—N2—H2C120.0
C9—C8—C7120.21 (11)N2—C1—N1118.49 (12)
C9—C8—H8A119.9N2—C1—C2122.93 (11)
C7—C8—H8A119.9N1—C1—C2118.57 (11)
C8—C9—C10118.87 (12)C3—C2—C1120.36 (10)
C8—C9—H9A120.6C3—C2—H2A119.8
C10—C9—H9A120.6C1—C2—H2A119.8
C11—C10—C9121.68 (12)C2—C3—C4118.91 (11)
C11—C10—Cl1119.30 (9)C2—C3—C6120.86 (11)
C9—C10—Cl1119.01 (10)C4—C3—C6120.22 (11)
C10—C11—C12119.26 (11)C5—C4—C3119.42 (11)
C10—C11—H11A120.4C5—C4—H4A120.3
C12—C11—H11A120.4C3—C4—H4A120.3
C11—C12—C7119.63 (12)C4—C5—N1121.04 (11)
C11—C12—C13119.90 (10)C4—C5—H5A119.5
C7—C12—C13120.47 (11)N1—C5—H5A119.5
O2—C13—O1125.07 (12)C3—C6—H6A109.5
O2—C13—C12117.52 (10)C3—C6—H6B109.5
O1—C13—C12117.41 (10)H6A—C6—H6B109.5
C1—N1—C5121.66 (11)C3—C6—H6C109.5
C1—N1—H1A119.2H6A—C6—H6C109.5
C5—N1—H1A119.2H6B—C6—H6C109.5
C12—C7—C8—C90.62 (19)C11—C12—C13—O1179.10 (11)
C7—C8—C9—C100.5 (2)C7—C12—C13—O10.27 (16)
C8—C9—C10—C110.9 (2)C5—N1—C1—N2178.68 (11)
C8—C9—C10—Cl1178.18 (10)C5—N1—C1—C22.06 (17)
C9—C10—C11—C120.32 (18)N2—C1—C2—C3179.79 (12)
Cl1—C10—C11—C12178.81 (9)N1—C1—C2—C30.98 (17)
C10—C11—C12—C70.79 (17)C1—C2—C3—C40.97 (17)
C10—C11—C12—C13179.62 (10)C1—C2—C3—C6178.29 (10)
C8—C7—C12—C111.26 (18)C2—C3—C4—C51.91 (17)
C8—C7—C12—C13179.91 (11)C6—C3—C4—C5177.35 (11)
C11—C12—C13—O21.50 (17)C3—C4—C5—N10.90 (17)
C7—C12—C13—O2179.67 (11)C1—N1—C5—C41.13 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.832.6921 (16)175
N2—H2B···O2i0.861.932.786 (2)177
N2—H2C···O2ii0.861.962.8146 (14)173
C5—H5A···O1iii0.932.503.1707 (13)129
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+2; (iii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H4ClO2
Mr264.70
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)7.9930 (6), 6.8608 (5), 11.2148 (9)
β (°) 93.526 (2)
V3)613.84 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.28 × 0.17 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.919, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
9325, 4207, 4076
Rint0.019
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.117, 1.22
No. of reflections4207
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.54
Absolute structureFlack (1983), 1860 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.832.6921 (16)175
N2—H2B···O2i0.861.932.786 (2)177
N2—H2C···O2ii0.861.962.8146 (14)173
C5—H5A···O1iii0.932.503.1707 (13)129
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+2; (iii) x+1, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds