Download citation
Download citation
link to html
In the title compound, C17H16O3, the dihedral angle between the aromatic rings is 4.59 (7)° and an intra­molecular O—H...O hydrogen bond generates an S(6) ring. In the crystal, adjacent mol­ecules are linked by C—H...O hydrogen bonds, leading to the formation of [001] supra­molecular chains. Weak C—H...π inter­actions consolidate the packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811015054/hb5847sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811015054/hb5847Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536811015054/hb5847Isup3.cml
Supplementary material

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.047
  • wR factor = 0.131
  • Data-to-parameter ratio = 21.9

checkCIF/PLATON results

No syntax errors found



Alert level C SHFSU01_ALERT_2_C Test not performed. _refine_ls_shift/su_max and _refine_ls_shift/esd_max not present. Absolute value of the parameter shift to su ratio given 0.001 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 7 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 12 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 1
Alert level G PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 1
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 1 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In continuation of our studies on the crystal structures of chalcones (Fun et al., 2010), we now report the synthesis and crystal structure of the title compound, (I). The structures of some related chalcones viz: (Z)-3-(9-anthryl)-1-(4-methoxyphenyl)prop-2-en-1-one (Chantrapromma et al., 2009), (Z)-3-(9-anthryl)- 1-(2-thienyl)prop-2-en-1-one (Fun et al., 2009), (E)-3- (anthracen-9-yl)-1-(4-bromophenyl)prop-2-en-1-one (Suwunwong et al., 2009), (Z)-3-(9-anthryl)-1-(4-bromophenyl)-2-(4-nitro-1H- imidazol-1-yl)prop-2-en-1-one (Lu et al., 2009),(Z)-3- (9-anthryl)-2-(4-nitro-1H-imidazol-1-yl)-1-p-tolylprop- 2-en-1-one (Wang et al., 2009), (E)-3-(9-anthryl)-1- (4-fluorophenyl)-2-(4-nitro-1H-imidazol-1-yl)prop-2-en-1-one (Wang et al., 2010), (E)-3-(anthracen-9-yl)-1-(furan-2-yl) prop-2-en-1-one (Horkaew et al., 2010), and an orthorhombic polymorph of (Z)-3-(9-anthryl)-1-(2-thienyl)prop-2-en-1-one (Chantrapromma et al., 2010) and 2(E)-3-(4-hydroxyphenyl)-1-(4-chlorophenyl) prop-2-en-1-one (Jasinski et al.,2011) have been reported.

The molecular structure is shown in Fig. 1. An intramolecular O1—H1O1···O2 hydrogen bond (Table 1) stabilizes the molecular structure and forms an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the phenyl (C1–C6) ring and the methoxy-substituted phenyl (C10–C15) ring is 4.59 (7)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into infinite one-dimensional chain along the c-axis by intermolecular C11—H11A···O3 hydrogen bonds (Table 1). There are also C—H···π interactions (Table 1) which involves C16 and phenyl ring (Cg1 = C1–C6).

Related literature top

For a related structure and background references to chalcones, see: Fun et al. (2010). For related structures, see: Chantrapromma et al. (2009, 2010); Fun et al. (2009); Horkaew et al. (2010); Lu et al. (2009); Suwunwong et al. (2009); Wang et al. (2009, 2010); Jasinski et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Hydroxy-5-methylacetophenone (1.50 g, 0.01 mol) was mixed with 4-methoxybenzaldehyde (1.36 g, 0.01 mol) and dissolved in ethanol (40 ml). To this solution, 5 ml of KOH (50%) was added at 278 K. The reaction mixture stirred for 6 h and poured on to crushed ice. The pH of this mixture was adjusted to 3–4 with 2 M HCl aqueous solution. The resulting crude yellow solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Orange blocks of (I) were grown by the slow evaporation of the solution of the compound in ethyl alcohol (m. p.: 361 K). Composition: Found (Calculated) for C17H16O3, C: 76.10 (76.16); H: 6.01 (6.05).

Refinement top

H1O1 atom attached to the O atom was located from the difference map and refined freely [O–H = 0.94 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

In continuation of our studies on the crystal structures of chalcones (Fun et al., 2010), we now report the synthesis and crystal structure of the title compound, (I). The structures of some related chalcones viz: (Z)-3-(9-anthryl)-1-(4-methoxyphenyl)prop-2-en-1-one (Chantrapromma et al., 2009), (Z)-3-(9-anthryl)- 1-(2-thienyl)prop-2-en-1-one (Fun et al., 2009), (E)-3- (anthracen-9-yl)-1-(4-bromophenyl)prop-2-en-1-one (Suwunwong et al., 2009), (Z)-3-(9-anthryl)-1-(4-bromophenyl)-2-(4-nitro-1H- imidazol-1-yl)prop-2-en-1-one (Lu et al., 2009),(Z)-3- (9-anthryl)-2-(4-nitro-1H-imidazol-1-yl)-1-p-tolylprop- 2-en-1-one (Wang et al., 2009), (E)-3-(9-anthryl)-1- (4-fluorophenyl)-2-(4-nitro-1H-imidazol-1-yl)prop-2-en-1-one (Wang et al., 2010), (E)-3-(anthracen-9-yl)-1-(furan-2-yl) prop-2-en-1-one (Horkaew et al., 2010), and an orthorhombic polymorph of (Z)-3-(9-anthryl)-1-(2-thienyl)prop-2-en-1-one (Chantrapromma et al., 2010) and 2(E)-3-(4-hydroxyphenyl)-1-(4-chlorophenyl) prop-2-en-1-one (Jasinski et al.,2011) have been reported.

The molecular structure is shown in Fig. 1. An intramolecular O1—H1O1···O2 hydrogen bond (Table 1) stabilizes the molecular structure and forms an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the phenyl (C1–C6) ring and the methoxy-substituted phenyl (C10–C15) ring is 4.59 (7)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into infinite one-dimensional chain along the c-axis by intermolecular C11—H11A···O3 hydrogen bonds (Table 1). There are also C—H···π interactions (Table 1) which involves C16 and phenyl ring (Cg1 = C1–C6).

For a related structure and background references to chalcones, see: Fun et al. (2010). For related structures, see: Chantrapromma et al. (2009, 2010); Fun et al. (2009); Horkaew et al. (2010); Lu et al. (2009); Suwunwong et al. (2009); Wang et al. (2009, 2010); Jasinski et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates the intramolecular bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis.
(2E)-1-(2-Hydroxy-5-methylphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H16O3F(000) = 568
Mr = 268.30Dx = 1.256 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2769 reflections
a = 12.6990 (18) Åθ = 2.8–28.6°
b = 8.8022 (13) ŵ = 0.09 mm1
c = 13.172 (2) ÅT = 296 K
β = 105.565 (2)°Block, orange
V = 1418.3 (4) Å30.46 × 0.32 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4090 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 29.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.962, Tmax = 0.984k = 1012
11493 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.1652P]
where P = (Fo2 + 2Fc2)/3
4090 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H16O3V = 1418.3 (4) Å3
Mr = 268.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6990 (18) ŵ = 0.09 mm1
b = 8.8022 (13) ÅT = 296 K
c = 13.172 (2) Å0.46 × 0.32 × 0.18 mm
β = 105.565 (2)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4090 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2608 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.984Rint = 0.024
11493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.16 e Å3
4090 reflectionsΔρmin = 0.16 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13821 (11)0.18686 (15)0.32930 (8)0.0794 (4)
O20.26594 (9)0.35672 (14)0.26545 (7)0.0758 (3)
O30.51456 (8)0.87081 (13)0.15126 (7)0.0666 (3)
C10.03317 (10)0.26022 (14)0.04622 (10)0.0486 (3)
H1A0.05180.31250.00780.058*
C20.06268 (11)0.17724 (16)0.02260 (12)0.0553 (3)
C30.08898 (13)0.10217 (19)0.10552 (15)0.0704 (4)
H3A0.15380.04720.09210.084*
C40.02277 (15)0.10664 (19)0.20568 (15)0.0728 (4)
H4A0.04270.05430.25900.087*
C50.07432 (12)0.18853 (16)0.22906 (11)0.0581 (4)
C60.10376 (10)0.26897 (14)0.14840 (10)0.0468 (3)
C70.20644 (11)0.35632 (16)0.17338 (10)0.0502 (3)
C80.23943 (10)0.44232 (15)0.09183 (10)0.0488 (3)
H8A0.19290.44690.02400.059*
C90.33518 (10)0.51410 (15)0.11356 (10)0.0478 (3)
H9A0.37900.50370.18220.057*
C100.38013 (9)0.60674 (14)0.04375 (9)0.0442 (3)
C110.48166 (10)0.67433 (16)0.08326 (10)0.0501 (3)
H11A0.51880.65890.15360.060*
C120.52938 (10)0.76377 (16)0.02169 (10)0.0504 (3)
H12A0.59730.80810.05040.060*
C130.47519 (10)0.78657 (15)0.08275 (9)0.0477 (3)
C140.37276 (11)0.72165 (17)0.12373 (10)0.0581 (4)
H14A0.33550.73850.19390.070*
C150.32612 (10)0.63348 (16)0.06231 (10)0.0542 (3)
H15A0.25770.59070.09120.065*
C160.13460 (12)0.16543 (19)0.08791 (14)0.0704 (4)
H16A0.10210.22040.13470.106*
H16B0.20510.20770.09110.106*
H16C0.14270.06060.10860.106*
C170.61893 (12)0.93974 (19)0.11419 (12)0.0645 (4)
H17A0.63620.99420.17080.097*
H17B0.67310.86270.08860.097*
H17C0.61811.00900.05810.097*
H1O10.2008 (17)0.245 (2)0.3290 (16)0.107 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1019 (9)0.0879 (9)0.0533 (6)0.0055 (7)0.0295 (6)0.0145 (6)
O20.0760 (7)0.1013 (9)0.0451 (5)0.0174 (6)0.0078 (5)0.0079 (5)
O30.0642 (6)0.0840 (8)0.0509 (5)0.0187 (5)0.0142 (5)0.0088 (5)
C10.0523 (7)0.0438 (7)0.0542 (7)0.0022 (6)0.0222 (6)0.0008 (6)
C20.0514 (7)0.0456 (8)0.0729 (9)0.0012 (6)0.0239 (6)0.0062 (6)
C30.0651 (9)0.0595 (10)0.0961 (13)0.0098 (7)0.0380 (9)0.0011 (9)
C40.0863 (11)0.0626 (10)0.0845 (11)0.0079 (9)0.0488 (10)0.0088 (8)
C50.0756 (9)0.0509 (8)0.0567 (8)0.0042 (7)0.0331 (7)0.0038 (6)
C60.0552 (7)0.0413 (7)0.0496 (7)0.0036 (6)0.0241 (6)0.0015 (5)
C70.0570 (7)0.0503 (8)0.0454 (6)0.0025 (6)0.0172 (6)0.0010 (5)
C80.0537 (7)0.0499 (7)0.0428 (6)0.0015 (6)0.0130 (5)0.0013 (5)
C90.0503 (6)0.0489 (7)0.0435 (6)0.0024 (6)0.0114 (5)0.0028 (5)
C100.0445 (6)0.0453 (7)0.0427 (6)0.0028 (5)0.0113 (5)0.0040 (5)
C110.0458 (6)0.0617 (9)0.0395 (6)0.0009 (6)0.0058 (5)0.0004 (6)
C120.0400 (6)0.0621 (9)0.0462 (6)0.0029 (6)0.0065 (5)0.0027 (6)
C130.0483 (6)0.0521 (8)0.0434 (6)0.0004 (6)0.0135 (5)0.0012 (5)
C140.0554 (7)0.0723 (10)0.0401 (6)0.0100 (7)0.0016 (6)0.0034 (6)
C150.0465 (7)0.0632 (9)0.0481 (7)0.0098 (6)0.0042 (5)0.0018 (6)
C160.0544 (8)0.0657 (10)0.0876 (11)0.0045 (7)0.0131 (8)0.0117 (8)
C170.0614 (8)0.0662 (10)0.0707 (9)0.0104 (7)0.0257 (7)0.0025 (7)
Geometric parameters (Å, º) top
O1—C51.3517 (18)C9—C101.4554 (17)
O1—H1O10.94 (2)C9—H9A0.9300
O2—C71.2449 (15)C10—C111.3881 (17)
O3—C131.3624 (15)C10—C151.4011 (17)
O3—C171.4198 (17)C11—C121.3814 (18)
C1—C21.3815 (18)C11—H11A0.9300
C1—C61.4048 (18)C12—C131.3778 (17)
C1—H1A0.9300C12—H12A0.9300
C2—C31.392 (2)C13—C141.3903 (18)
C2—C161.500 (2)C14—C151.3656 (19)
C3—C41.361 (2)C14—H14A0.9300
C3—H3A0.9300C15—H15A0.9300
C4—C51.390 (2)C16—H16A0.9600
C4—H4A0.9300C16—H16B0.9600
C5—C61.4082 (18)C16—H16C0.9600
C6—C71.4729 (18)C17—H17A0.9600
C7—C81.4641 (18)C17—H17B0.9600
C8—C91.3315 (17)C17—H17C0.9600
C8—H8A0.9300
C5—O1—H1O1106.0 (13)C11—C10—C9119.05 (11)
C13—O3—C17118.65 (11)C15—C10—C9123.64 (11)
C2—C1—C6122.82 (12)C12—C11—C10122.26 (11)
C2—C1—H1A118.6C12—C11—H11A118.9
C6—C1—H1A118.6C10—C11—H11A118.9
C1—C2—C3117.18 (14)C13—C12—C11119.26 (11)
C1—C2—C16121.70 (13)C13—C12—H12A120.4
C3—C2—C16121.11 (14)C11—C12—H12A120.4
C4—C3—C2122.06 (15)O3—C13—C12124.53 (11)
C4—C3—H3A119.0O3—C13—C14115.97 (11)
C2—C3—H3A119.0C12—C13—C14119.50 (12)
C3—C4—C5120.69 (14)C15—C14—C13120.86 (12)
C3—C4—H4A119.7C15—C14—H14A119.6
C5—C4—H4A119.7C13—C14—H14A119.6
O1—C5—C4118.37 (13)C14—C15—C10120.80 (12)
O1—C5—C6122.08 (14)C14—C15—H15A119.6
C4—C5—C6119.54 (14)C10—C15—H15A119.6
C1—C6—C5117.70 (12)C2—C16—H16A109.5
C1—C6—C7122.80 (11)C2—C16—H16B109.5
C5—C6—C7119.49 (12)H16A—C16—H16B109.5
O2—C7—C8119.66 (12)C2—C16—H16C109.5
O2—C7—C6119.25 (12)H16A—C16—H16C109.5
C8—C7—C6121.09 (11)H16B—C16—H16C109.5
C9—C8—C7120.81 (12)O3—C17—H17A109.5
C9—C8—H8A119.6O3—C17—H17B109.5
C7—C8—H8A119.6H17A—C17—H17B109.5
C8—C9—C10128.35 (12)O3—C17—H17C109.5
C8—C9—H9A115.8H17A—C17—H17C109.5
C10—C9—H9A115.8H17B—C17—H17C109.5
C11—C10—C15117.30 (12)
C6—C1—C2—C31.0 (2)O2—C7—C8—C93.8 (2)
C6—C1—C2—C16177.83 (13)C6—C7—C8—C9176.22 (12)
C1—C2—C3—C41.3 (2)C7—C8—C9—C10178.59 (12)
C16—C2—C3—C4177.45 (14)C8—C9—C10—C11178.78 (13)
C2—C3—C4—C50.5 (3)C8—C9—C10—C150.7 (2)
C3—C4—C5—O1178.70 (15)C15—C10—C11—C120.5 (2)
C3—C4—C5—C60.7 (2)C9—C10—C11—C12179.97 (12)
C2—C1—C6—C50.22 (19)C10—C11—C12—C130.4 (2)
C2—C1—C6—C7179.43 (12)C17—O3—C13—C120.6 (2)
O1—C5—C6—C1178.32 (12)C17—O3—C13—C14179.83 (13)
C4—C5—C6—C11.1 (2)C11—C12—C13—O3179.21 (13)
O1—C5—C6—C70.9 (2)C11—C12—C13—C141.2 (2)
C4—C5—C6—C7179.72 (13)O3—C13—C14—C15179.21 (13)
C1—C6—C7—O2178.73 (13)C12—C13—C14—C151.2 (2)
C5—C6—C7—O20.47 (19)C13—C14—C15—C100.3 (2)
C1—C6—C7—C81.27 (19)C11—C10—C15—C140.5 (2)
C5—C6—C7—C8179.54 (12)C9—C10—C15—C14179.98 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.95 (2)1.65 (2)2.5112 (18)149.4 (19)
C11—H11A···O3i0.932.603.4317 (17)149
C16—H16C···Cg1ii0.962.813.5800 (18)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC17H16O3
Mr268.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6990 (18), 8.8022 (13), 13.172 (2)
β (°) 105.565 (2)
V3)1418.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.32 × 0.18
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
11493, 4090, 2608
Rint0.024
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.02
No. of reflections4090
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.95 (2)1.65 (2)2.5112 (18)149.4 (19)
C11—H11A···O3i0.932.603.4317 (17)149.4
C16—H16C···Cg1ii0.962.813.5800 (18)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds