Download citation
Download citation
link to html
In the title compound, {[Zn(C5H6O4)(C14H8N4)(H2O)]·H2O}n, the Zn2+ ion is coordinated by an N,N′-bidentate pyrazino­[2,3-f][1,10]phenanthroline (pyphen) ligand, a water molecule and a monodentate glutarate (glu) dianion. A symmetry-generated O:O′-bidentate glu dianion completes a distorted cis-ZnN2O4 octa­hedral coordination geometry for the metal ion. The bridging glu species generates [110] polymeric chains in the crystal. O—H...O hydrogen bonds involving both the coordinated and uncoordinated water mol­ecules help to consolidate the structure and neighbouring pyphen units inter­act through numerous aromatic π–π inter­actions [minimum centroid–centroid separation = 3.654 (3) Å], resulting in a two-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810042340/hb5645sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810042340/hb5645Isup2.hkl
Contains datablock I

CCDC reference: 802958

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.040
  • wR factor = 0.100
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Zn1 -- O4_a .. 10.77 su
Alert level C CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. amaranth CRYSC01_ALERT_1_C No recognised colour has been given for crystal colour. PLAT355_ALERT_3_C Long O-H Bond (0.82A) O5 - H5B ... 1.01 Ang. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 11 PLAT194_ALERT_1_C Missing _cell_measurement_reflns_used datum .... ? PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 32
Alert level G PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Zn1 -- O3_a .. 10.59 su PLAT333_ALERT_2_G Check Large Av C6-Ring C-C Dist. C4 -C14 1.43 Ang. PLAT063_ALERT_4_G Crystal Size Likely too Large for Beam Size .... 0.78 mm PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 500 Deg. PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 79 ZN1 -C19 -C18 -C17 -133.60 1.60 1.665 1.555 1.555 1.555 PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 3 PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.11 Ratio PLAT804_ALERT_5_G ARU-Pack Problem in PLATON Analysis ............ 2 Times
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 8 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The 1,10-phenanthroline (phen) ligand and its derivatives are important ligands with numerous uses in the construction of metal-organic complexes.Supramolecular architectures baswd on the phen derivative pyrazino[2,3-f][1,10]phenanthroline(PyPhen) molecule have considerably less attention (Li et al.,2006) A s part of our ongoing studies in this area (Fang-Wei & Mei, 2007). We selected glutaric acid (C5H6O42-) to act as a metal-metal linker in its deprotonated form and L as a secondary ligand, generating the title compound, [Zn(C14H8N4)(C5H6O4)(H2O).H2O], a new coordinationg polymer, which is reported here. In compound (I), the ZnII atom of unit is surrounded by two N atoms derived from the bidentate PyPhen ligand, three O atoms from two glutaric acid dianions (one monodentate, one bidentate) and one water molecule (Figure 1, Table 1) a distorted octahedral cis-ZnN2O4arrangement is formed. Neighboring ZnII atoms are bridged by the centrosymmetric glutaric acid ligands forming a one-dimensional chain structure (Fig.2). In the crystal structure, adjacent chains are connected through π-π interactions between PyPhen and PyPhen ligands with a minimum centroid -centroid stacking distance of 3.372 Å. O—H···O hydrogen bonds involving the water molecules and carboxylate O atom acceptors (Table 2) complete the structure.

Related literature top

For the synthesis of the ligand, see: Dickeson & Summers (1970). For related structures, see: Fang-Wei & Mei (2007); Li et al. (2006).

Experimental top

The pyphen ligand was synthesized according to the literature method of Dickeson & Summers (1970). A mixture of ZnCl2 (0.3 mmol), pyphen (0.1 mmol) and glutaric acid (0.3 mmol) in distilled water (30 ml) was stirred thoroughly for 1 h at ambient temperature. The pH was adjusted to 7.5 with aqueous NaOH solution. The suspension was then sealed in a Teflon-lined stainless steel reaction vessel (40 ml). The reaction was performed under autogeneous pressure and static conditions in an oven at 443 K for 4.5 d. The vessel was then cooled slowly inside the oven to 298 K at a rate of 5 K h-1 before opening: amaranth (red) blocks of (I) were collected.

Refinement top

All H atoms on C atoms were generated geometrically and refined as riding atoms with C—H= 0.93Å and Uiso(H)= 1.2 times Ueq(C).

Structure description top

The 1,10-phenanthroline (phen) ligand and its derivatives are important ligands with numerous uses in the construction of metal-organic complexes.Supramolecular architectures baswd on the phen derivative pyrazino[2,3-f][1,10]phenanthroline(PyPhen) molecule have considerably less attention (Li et al.,2006) A s part of our ongoing studies in this area (Fang-Wei & Mei, 2007). We selected glutaric acid (C5H6O42-) to act as a metal-metal linker in its deprotonated form and L as a secondary ligand, generating the title compound, [Zn(C14H8N4)(C5H6O4)(H2O).H2O], a new coordinationg polymer, which is reported here. In compound (I), the ZnII atom of unit is surrounded by two N atoms derived from the bidentate PyPhen ligand, three O atoms from two glutaric acid dianions (one monodentate, one bidentate) and one water molecule (Figure 1, Table 1) a distorted octahedral cis-ZnN2O4arrangement is formed. Neighboring ZnII atoms are bridged by the centrosymmetric glutaric acid ligands forming a one-dimensional chain structure (Fig.2). In the crystal structure, adjacent chains are connected through π-π interactions between PyPhen and PyPhen ligands with a minimum centroid -centroid stacking distance of 3.372 Å. O—H···O hydrogen bonds involving the water molecules and carboxylate O atom acceptors (Table 2) complete the structure.

For the synthesis of the ligand, see: Dickeson & Summers (1970). For related structures, see: Fang-Wei & Mei (2007); Li et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. view of the local coordination of Zn(II) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the two-dimensional supramolecular structure of (I) generated by π-π interactions and hydrogen-bonding.
catena-Poly[[[aqua(pyrazino[2,3-f][1,10]phenanthroline- κ2N8,N9)zinc(II)]-µ-pentanedioato] monohydrate] top
Crystal data top
[Zn(C5H6O4)(C14H8N4)(H2O)]·H2OV = 932.5 (8) Å3
Mr = 463.74Z = 2
Triclinic, P1F(000) = 476
Hall symbol: -P 1Dx = 1.652 Mg m3
a = 6.397 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.384 (5) Åθ = 2.0–26.3°
c = 16.409 (8) ŵ = 1.37 mm1
α = 98.067 (5)°T = 292 K
β = 100.859 (5)°Block, amaranth
γ = 101.274 (5)°0.78 × 0.52 × 0.36 mm
Data collection top
Bruker SMART CCD
diffractometer
3702 independent reflections
Radiation source: fine-focus sealed tube2929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 0 pixels mm-1θmax = 26.1°, θmin = 2.3°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1111
Tmin = 0.432, Tmax = 0.611l = 2020
8019 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: constr
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
3702 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Zn(C5H6O4)(C14H8N4)(H2O)]·H2Oγ = 101.274 (5)°
Mr = 463.74V = 932.5 (8) Å3
Triclinic, P1Z = 2
a = 6.397 (3) ÅMo Kα radiation
b = 9.384 (5) ŵ = 1.37 mm1
c = 16.409 (8) ÅT = 292 K
α = 98.067 (5)°0.78 × 0.52 × 0.36 mm
β = 100.859 (5)°
Data collection top
Bruker SMART CCD
diffractometer
3702 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2929 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 0.611Rint = 0.062
8019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.86 e Å3
3702 reflectionsΔρmin = 0.59 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71632 (5)0.09770 (4)0.66833 (2)0.02738 (13)
O50.4196 (3)0.1252 (2)0.59395 (14)0.0354 (5)
H5A0.32600.04790.58470.053*
O31.5203 (3)0.8764 (2)0.69454 (14)0.0384 (5)
O41.6651 (3)0.8894 (2)0.58459 (13)0.0367 (5)
OW10.9119 (4)0.1180 (3)0.44343 (17)0.0424 (6)
N20.9708 (4)0.0659 (3)0.76912 (15)0.0270 (5)
N10.6579 (4)0.2190 (3)0.77760 (15)0.0271 (5)
N30.9142 (5)0.3624 (3)1.07957 (17)0.0425 (7)
C41.1058 (5)0.1251 (3)0.92035 (18)0.0290 (7)
N41.2336 (5)0.1937 (3)1.07170 (17)0.0410 (7)
C140.9630 (4)0.1335 (3)0.84604 (18)0.0249 (6)
C80.9326 (5)0.2869 (3)1.00470 (19)0.0325 (7)
C130.7948 (5)0.2178 (3)0.85096 (18)0.0259 (6)
C120.5054 (5)0.2965 (3)0.7799 (2)0.0340 (7)
H12A0.41080.29740.72950.041*
C90.7811 (5)0.2942 (3)0.92828 (19)0.0303 (7)
C51.0920 (5)0.2042 (3)1.00158 (18)0.0327 (7)
C161.1651 (5)0.4264 (3)0.59565 (19)0.0343 (7)
H16A1.07860.42840.54070.041*
H16B1.27420.37090.58650.041*
C191.5487 (5)0.8164 (3)0.6267 (2)0.0323 (7)
C151.0173 (5)0.3451 (3)0.6441 (2)0.0352 (7)
C100.6172 (5)0.3738 (3)0.9281 (2)0.0383 (8)
H10A0.60160.42490.97860.046*
C21.2673 (5)0.0301 (4)0.8352 (2)0.0376 (8)
H2A1.36820.08790.82940.045*
C171.2817 (6)0.5833 (3)0.6374 (2)0.0400 (8)
H17A1.35810.58320.69440.048*
H17B1.17380.64220.64140.048*
C31.2606 (5)0.0399 (3)0.9126 (2)0.0350 (7)
H3B1.35860.03140.96040.042*
C110.4807 (5)0.3765 (4)0.8541 (2)0.0408 (8)
H11A0.37330.43060.85320.049*
C181.4442 (5)0.6551 (3)0.5904 (2)0.0391 (8)
H18A1.55870.60080.59070.047*
H18B1.37010.64680.53210.047*
C11.1200 (5)0.0139 (3)0.7642 (2)0.0331 (7)
H1A1.12680.06100.71130.040*
C71.0537 (6)0.3505 (4)1.1468 (2)0.0487 (9)
H7A1.04750.39991.19920.058*
C61.2114 (6)0.2665 (4)1.1429 (2)0.0490 (10)
H6A1.30450.26211.19290.059*
O20.8998 (3)0.2189 (2)0.60661 (13)0.0366 (5)
O11.0269 (5)0.3952 (3)0.71797 (17)0.0684 (9)
HWBA0.923 (6)0.152 (4)0.492 (2)0.044 (12)*
H5B0.432 (6)0.129 (4)0.534 (2)0.068 (12)*
HWA11.048 (6)0.128 (4)0.446 (2)0.047 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0268 (2)0.0244 (2)0.0289 (2)0.00223 (14)0.00547 (14)0.00410 (14)
O50.0308 (12)0.0365 (13)0.0356 (13)0.0039 (10)0.0020 (10)0.0083 (10)
O30.0386 (13)0.0318 (12)0.0401 (13)0.0035 (10)0.0087 (11)0.0027 (10)
O40.0349 (12)0.0303 (12)0.0446 (13)0.0004 (10)0.0136 (11)0.0108 (10)
OW10.0350 (15)0.0536 (16)0.0338 (15)0.0065 (12)0.0050 (12)0.0011 (12)
N20.0261 (13)0.0256 (13)0.0289 (14)0.0040 (11)0.0091 (11)0.0031 (11)
N10.0236 (13)0.0245 (13)0.0328 (14)0.0042 (10)0.0061 (11)0.0065 (11)
N30.0527 (18)0.0371 (16)0.0354 (16)0.0053 (14)0.0122 (14)0.0025 (13)
C40.0263 (16)0.0296 (16)0.0292 (16)0.0021 (13)0.0052 (13)0.0058 (13)
N40.0421 (17)0.0427 (17)0.0339 (16)0.0041 (13)0.0016 (13)0.0101 (13)
C140.0228 (15)0.0236 (15)0.0274 (15)0.0014 (12)0.0060 (12)0.0059 (12)
C80.0378 (18)0.0279 (16)0.0291 (17)0.0018 (14)0.0090 (14)0.0025 (14)
C130.0260 (15)0.0217 (15)0.0292 (16)0.0019 (12)0.0072 (13)0.0053 (13)
C120.0324 (17)0.0325 (17)0.0392 (18)0.0091 (14)0.0075 (14)0.0119 (15)
C90.0323 (17)0.0264 (16)0.0324 (17)0.0042 (13)0.0108 (14)0.0044 (13)
C50.0352 (18)0.0326 (17)0.0276 (16)0.0006 (14)0.0060 (14)0.0078 (14)
C160.0361 (18)0.0279 (16)0.0365 (18)0.0015 (14)0.0083 (14)0.0057 (14)
C190.0267 (16)0.0268 (16)0.0419 (19)0.0029 (13)0.0059 (14)0.0084 (15)
C150.0403 (19)0.0304 (18)0.0350 (19)0.0052 (15)0.0127 (15)0.0048 (15)
C100.0413 (19)0.0342 (18)0.0414 (19)0.0124 (15)0.0142 (16)0.0013 (15)
C20.0313 (17)0.0433 (19)0.046 (2)0.0154 (15)0.0149 (15)0.0145 (16)
C170.049 (2)0.0263 (17)0.0423 (19)0.0011 (15)0.0166 (17)0.0046 (15)
C30.0296 (17)0.0410 (19)0.0364 (18)0.0103 (15)0.0042 (14)0.0142 (15)
C110.0358 (19)0.0358 (19)0.054 (2)0.0137 (16)0.0122 (17)0.0087 (17)
C180.0419 (19)0.0254 (17)0.047 (2)0.0010 (15)0.0146 (16)0.0032 (15)
C10.0315 (17)0.0321 (17)0.0377 (18)0.0086 (14)0.0129 (14)0.0045 (14)
C70.066 (3)0.044 (2)0.0270 (18)0.0023 (19)0.0057 (18)0.0015 (16)
C60.060 (2)0.047 (2)0.0292 (19)0.0039 (19)0.0007 (17)0.0064 (17)
O20.0386 (13)0.0284 (12)0.0351 (12)0.0076 (10)0.0089 (10)0.0017 (10)
O10.087 (2)0.0472 (16)0.0611 (18)0.0163 (15)0.0381 (17)0.0080 (14)
Geometric parameters (Å, º) top
Zn1—O21.987 (2)C13—C91.394 (4)
Zn1—N12.120 (3)C12—C111.390 (4)
Zn1—O52.137 (2)C12—H12A0.9300
Zn1—O4i2.154 (2)C9—C101.401 (4)
Zn1—N22.188 (2)C16—C151.510 (4)
Zn1—O3i2.347 (2)C16—C171.513 (4)
Zn1—C19i2.588 (3)C16—H16A0.9700
O5—H5A0.8200C16—H16B0.9700
O5—H5B1.00 (4)C19—C181.514 (4)
O3—C191.237 (4)C19—Zn1ii2.588 (3)
O3—Zn1ii2.347 (2)C15—O11.223 (4)
O4—C191.276 (4)C15—O21.272 (4)
O4—Zn1ii2.154 (2)C10—C111.363 (4)
OW1—HWBA0.79 (4)C10—H10A0.9300
OW1—HWA10.85 (4)C2—C31.358 (4)
N2—C11.330 (4)C2—C11.400 (4)
N2—C141.345 (4)C2—H2A0.9300
N1—C121.329 (4)C17—C181.518 (4)
N1—C131.351 (4)C17—H17A0.9700
N3—C71.314 (4)C17—H17B0.9700
N3—C81.367 (4)C3—H3B0.9300
C4—C141.401 (4)C11—H11A0.9300
C4—C31.401 (4)C18—H18A0.9700
C4—C51.459 (4)C18—H18B0.9700
N4—C61.314 (4)C1—H1A0.9300
N4—C51.352 (4)C7—C61.401 (5)
C14—C131.463 (4)C7—H7A0.9300
C8—C51.401 (4)C6—H6A0.9300
C8—C91.452 (4)
O2—Zn1—N1114.24 (9)C15—C16—C17115.5 (3)
O2—Zn1—O592.64 (9)C15—C16—H16A108.4
N1—Zn1—O590.76 (9)C17—C16—H16A108.4
O2—Zn1—O4i96.87 (9)C15—C16—H16B108.4
N1—Zn1—O4i148.89 (9)C17—C16—H16B108.4
O5—Zn1—O4i87.08 (8)H16A—C16—H16B107.5
O2—Zn1—N2100.06 (10)O3—C19—O4120.8 (3)
N1—Zn1—N277.41 (9)O3—C19—C18121.2 (3)
O5—Zn1—N2165.34 (9)O4—C19—C18118.0 (3)
O4i—Zn1—N298.53 (9)O3—C19—Zn1ii64.86 (16)
O2—Zn1—O3i154.65 (8)O4—C19—Zn1ii56.11 (15)
N1—Zn1—O3i91.04 (9)C18—C19—Zn1ii172.5 (2)
O5—Zn1—O3i88.79 (9)O1—C15—O2122.9 (3)
O4i—Zn1—O3i57.90 (8)O1—C15—C16120.1 (3)
N2—Zn1—O3i82.87 (9)O2—C15—C16116.8 (3)
Zn1—O5—H5A109.5C11—C10—C9120.1 (3)
Zn1—O5—H5B111 (2)C11—C10—H10A120.0
H5A—O5—H5B98.4C9—C10—H10A120.0
C19—O3—Zn1ii86.64 (18)C3—C2—C1119.0 (3)
C19—O4—Zn1ii94.44 (19)C3—C2—H2A120.5
HWBA—OW1—HWA196 (3)C1—C2—H2A120.5
C1—N2—C14117.9 (3)C16—C17—C18113.3 (3)
C1—N2—Zn1129.1 (2)C16—C17—H17A108.9
C14—N2—Zn1112.93 (18)C18—C17—H17A108.9
C12—N1—C13118.3 (3)C16—C17—H17B108.9
C12—N1—Zn1126.4 (2)C18—C17—H17B108.9
C13—N1—Zn1115.27 (18)H17A—C17—H17B107.7
C7—N3—C8115.4 (3)C2—C3—C4119.8 (3)
C14—C4—C3117.3 (3)C2—C3—H3B120.1
C14—C4—C5120.3 (3)C4—C3—H3B120.1
C3—C4—C5122.4 (3)C10—C11—C12118.6 (3)
C6—N4—C5115.4 (3)C10—C11—H11A120.7
N2—C14—C4123.1 (3)C12—C11—H11A120.7
N2—C14—C13117.5 (2)C19—C18—C17114.4 (3)
C4—C14—C13119.4 (3)C19—C18—H18A108.7
N3—C8—C5121.1 (3)C17—C18—H18A108.7
N3—C8—C9118.0 (3)C19—C18—H18B108.7
C5—C8—C9120.8 (3)C17—C18—H18B108.7
N1—C13—C9122.5 (3)H18A—C18—H18B107.6
N1—C13—C14116.9 (2)N2—C1—C2122.9 (3)
C9—C13—C14120.6 (3)N2—C1—H1A118.6
N1—C12—C11123.0 (3)C2—C1—H1A118.6
N1—C12—H12A118.5N3—C7—C6122.9 (3)
C11—C12—H12A118.5N3—C7—H7A118.6
C13—C9—C10117.5 (3)C6—C7—H7A118.6
C13—C9—C8119.4 (3)N4—C6—C7122.9 (3)
C10—C9—C8123.1 (3)N4—C6—H6A118.5
N4—C5—C8122.2 (3)C7—C6—H6A118.5
N4—C5—C4118.4 (3)C15—O2—Zn1119.5 (2)
C8—C5—C4119.4 (3)
O2—Zn1—N2—C169.5 (3)C14—C13—C9—C81.3 (4)
N1—Zn1—N2—C1177.7 (3)N3—C8—C9—C13179.6 (3)
O5—Zn1—N2—C1140.8 (3)C5—C8—C9—C130.0 (4)
O4i—Zn1—N2—C129.1 (3)N3—C8—C9—C100.4 (5)
O3i—Zn1—N2—C185.0 (3)C5—C8—C9—C10179.2 (3)
C19i—Zn1—N2—C157.9 (3)C6—N4—C5—C80.0 (5)
O2—Zn1—N2—C14113.54 (19)C6—N4—C5—C4179.4 (3)
N1—Zn1—N2—C140.73 (18)N3—C8—C5—N40.5 (5)
O5—Zn1—N2—C1436.1 (4)C9—C8—C5—N4179.1 (3)
O4i—Zn1—N2—C14147.87 (19)N3—C8—C5—C4179.9 (3)
O3i—Zn1—N2—C1491.94 (19)C9—C8—C5—C40.2 (4)
C19i—Zn1—N2—C14119.0 (2)C14—C4—C5—N4179.7 (3)
O2—Zn1—N1—C1282.8 (3)C3—C4—C5—N40.4 (5)
O5—Zn1—N1—C1210.4 (2)C14—C4—C5—C80.9 (4)
O4i—Zn1—N1—C1296.0 (3)C3—C4—C5—C8179.8 (3)
N2—Zn1—N1—C12178.3 (3)Zn1ii—O3—C19—O44.3 (3)
O3i—Zn1—N1—C1299.2 (2)Zn1ii—O3—C19—C18174.8 (3)
C19i—Zn1—N1—C1296.7 (3)Zn1ii—O4—C19—O34.7 (3)
O2—Zn1—N1—C1395.7 (2)Zn1ii—O4—C19—C18174.5 (2)
O5—Zn1—N1—C13171.1 (2)C17—C16—C15—O113.0 (5)
O4i—Zn1—N1—C1385.5 (3)C17—C16—C15—O2172.8 (3)
N2—Zn1—N1—C130.17 (19)C13—C9—C10—C111.0 (5)
O3i—Zn1—N1—C1382.3 (2)C8—C9—C10—C11179.8 (3)
C19i—Zn1—N1—C1384.8 (2)C15—C16—C17—C18174.5 (3)
C1—N2—C14—C40.8 (4)C1—C2—C3—C40.8 (5)
Zn1—N2—C14—C4178.2 (2)C14—C4—C3—C20.0 (5)
C1—N2—C14—C13178.5 (2)C5—C4—C3—C2179.3 (3)
Zn1—N2—C14—C131.2 (3)C9—C10—C11—C121.3 (5)
C3—C4—C14—N20.9 (4)N1—C12—C11—C100.8 (5)
C5—C4—C14—N2178.4 (3)O3—C19—C18—C178.1 (4)
C3—C4—C14—C13178.4 (3)O4—C19—C18—C17171.1 (3)
C5—C4—C14—C132.2 (4)Zn1ii—C19—C18—C17133.6 (16)
C7—N3—C8—C50.4 (5)C16—C17—C18—C19175.0 (3)
C7—N3—C8—C9179.2 (3)C14—N2—C1—C20.1 (4)
C12—N1—C13—C90.2 (4)Zn1—N2—C1—C2176.8 (2)
Zn1—N1—C13—C9178.8 (2)C3—C2—C1—N20.9 (5)
C12—N1—C13—C14179.0 (2)C8—N3—C7—C60.0 (5)
Zn1—N1—C13—C140.4 (3)C5—N4—C6—C70.4 (5)
N2—C14—C13—N11.1 (4)N3—C7—C6—N40.5 (6)
C4—C14—C13—N1178.3 (3)O1—C15—O2—Zn11.6 (5)
N2—C14—C13—C9178.1 (3)C16—C15—O2—Zn1175.6 (2)
C4—C14—C13—C92.5 (4)N1—Zn1—O2—C1518.7 (3)
C13—N1—C12—C110.1 (4)O5—Zn1—O2—C15110.7 (2)
Zn1—N1—C12—C11178.3 (2)O4i—Zn1—O2—C15161.9 (2)
N1—C13—C9—C100.2 (4)N2—Zn1—O2—C1561.9 (2)
C14—C13—C9—C10179.4 (3)O3i—Zn1—O2—C15156.5 (2)
N1—C13—C9—C8179.5 (3)C19i—Zn1—O2—C15161.8 (2)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···OW1iii0.821.892.702 (3)173
O5—H5B···O4iv1.00 (4)1.91 (4)2.856 (3)157 (3)
OW1—HWA1···O4v0.85 (4)2.03 (4)2.840 (4)161 (3)
OW1—HWBA···O20.79 (4)1.95 (4)2.733 (4)170 (4)
Symmetry codes: (iii) x+1, y, z+1; (iv) x+2, y+1, z+1; (v) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C5H6O4)(C14H8N4)(H2O)]·H2O
Mr463.74
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)6.397 (3), 9.384 (5), 16.409 (8)
α, β, γ (°)98.067 (5), 100.859 (5), 101.274 (5)
V3)932.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.78 × 0.52 × 0.36
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.432, 0.611
No. of measured, independent and
observed [I > 2σ(I)] reflections
8019, 3702, 2929
Rint0.062
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 0.98
No. of reflections3702
No. of parameters283
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.59

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O21.987 (2)Zn1—O4i2.154 (2)
Zn1—N12.120 (3)Zn1—N22.188 (2)
Zn1—O52.137 (2)Zn1—O3i2.347 (2)
Symmetry code: (i) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···OW1ii0.821.892.702 (3)173
O5—H5B···O4iii1.00 (4)1.91 (4)2.856 (3)157 (3)
OW1—HWA1···O4iv0.85 (4)2.03 (4)2.840 (4)161 (3)
OW1—HWBA···O20.79 (4)1.95 (4)2.733 (4)170 (4)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y+1, z+1; (iv) x+3, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds