Download citation
Download citation
link to html
The complete mol­ecule of the title compound, [Cd(C6H12NOS2)2(C12H10N4)2], is generated by crystallographic inversion symmetry. The distorted octa­hedral trans-N2S4 donor set for the Cd2+ ion is defined by two symmetrically S,S′-chelating dithio­carbamate anions and two pyridine N atoms derived from two monodentate 4-pyridine­aldazine (or 4-{[(pyridin-4-yl­methyl­idene)hydrazinyl­idene}meth­yl]pyridine) mol­ecules [dihedral angle between the aromatic rings = 17.33 (8)°]. In the crystal, mol­ecules are connected into a supra­molecular chain via O—H...N hydrogen bonds involving the 4-pyridine­aldazine N atoms not involved in coordination to cadmium. Weak C—H...O and C—H...N links consolidate the packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811004508/hb5795sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811004508/hb5795Isup2.hkl
Contains datablock I

CCDC reference: 815444

Key indicators

  • Single-crystal X-ray study
  • T = 98 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.025
  • wR factor = 0.062
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level C SHFSU01_ALERT_2_C Test not performed. _refine_ls_shift/su_max and _refine_ls_shift/esd_max not present. Absolute value of the parameter shift to su ratio given 0.001 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 2 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 13 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 1 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 7
Alert level G PLAT432_ALERT_2_G Short Inter X...Y Contact S1 .. C12 .. 3.20 Ang. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 S1 -CD -S1 -C1 10.00 0.00 2.666 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 10 S2 -CD -S2 -C1 3.00 0.00 2.666 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 N2 -CD -N2 -C11 15.00 0.00 2.666 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 16 N2 -CD -N2 -C7 4.00 0.00 2.666 1.555 1.555 1.555 PLAT794_ALERT_5_G Note: Tentative Bond Valency for Cd ....... 1.99
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Interest in the title compound, (I), relates to controlling supramolecular aggregation patterns in the zinc-triad 1,1-thiolates (Tiekink, 2003; Chen et al., 2006). With functionalized dithiocarbamate ligands carrying hydrogen bonding potential, smaller aggregates can be linked into 2-D and 3-D architectures (Benson et al., 2007; Song & Tiekink, 2009). In (I), the cadmium atom is located on a centre of inversion and is chelated by symmetrically coordinating dithiocarbamate ligands, Table 1 and Fig. 1. The octahedral N2S4 donor set is completed by two pyridine-N atoms derived from two monodentate 4-pyridinealdazine ligands.

The monomeric molecules are connected into a supramolecular chain via O–H···N hydrogen bonds, Table 2, that lead to the formation of 40-membered [CdSCNC2OH···NC4N2C4N]2 synthons, Fig. 2. These chains are linked into layers via C–H···O interactions, Table 1, which that stack along [1 0 1]; consolidation of these layers into a 3-D array is afforded by C—H···Nazo contacts, Table 2 and Fig. 3.

Related literature top

For background to supramolecular coordination polymers of zinc-triad 1,1-dithiolates, see: Tiekink (2003). For the use of steric effects to control supramolecular aggregation patterns, see: Chen et al. (2006). For structural studies on hydroxyl-substituted dithiocarbamate ligands, see Benson et al. (2007); Song & Tiekink (2009).

Experimental top

Compound (I) was prepared following the standard literature procedure (Song & Tiekink, 2009) from the reaction of Cd[S2CN(CH2CH2OH)(nPr)]2 and 4-[(1E)-[(E)-2-(pyridin-4-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine (Sigma Aldrich). Yellow plates of (I) were obtained from the slow evaporation of a chloroform/acetonitrile (3/1) solution.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O-bound H-atom was located in a difference Fourier map and refined with an O–H restraint of 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O). The reflection (8 1 2) was removed from the final refinement owing to poor agreement.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: PATTY in DIRDIF (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 70% probability level. The Cd atom is located on a centre of inversion and i = 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Supramolecular chain in (I) mediated by O–H···N (orange dashed lines) hydrogen bonds. Colour code: Cd, orange; S, yellow; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. Unit-cell contents in (I) viewed in projection down the a axis.
Bis[N-(2-hydroxyethyl)-N-propyldithiocarbamato- κ2S,S']bis(4-{[(pyridin-4- ylmethylidene)hydrazinylidene]methyl}pyridine-κN1)cadmium top
Crystal data top
[Cd(C6H12NOS2)2(C12H10N4)2]Z = 1
Mr = 889.45F(000) = 458
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.532 (3) ÅCell parameters from 3485 reflections
b = 10.951 (4) Åθ = 2.4–30.3°
c = 11.184 (5) ŵ = 0.80 mm1
α = 79.59 (3)°T = 98 K
β = 88.06 (3)°Plate, yellow
γ = 78.23 (2)°0.25 × 0.16 × 0.04 mm
V = 1006.2 (7) Å3
Data collection top
Rigaku AFC12K/SATURN724 CCD
diffractometer
4150 independent reflections
Radiation source: fine-focus sealed tube4009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.719, Tmax = 1k = 1312
10677 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.6008P]
where P = (Fo2 + 2Fc2)/3
4150 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.40 e Å3
Crystal data top
[Cd(C6H12NOS2)2(C12H10N4)2]γ = 78.23 (2)°
Mr = 889.45V = 1006.2 (7) Å3
Triclinic, P1Z = 1
a = 8.532 (3) ÅMo Kα radiation
b = 10.951 (4) ŵ = 0.80 mm1
c = 11.184 (5) ÅT = 98 K
α = 79.59 (3)°0.25 × 0.16 × 0.04 mm
β = 88.06 (3)°
Data collection top
Rigaku AFC12K/SATURN724 CCD
diffractometer
4150 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4009 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 1Rint = 0.023
10677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 e Å3
4150 reflectionsΔρmin = 0.40 e Å3
245 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.50000.50000.50000.01706 (6)
S10.67567 (5)0.26992 (4)0.55937 (3)0.01562 (9)
S20.48740 (5)0.36286 (4)0.32801 (4)0.01587 (9)
O10.88422 (15)0.05660 (12)0.17754 (11)0.0223 (3)
H1o0.954 (2)0.094 (2)0.1432 (19)0.033*
N10.67484 (15)0.13324 (12)0.38469 (11)0.0120 (3)
N20.26143 (17)0.42763 (14)0.61140 (13)0.0192 (3)
N30.25800 (17)0.36129 (14)0.82625 (13)0.0194 (3)
N40.37162 (17)0.28924 (14)0.87834 (12)0.0191 (3)
N50.88990 (18)0.19365 (15)1.06431 (14)0.0245 (3)
C10.61822 (18)0.24449 (15)0.41986 (14)0.0135 (3)
C20.62455 (19)0.10536 (15)0.26935 (14)0.0156 (3)
H2A0.51390.15260.25010.019*
H2B0.62390.01380.27960.019*
C30.7325 (2)0.14035 (16)0.16368 (15)0.0196 (3)
H3A0.68240.13560.08660.024*
H3B0.74650.22850.16010.024*
C40.79259 (19)0.03218 (15)0.45840 (14)0.0150 (3)
H4A0.86040.07170.50370.018*
H4B0.86300.01580.40330.018*
C50.7154 (2)0.05962 (16)0.54826 (15)0.0185 (3)
H5A0.64210.09570.50430.022*
H5B0.65170.01370.60800.022*
C60.8430 (2)0.16666 (17)0.61485 (17)0.0239 (4)
H6A0.79110.22540.67150.036*
H6B0.91370.13110.66020.036*
H6C0.90590.21210.55570.036*
C70.1257 (2)0.50814 (17)0.63223 (18)0.0254 (4)
H70.11970.59630.60490.031*
C80.0057 (2)0.46933 (17)0.69130 (17)0.0238 (4)
H80.09890.52970.70410.029*
C90.0008 (2)0.34018 (16)0.73174 (14)0.0169 (3)
C100.1403 (2)0.25663 (16)0.70970 (16)0.0203 (3)
H100.14930.16790.73520.024*
C110.2661 (2)0.30418 (16)0.65018 (16)0.0205 (3)
H110.36080.24580.63620.025*
C120.1326 (2)0.28869 (16)0.79403 (14)0.0177 (3)
H120.12550.19950.81070.021*
C130.5012 (2)0.35972 (17)0.90688 (15)0.0200 (3)
H130.51190.44920.89290.024*
C140.6338 (2)0.30118 (17)0.96168 (14)0.0188 (3)
C150.7640 (2)0.37321 (18)1.01209 (17)0.0248 (4)
H150.76810.46041.01270.030*
C160.8877 (2)0.31554 (19)1.06143 (17)0.0269 (4)
H160.97620.36591.09520.032*
C170.7628 (2)0.12403 (18)1.01712 (16)0.0247 (4)
H170.76120.03671.01920.030*
C180.6341 (2)0.17338 (18)0.96559 (16)0.0228 (4)
H180.54680.12060.93320.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01757 (10)0.01303 (10)0.02083 (10)0.00255 (7)0.00354 (7)0.00493 (7)
S10.0170 (2)0.01481 (19)0.01487 (19)0.00153 (15)0.00065 (15)0.00389 (15)
S20.0170 (2)0.01234 (19)0.0169 (2)0.00014 (15)0.00203 (15)0.00179 (15)
O10.0183 (6)0.0224 (6)0.0251 (6)0.0043 (5)0.0080 (5)0.0026 (5)
N10.0114 (6)0.0119 (6)0.0122 (6)0.0014 (5)0.0004 (5)0.0016 (5)
N20.0185 (7)0.0181 (7)0.0218 (7)0.0050 (6)0.0034 (6)0.0048 (6)
N30.0178 (7)0.0218 (7)0.0184 (7)0.0064 (6)0.0024 (5)0.0007 (6)
N40.0188 (7)0.0228 (7)0.0161 (7)0.0080 (6)0.0024 (5)0.0003 (6)
N50.0222 (8)0.0305 (9)0.0219 (8)0.0094 (7)0.0047 (6)0.0035 (6)
C10.0114 (7)0.0144 (8)0.0147 (7)0.0042 (6)0.0032 (6)0.0014 (6)
C20.0165 (8)0.0145 (8)0.0158 (8)0.0018 (6)0.0002 (6)0.0037 (6)
C30.0222 (9)0.0195 (8)0.0156 (8)0.0012 (7)0.0027 (6)0.0030 (6)
C40.0127 (7)0.0138 (8)0.0169 (8)0.0004 (6)0.0007 (6)0.0020 (6)
C50.0167 (8)0.0168 (8)0.0210 (8)0.0043 (7)0.0009 (6)0.0003 (6)
C60.0224 (9)0.0202 (9)0.0266 (9)0.0051 (7)0.0034 (7)0.0044 (7)
C70.0230 (9)0.0162 (8)0.0348 (10)0.0033 (7)0.0087 (8)0.0008 (7)
C80.0174 (9)0.0198 (9)0.0320 (10)0.0012 (7)0.0055 (7)0.0023 (7)
C90.0168 (8)0.0207 (8)0.0146 (8)0.0062 (7)0.0003 (6)0.0039 (6)
C100.0217 (9)0.0158 (8)0.0245 (9)0.0048 (7)0.0021 (7)0.0055 (7)
C110.0193 (8)0.0175 (8)0.0259 (9)0.0031 (7)0.0036 (7)0.0083 (7)
C120.0181 (8)0.0198 (8)0.0153 (8)0.0055 (7)0.0024 (6)0.0015 (6)
C130.0198 (9)0.0213 (9)0.0178 (8)0.0049 (7)0.0006 (6)0.0003 (7)
C140.0171 (8)0.0241 (9)0.0146 (8)0.0054 (7)0.0000 (6)0.0003 (6)
C150.0238 (9)0.0215 (9)0.0283 (9)0.0043 (7)0.0040 (7)0.0039 (7)
C160.0206 (9)0.0304 (10)0.0290 (10)0.0037 (8)0.0076 (7)0.0062 (8)
C170.0255 (9)0.0246 (9)0.0260 (9)0.0096 (8)0.0052 (7)0.0056 (7)
C180.0216 (9)0.0248 (9)0.0229 (9)0.0054 (7)0.0045 (7)0.0067 (7)
Geometric parameters (Å, º) top
Cd—S12.6379 (10)C4—H4B0.9900
Cd—S22.6626 (10)C5—C61.527 (2)
Cd—N22.5403 (17)C5—H5A0.9900
Cd—S1i2.6379 (10)C5—H5B0.9900
Cd—S2i2.6626 (10)C6—H6A0.9800
Cd—N2i2.5403 (17)C6—H6B0.9800
S1—C11.7369 (17)C6—H6C0.9800
S2—C11.7286 (18)C7—C81.385 (2)
O1—C31.421 (2)C7—H70.9500
O1—H1o0.835 (10)C8—C91.395 (2)
N1—C11.339 (2)C8—H80.9500
N1—C21.475 (2)C9—C101.390 (2)
N1—C41.479 (2)C9—C121.471 (2)
N2—C111.336 (2)C10—C111.386 (2)
N2—C71.347 (2)C10—H100.9500
N3—C121.280 (2)C11—H110.9500
N3—N41.418 (2)C12—H120.9500
N4—C131.279 (2)C13—C141.475 (2)
N5—C161.333 (3)C13—H130.9500
N5—C171.344 (2)C14—C151.391 (2)
C2—C31.516 (2)C14—C181.393 (3)
C2—H2A0.9900C15—C161.388 (3)
C2—H2B0.9900C15—H150.9500
C3—H3A0.9900C16—H160.9500
C3—H3B0.9900C17—C181.385 (2)
C4—C51.521 (2)C17—H170.9500
C4—H4A0.9900C18—H180.9500
N2i—Cd—N2180C4—C5—C6110.58 (14)
N2i—Cd—S189.42 (4)C4—C5—H5A109.5
N2—Cd—S190.58 (4)C6—C5—H5A109.5
N2i—Cd—S1i90.58 (4)C4—C5—H5B109.5
N2—Cd—S1i89.42 (4)C6—C5—H5B109.5
S1—Cd—S1i180H5A—C5—H5B108.1
N2i—Cd—S287.62 (4)C5—C6—H6A109.5
N2—Cd—S292.38 (4)C5—C6—H6B109.5
S1—Cd—S268.83 (3)H6A—C6—H6B109.5
S1i—Cd—S2111.17 (3)C5—C6—H6C109.5
N2i—Cd—S2i92.38 (4)H6A—C6—H6C109.5
N2—Cd—S2i87.62 (4)H6B—C6—H6C109.5
S1—Cd—S2i111.17 (3)N2—C7—C8123.52 (17)
S1i—Cd—S2i68.83 (3)N2—C7—H7118.2
S2—Cd—S2i180C8—C7—H7118.2
C1—S1—Cd86.05 (6)C7—C8—C9119.02 (16)
C1—S2—Cd85.43 (6)C7—C8—H8120.5
C3—O1—H1o109.5 (16)C9—C8—H8120.5
C1—N1—C2121.74 (13)C10—C9—C8117.67 (15)
C1—N1—C4121.96 (13)C10—C9—C12118.88 (15)
C2—N1—C4116.29 (13)C8—C9—C12123.44 (16)
C11—N2—C7116.95 (15)C11—C10—C9119.30 (16)
C11—N2—Cd119.88 (11)C11—C10—H10120.3
C7—N2—Cd123.16 (11)C9—C10—H10120.3
C12—N3—N4110.47 (14)N2—C11—C10123.54 (16)
C13—N4—N3111.93 (14)N2—C11—H11118.2
C16—N5—C17116.98 (16)C10—C11—H11118.2
N1—C1—S2120.59 (12)N3—C12—C9121.48 (16)
N1—C1—S1119.77 (12)N3—C12—H12119.3
S2—C1—S1119.64 (10)C9—C12—H12119.3
N1—C2—C3113.01 (13)N4—C13—C14119.59 (16)
N1—C2—H2A109.0N4—C13—H13120.2
C3—C2—H2A109.0C14—C13—H13120.2
N1—C2—H2B109.0C15—C14—C18117.63 (16)
C3—C2—H2B109.0C15—C14—C13120.38 (16)
H2A—C2—H2B107.8C18—C14—C13121.99 (16)
O1—C3—C2110.27 (14)C16—C15—C14118.89 (17)
O1—C3—H3A109.6C16—C15—H15120.6
C2—C3—H3A109.6C14—C15—H15120.6
O1—C3—H3B109.6N5—C16—C15123.90 (17)
C2—C3—H3B109.6N5—C16—H16118.0
H3A—C3—H3B108.1C15—C16—H16118.0
N1—C4—C5113.22 (13)N5—C17—C18123.21 (17)
N1—C4—H4A108.9N5—C17—H17118.4
C5—C4—H4A108.9C18—C17—H17118.4
N1—C4—H4B108.9C17—C18—C14119.38 (17)
C5—C4—H4B108.9C17—C18—H18120.3
H4A—C4—H4B107.7C14—C18—H18120.3
N2i—Cd—S1—C186.27 (7)C4—N1—C2—C387.99 (17)
N2—Cd—S1—C193.73 (7)N1—C2—C3—O170.19 (17)
S1i—Cd—S1—C195 (100)C1—N1—C4—C590.95 (18)
S2—Cd—S1—C11.40 (5)C2—N1—C4—C589.78 (16)
S2i—Cd—S1—C1178.60 (5)N1—C4—C5—C6175.96 (13)
N2i—Cd—S2—C188.89 (7)C11—N2—C7—C80.3 (3)
N2—Cd—S2—C191.11 (7)Cd—N2—C7—C8179.02 (14)
S1—Cd—S2—C11.41 (5)N2—C7—C8—C90.1 (3)
S1i—Cd—S2—C1178.59 (5)C7—C8—C9—C100.3 (3)
S2i—Cd—S2—C129 (100)C7—C8—C9—C12179.20 (17)
N2i—Cd—N2—C11146 (100)C8—C9—C10—C110.5 (2)
S1—Cd—N2—C1110.78 (13)C12—C9—C10—C11179.47 (15)
S1i—Cd—N2—C11169.22 (13)C7—N2—C11—C100.1 (3)
S2—Cd—N2—C1158.06 (13)Cd—N2—C11—C10178.83 (13)
S2i—Cd—N2—C11121.94 (13)C9—C10—C11—N20.3 (3)
N2i—Cd—N2—C735 (100)N4—N3—C12—C9176.90 (14)
S1—Cd—N2—C7170.58 (14)C10—C9—C12—N3173.70 (15)
S1i—Cd—N2—C79.42 (14)C8—C9—C12—N37.4 (3)
S2—Cd—N2—C7120.58 (14)N3—N4—C13—C14179.61 (14)
S2i—Cd—N2—C759.42 (14)N4—C13—C14—C15169.03 (16)
C12—N3—N4—C13177.28 (14)N4—C13—C14—C1810.7 (3)
C2—N1—C1—S22.1 (2)C18—C14—C15—C161.1 (3)
C4—N1—C1—S2177.14 (10)C13—C14—C15—C16179.14 (16)
C2—N1—C1—S1177.52 (10)C17—N5—C16—C150.6 (3)
C4—N1—C1—S13.2 (2)C14—C15—C16—N50.4 (3)
Cd—S2—C1—N1178.09 (12)C16—N5—C17—C180.8 (3)
Cd—S2—C1—S12.29 (8)N5—C17—C18—C140.1 (3)
Cd—S1—C1—N1178.07 (12)C15—C14—C18—C170.9 (3)
Cd—S1—C1—S22.31 (8)C13—C14—C18—C17179.34 (16)
C1—N1—C2—C391.28 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N5ii0.84 (2)1.98 (2)2.810 (2)176 (2)
C10—H10···O1iii0.952.553.480 (3)168
C3—H3a···N4iv0.992.613.369 (3)134
Symmetry codes: (ii) x+2, y, z1; (iii) x+1, y, z+1; (iv) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Cd(C6H12NOS2)2(C12H10N4)2]
Mr889.45
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)8.532 (3), 10.951 (4), 11.184 (5)
α, β, γ (°)79.59 (3), 88.06 (3), 78.23 (2)
V3)1006.2 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.25 × 0.16 × 0.04
Data collection
DiffractometerRigaku AFC12K/SATURN724 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.719, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
10677, 4150, 4009
Rint0.023
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.08
No. of reflections4150
No. of parameters245
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.40

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), PATTY in DIRDIF (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cd—S12.6379 (10)Cd—N22.5403 (17)
Cd—S22.6626 (10)
S1—Cd—S268.83 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N5i0.835 (19)1.977 (19)2.810 (2)176 (2)
C10—H10···O1ii0.952.553.480 (3)168
C3—H3a···N4iii0.992.613.369 (3)134
Symmetry codes: (i) x+2, y, z1; (ii) x+1, y, z+1; (iii) x+1, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds