Download citation
Download citation
link to html
In the title compound, [Ni(C12H6N2O4)(H2O)2], the NiII atom (site symmetry 2) displays a distorted cis-NiN2O4 octa­hedral coordination geometry with two N atoms and two O atoms of the tetra­dentate 2,2′-bipyridine-6,6′-dicarboxyl­ate ligand in the equatorial plane and two water mol­ecules in axial positions. The complete dianionic ligand is generated by crystallographic twofold symmetry. In the crystal, a two-dimensional supra­molecular structure parallel to (001) is formed through O—H...O hydrogen-bond inter­actions between the coordinated water mol­ecules and the O atoms of nearby carboxyl­ate groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811016400/hb5864sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811016400/hb5864Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S1600536811016400/hb5864Isup3.cdx
Supplementary material

CCDC reference: 828437

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.032
  • wR factor = 0.082
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.09 PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C1 - C2 ... 1.53 Ang. PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 3
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 3 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 2 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyridyl carboxylic acid is an important class of organic ligands and has been widely used in coordination chemistry. 2,2'-Bipyridine-6,6'-dicarboxylate ligand is coordinated woth transition metal (Duan et al., 2009; Knight et al., 2006 and Wang et al., 2009) and lanthanide metal ions (Bunzli et al., 2000 and Wang et al., 2010). Herein, we report crystal structure of a new nickel complex with 2,2'-bipyridine-6,6'-dicarboxylate ligand.

The atom-numbering scheme of (I) is shown in Fig. 1. The NiII atom displays a distorted octahedral coordination geometry with two N atoms and two O atoms of 2,2'-bipyridine-6,6'-dicarboxylate in equatorial plane and two water molecules in apical positions. A two-dimensional supramolecular structure is formed through hydrogen interactions between the oxygen atoms of coordination water molecules and the oxygen atoms of carboxylate groups [O3—H3A···O2i, 2.708 (3) Å, 176 (3) °, symmetric code i: (-x - 1/2, -y + 3/2, z); O3—H3B···O2ii, 2.772 (3) Å, 172 (3) °, symmetric code ii: (-x, y - 1/2, -z + 1/2)].

Related literature top

For transition metal complexes with the title ligand, see: Knight et al. (2006); Duan et al. (2009); Wang et al. (2009). For lanthanide metal complexes with the title ligand, see: Bunzli et al. (2000); Wang et al. (2010).

Experimental top

The title compound was prepared by the reaction of Ni(NO3)2 with 2,2'-bipyridine-6,6'-dicarboxylic acid (H2bpdc) in a water solution. Ni(NO3)2.6H2O (0.2 mmol) and H2bpdc (0.2 mmol) were dissolved in 25 ml deionized water and adjusted the pH to 7 with 0.05 mol L-1 NaOH aqueous solution. After one week, green blocks were obtained. Elmental analysis for C12H10N2NiO6 calculated: C 42.78, H 2.99, N 8.32%; found: C 42.57, H 2.89, N 8.46%.

Refinement top

The water H atoms were located in a difference Fourier map and refined with restrained O—H bond lengths [0.85 (2) Å] and fixed isotropic displancement parameters (Uiso(H) = 1.2 Ueq(O)). The carbon H atoms were placed at calculated positions (C—H = 0.93–0.96 Å) and refined as riding model with Uiso(H) = 1.2 Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Atoms labelled with the suffix A are at the symmetry position (-x + 1/2, -y + 3/2, z).
[Figure 2] Fig. 2. View of a two-dimensional supramolecular structure constructed through hydrogen bonding interactions in (I). Hydrogen atoms of carbon atoms have been omitted for clarity.
Diaqua(2,2'-bipyridine-6,6'-dicarboxylato)nickel(II) top
Crystal data top
[Ni(C12H6N2O4)(H2O)2]F(000) = 688
Mr = 336.93Dx = 1.808 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1650 reflections
a = 7.1056 (9) Åθ = 3.2–25.2°
b = 11.3608 (15) ŵ = 1.60 mm1
c = 15.3334 (19) ÅT = 296 K
V = 1237.8 (3) Å3Block, green
Z = 40.24 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1274 independent reflections
Radiation source: fine-focus sealed tube1098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.766, Tmax = 0.857k = 1314
6269 measured reflectionsl = 1019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.5888P]
where P = (Fo2 + 2Fc2)/3
1274 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.48 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Ni(C12H6N2O4)(H2O)2]V = 1237.8 (3) Å3
Mr = 336.93Z = 4
Orthorhombic, PccnMo Kα radiation
a = 7.1056 (9) ŵ = 1.60 mm1
b = 11.3608 (15) ÅT = 296 K
c = 15.3334 (19) Å0.24 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1274 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1098 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.857Rint = 0.036
6269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
1274 reflectionsΔρmin = 0.23 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.75000.16327 (3)0.02540 (16)
N10.0931 (3)0.80137 (16)0.06211 (12)0.0285 (4)
O10.0167 (2)0.83346 (15)0.22531 (11)0.0360 (4)
O20.2446 (2)0.93408 (18)0.19595 (16)0.0517 (6)
C10.1035 (3)0.8756 (2)0.17424 (18)0.0348 (6)
C20.0683 (4)0.8569 (2)0.07707 (17)0.0332 (6)
C30.1808 (4)0.8936 (2)0.0083 (2)0.0464 (7)
H30.29340.93320.01820.056*
C40.1204 (5)0.8695 (3)0.0750 (2)0.0563 (9)
H40.19510.89150.12210.068*
C50.0486 (5)0.8132 (2)0.09017 (18)0.0506 (8)
H50.08940.79820.14670.061*
C60.1564 (4)0.7796 (2)0.01856 (16)0.0348 (6)
O30.1216 (2)0.58888 (16)0.17647 (13)0.0380 (5)
H3A0.009 (3)0.584 (3)0.1803 (18)0.046*
H3B0.169 (4)0.545 (2)0.2135 (15)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0254 (3)0.0293 (3)0.0215 (2)0.00250 (16)0.0000.000
N10.0341 (11)0.0256 (10)0.0260 (11)0.0004 (9)0.0053 (9)0.0005 (8)
O10.0336 (9)0.0402 (10)0.0343 (10)0.0040 (8)0.0046 (8)0.0040 (8)
O20.0263 (10)0.0466 (12)0.0821 (15)0.0055 (8)0.0004 (9)0.0232 (11)
C10.0248 (12)0.0269 (12)0.0526 (17)0.0047 (10)0.0005 (12)0.0078 (11)
C20.0316 (13)0.0217 (12)0.0464 (16)0.0021 (10)0.0109 (11)0.0021 (10)
C30.0437 (15)0.0291 (14)0.067 (2)0.0016 (11)0.0276 (15)0.0050 (13)
C40.073 (2)0.0378 (16)0.059 (2)0.0073 (15)0.0407 (18)0.0134 (14)
C50.085 (2)0.0380 (16)0.0289 (15)0.0094 (16)0.0177 (15)0.0061 (11)
C60.0530 (17)0.0261 (12)0.0252 (12)0.0045 (11)0.0073 (12)0.0018 (9)
O30.0259 (9)0.0364 (10)0.0519 (12)0.0001 (8)0.0044 (9)0.0117 (8)
Geometric parameters (Å, º) top
Ni1—N1i1.9975 (19)C2—C31.387 (4)
Ni1—N11.9975 (19)C3—C41.375 (5)
Ni1—O3i2.0553 (18)C3—H30.9300
Ni1—O32.0553 (18)C4—C51.381 (5)
Ni1—O1i2.1335 (16)C4—H40.9300
Ni1—O12.1335 (16)C5—C61.392 (4)
N1—C21.329 (3)C5—H50.9300
N1—C61.339 (3)C6—C6i1.491 (5)
O1—C11.254 (3)O3—H3A0.806 (18)
O2—C11.247 (3)O3—H3B0.827 (17)
C1—C21.526 (4)
N1i—Ni1—N178.11 (11)O2—C1—C2117.8 (2)
N1i—Ni1—O3i95.10 (8)O1—C1—C2116.4 (2)
N1—Ni1—O3i93.67 (8)N1—C2—C3120.6 (3)
N1i—Ni1—O393.67 (8)N1—C2—C1112.1 (2)
N1—Ni1—O395.10 (8)C3—C2—C1127.3 (3)
O3i—Ni1—O3168.70 (11)C4—C3—C2117.8 (3)
N1i—Ni1—O1i77.45 (7)C4—C3—H3121.1
N1—Ni1—O1i155.48 (8)C2—C3—H3121.1
O3i—Ni1—O1i90.40 (7)C3—C4—C5121.4 (3)
O3—Ni1—O1i84.56 (7)C3—C4—H4119.3
N1i—Ni1—O1155.48 (8)C5—C4—H4119.3
N1—Ni1—O177.45 (7)C4—C5—C6118.2 (3)
O3i—Ni1—O184.56 (7)C4—C5—H5120.9
O3—Ni1—O190.40 (7)C6—C5—H5120.9
O1i—Ni1—O1127.04 (9)N1—C6—C5119.5 (3)
C2—N1—C6122.5 (2)N1—C6—C6i112.53 (14)
C2—N1—Ni1119.11 (17)C5—C6—C6i127.93 (19)
C6—N1—Ni1118.41 (17)Ni1—O3—H3A121 (2)
C1—O1—Ni1114.88 (15)Ni1—O3—H3B115 (2)
O2—C1—O1125.7 (3)H3A—O3—H3B108 (3)
N1i—Ni1—N1—C2178.6 (2)Ni1—N1—C2—C3179.86 (17)
O3i—Ni1—N1—C284.19 (18)C6—N1—C2—C1177.4 (2)
O3—Ni1—N1—C288.68 (18)Ni1—N1—C2—C11.8 (3)
O1i—Ni1—N1—C2176.75 (16)O2—C1—C2—N1175.2 (2)
O1—Ni1—N1—C20.59 (17)O1—C1—C2—N12.6 (3)
N1i—Ni1—N1—C60.53 (13)O2—C1—C2—C33.1 (4)
O3i—Ni1—N1—C694.98 (18)O1—C1—C2—C3179.2 (2)
O3—Ni1—N1—C692.15 (18)N1—C2—C3—C40.6 (4)
O1i—Ni1—N1—C64.1 (3)C1—C2—C3—C4178.7 (2)
O1—Ni1—N1—C6178.57 (19)C2—C3—C4—C51.5 (4)
N1i—Ni1—O1—C13.7 (3)C3—C4—C5—C61.0 (4)
N1—Ni1—O1—C10.96 (16)C2—N1—C6—C51.6 (4)
O3i—Ni1—O1—C194.04 (17)Ni1—N1—C6—C5179.24 (19)
O3—Ni1—O1—C196.09 (17)C2—N1—C6—C6i177.8 (2)
O1i—Ni1—O1—C1179.58 (17)Ni1—N1—C6—C6i1.4 (3)
Ni1—O1—C1—O2175.4 (2)C4—C5—C6—N10.6 (4)
Ni1—O1—C1—C22.1 (3)C4—C5—C6—C6i178.7 (3)
C6—N1—C2—C31.0 (4)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.81 (2)1.90 (2)2.708 (2)176 (3)
O3—H3B···O2iii0.83 (2)1.95 (2)2.772 (3)172 (3)
Symmetry codes: (ii) x1/2, y+3/2, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C12H6N2O4)(H2O)2]
Mr336.93
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)296
a, b, c (Å)7.1056 (9), 11.3608 (15), 15.3334 (19)
V3)1237.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.766, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
6269, 1274, 1098
Rint0.036
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.06
No. of reflections1274
No. of parameters102
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N11.9975 (19)Ni1—O12.1335 (16)
Ni1—O32.0553 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.806 (18)1.904 (18)2.708 (2)176 (3)
O3—H3B···O2ii0.827 (17)1.950 (17)2.772 (3)172 (3)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds