


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811028893/hb5947sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536811028893/hb5947Isup2.hkl |
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean
() = 0.000 Å
- Disorder in main residue
- R factor = 0.024
- wR factor = 0.052
- Data-to-parameter ratio = 9.2
checkCIF/PLATON results
No syntax errors found
Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.12 Rint given 0.122 PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ ? PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.13 Ratio PLAT088_ALERT_3_C Poor Data / Parameter Ratio .................... 9.17 PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: LA1 -- ZN2 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: ZN2 -- LA1 .. 3.52 Ang.
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:La1 Zn12.36 Atom count from the _atom_site data: La1 Zn12.372 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: check formula stoichiometry or atom site occupancies. From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_sum La Zn12.36 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff La 8.00 8.00 0.00 Zn 98.88 98.98 -0.10 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.28 From the CIF: _reflns_number_total 110 Count of symmetry unique reflns 0 Completeness (_total/calc) Infinity % TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 110 Fraction of Friedel pairs measured Infinity Are heavy atom types Z>Si present yes PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT152_ALERT_1_G The Supplied and Calc. Volume s.u. Differ by ... 2 Units PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 = 3 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 7 Perc. PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... ! PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... !
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 18 ALERT level C = Check. Ensure it is not caused by an omission or oversight 12 ALERT level G = General information/check it is not something unexpected 21 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check
Small irregularly shaped single-crystal of the LaZn12.37 (1) binary compound was selected by mechanical fragmentation of sample with nominal composition LaZn20Sn2. Alloy was prepared by mixing stoichiometric amounts of powders of zinc, tin and LaZn ligature with subsequent pressing them into pellets. These pellets were enclosed in evacuated silica ampoules and heated in the resistance oven. After that alloys were annealed at 600°C for 30 days and quenched in cold water. No reaction between alloys and quartz containers was observed.
Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006)and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
LaZn12.37 | Dx = 7.113 Mg m−3 |
Mr = 947.00 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Fm3c | Cell parameters from 811 reflections |
Hall symbol: -F 4c 2 3 | θ = 3.4–28.9° |
a = 12.0940 (9) Å | µ = 37.49 mm−1 |
V = 1768.9 (2) Å3 | T = 293 K |
Z = 8 | Irregular platelet, grey |
F(000) = 3426.0 | 0.05 × 0.03 × 0.01 mm |
Agilent Gemini Ultra diffractometer with Eos CCD detector | 110 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 108 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.122 |
ω scans | θmax = 28.3°, θmin = 3.4° |
Absorption correction: multi-scan CrysAlis PRO (Agilent, 2011) | h = −14→16 |
Tmin = 0.368, Tmax = 1.0 | k = −16→16 |
1543 measured reflections | l = −9→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0097P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.052 | (Δ/σ)max < 0.001 |
S = 1.22 | Δρmax = 0.81 e Å−3 |
110 reflections | Δρmin = −1.08 e Å−3 |
12 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00058 (8) |
LaZn12.37 | Z = 8 |
Mr = 947.00 | Mo Kα radiation |
Cubic, Fm3c | µ = 37.49 mm−1 |
a = 12.0940 (9) Å | T = 293 K |
V = 1768.9 (2) Å3 | 0.05 × 0.03 × 0.01 mm |
Agilent Gemini Ultra diffractometer with Eos CCD detector | 110 independent reflections |
Absorption correction: multi-scan CrysAlis PRO (Agilent, 2011) | 108 reflections with I > 2σ(I) |
Tmin = 0.368, Tmax = 1.0 | Rint = 0.122 |
1543 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 12 parameters |
wR(F2) = 0.052 | 0 restraints |
S = 1.22 | Δρmax = 0.81 e Å−3 |
110 reflections | Δρmin = −1.08 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.2500 | 0.2500 | 0.2500 | 0.0081 (5) | |
Zn2 | 0.0000 | 0.17786 (6) | 0.11938 (6) | 0.0113 (4) | |
Zn3 | 0.0000 | 0.0000 | 0.0000 | 0.006 (2) | 0.372 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.0081 (5) | 0.0081 (5) | 0.0081 (5) | 0.000 | 0.000 | 0.000 |
Zn2 | 0.0120 (5) | 0.0097 (5) | 0.0123 (5) | 0.000 | 0.000 | 0.0031 (3) |
Zn3 | 0.006 (2) | 0.006 (2) | 0.006 (2) | 0.000 | 0.000 | 0.000 |
La1—Zn2i | 3.5211 (4) | Zn2—Zn2ii | 2.6854 (8) |
La1—Zn2ii | 3.5211 (4) | Zn2—Zn2i | 2.6854 (8) |
La1—Zn2 | 3.5211 (4) | Zn2—Zn2ix | 2.6859 (12) |
La1—Zn2iii | 3.5211 (4) | Zn2—Zn2xv | 2.6859 (12) |
La1—Zn2iv | 3.5211 (4) | Zn2—Zn2xvi | 2.8875 (15) |
La1—Zn2v | 3.5211 (4) | Zn2—La1xvii | 3.5211 (4) |
La1—Zn2vi | 3.5211 (4) | Zn3—Zn2xviii | 2.5906 (7) |
La1—Zn2vii | 3.5211 (4) | Zn3—Zn2xix | 2.5906 (7) |
La1—Zn2viii | 3.5211 (4) | Zn3—Zn2xx | 2.5906 (7) |
La1—Zn2ix | 3.5211 (4) | Zn3—Zn2i | 2.5906 (7) |
La1—Zn2x | 3.5211 (4) | Zn3—Zn2ii | 2.5906 (7) |
La1—Zn2xi | 3.5211 (4) | Zn3—Zn2xiii | 2.5906 (7) |
Zn2—Zn2xii | 2.5522 (10) | Zn3—Zn2xxi | 2.5906 (7) |
Zn2—Zn2x | 2.5522 (10) | Zn3—Zn2xxii | 2.5906 (7) |
Zn2—Zn3 | 2.5906 (7) | Zn3—Zn2xxiii | 2.5906 (7) |
Zn2—Zn2xiii | 2.6854 (8) | Zn3—Zn2xvi | 2.5906 (7) |
Zn2—Zn2xiv | 2.6854 (8) | Zn3—Zn2xiv | 2.5906 (7) |
Zn2i—La1—Zn2ii | 44.832 (17) | Zn2ii—Zn2—Zn2xv | 161.98 (3) |
Zn2i—La1—Zn2 | 44.832 (17) | Zn2i—Zn2—Zn2xv | 108.22 (3) |
Zn2ii—La1—Zn2 | 44.832 (17) | Zn2ix—Zn2—Zn2xv | 65.03 (3) |
Zn2i—La1—Zn2iii | 163.67 (2) | Zn2xii—Zn2—Zn2xvi | 106.09 (2) |
Zn2ii—La1—Zn2iii | 128.82 (2) | Zn2x—Zn2—Zn2xvi | 163.91 (2) |
Zn2—La1—Zn2iii | 146.29 (2) | Zn3—Zn2—Zn2xvi | 56.130 (16) |
Zn2i—La1—Zn2iv | 128.82 (2) | Zn2xiii—Zn2—Zn2xvi | 57.477 (19) |
Zn2ii—La1—Zn2iv | 146.29 (2) | Zn2xiv—Zn2—Zn2xvi | 105.27 (2) |
Zn2—La1—Zn2iv | 163.67 (2) | Zn2ii—Zn2—Zn2xvi | 105.27 (2) |
Zn2iii—La1—Zn2iv | 44.832 (17) | Zn2i—Zn2—Zn2xvi | 57.477 (19) |
Zn2i—La1—Zn2v | 146.29 (2) | Zn2ix—Zn2—Zn2xvi | 57.484 (14) |
Zn2ii—La1—Zn2v | 163.67 (2) | Zn2xv—Zn2—Zn2xvi | 57.484 (14) |
Zn2—La1—Zn2v | 128.82 (2) | Zn2xii—Zn2—La1 | 68.752 (6) |
Zn2iii—La1—Zn2v | 44.832 (17) | Zn2x—Zn2—La1 | 68.752 (6) |
Zn2iv—La1—Zn2v | 44.832 (17) | Zn3—Zn2—La1 | 117.115 (12) |
Zn2i—La1—Zn2vi | 119.133 (3) | Zn2xiii—Zn2—La1 | 173.86 (2) |
Zn2ii—La1—Zn2vi | 106.477 (13) | Zn2xiv—Zn2—La1 | 122.82 (4) |
Zn2—La1—Zn2vi | 151.31 (2) | Zn2ii—Zn2—La1 | 67.584 (9) |
Zn2iii—La1—Zn2vi | 44.84 (2) | Zn2i—Zn2—La1 | 67.584 (9) |
Zn2iv—La1—Zn2vi | 42.496 (13) | Zn2ix—Zn2—La1 | 67.580 (12) |
Zn2v—La1—Zn2vi | 78.388 (9) | Zn2xv—Zn2—La1 | 122.80 (3) |
Zn2i—La1—Zn2vii | 151.31 (2) | Zn2xvi—Zn2—La1 | 116.657 (11) |
Zn2ii—La1—Zn2vii | 119.133 (3) | Zn2xii—Zn2—La1xvii | 68.752 (6) |
Zn2—La1—Zn2vii | 106.477 (13) | Zn2x—Zn2—La1xvii | 68.752 (6) |
Zn2iii—La1—Zn2vii | 42.496 (13) | Zn3—Zn2—La1xvii | 117.115 (12) |
Zn2iv—La1—Zn2vii | 78.388 (9) | Zn2xiii—Zn2—La1xvii | 67.584 (9) |
Zn2v—La1—Zn2vii | 44.84 (2) | Zn2xiv—Zn2—La1xvii | 67.584 (9) |
Zn2vi—La1—Zn2vii | 86.486 (17) | Zn2ii—Zn2—La1xvii | 122.82 (4) |
Zn2i—La1—Zn2viii | 106.477 (13) | Zn2i—Zn2—La1xvii | 173.86 (2) |
Zn2ii—La1—Zn2viii | 151.31 (2) | Zn2ix—Zn2—La1xvii | 122.80 (3) |
Zn2—La1—Zn2viii | 119.133 (3) | Zn2xv—Zn2—La1xvii | 67.580 (12) |
Zn2iii—La1—Zn2viii | 78.388 (9) | Zn2xvi—Zn2—La1xvii | 116.657 (11) |
Zn2iv—La1—Zn2viii | 44.84 (2) | La1—Zn2—La1xvii | 118.34 (2) |
Zn2v—La1—Zn2viii | 42.496 (13) | Zn2xviii—Zn3—Zn2xix | 62.436 (7) |
Zn2vi—La1—Zn2viii | 86.486 (17) | Zn2xviii—Zn3—Zn2xx | 62.436 (7) |
Zn2vii—La1—Zn2viii | 86.486 (17) | Zn2xix—Zn3—Zn2xx | 62.436 (7) |
Zn2i—La1—Zn2ix | 42.496 (13) | Zn2xviii—Zn3—Zn2 | 117.564 (7) |
Zn2ii—La1—Zn2ix | 78.388 (9) | Zn2xix—Zn3—Zn2 | 117.564 (7) |
Zn2—La1—Zn2ix | 44.84 (2) | Zn2xx—Zn3—Zn2 | 180.00 (3) |
Zn2iii—La1—Zn2ix | 151.31 (2) | Zn2xviii—Zn3—Zn2i | 180.00 (3) |
Zn2iv—La1—Zn2ix | 119.133 (3) | Zn2xix—Zn3—Zn2i | 117.564 (7) |
Zn2v—La1—Zn2ix | 106.477 (13) | Zn2xx—Zn3—Zn2i | 117.564 (7) |
Zn2vi—La1—Zn2ix | 146.29 (2) | Zn2—Zn3—Zn2i | 62.436 (7) |
Zn2vii—La1—Zn2ix | 121.00 (2) | Zn2xviii—Zn3—Zn2ii | 117.564 (7) |
Zn2viii—La1—Zn2ix | 77.04 (2) | Zn2xix—Zn3—Zn2ii | 180.00 (3) |
Zn2i—La1—Zn2x | 78.388 (9) | Zn2xx—Zn3—Zn2ii | 117.564 (7) |
Zn2ii—La1—Zn2x | 44.84 (2) | Zn2—Zn3—Zn2ii | 62.436 (7) |
Zn2—La1—Zn2x | 42.496 (13) | Zn2i—Zn3—Zn2ii | 62.436 (7) |
Zn2iii—La1—Zn2x | 106.477 (13) | Zn2xviii—Zn3—Zn2xiii | 67.74 (3) |
Zn2iv—La1—Zn2x | 151.31 (2) | Zn2xix—Zn3—Zn2xiii | 62.436 (7) |
Zn2v—La1—Zn2x | 119.133 (3) | Zn2xx—Zn3—Zn2xiii | 117.564 (7) |
Zn2vi—La1—Zn2x | 121.00 (2) | Zn2—Zn3—Zn2xiii | 62.436 (7) |
Zn2vii—La1—Zn2x | 77.04 (2) | Zn2i—Zn3—Zn2xiii | 112.26 (3) |
Zn2viii—La1—Zn2x | 146.29 (2) | Zn2ii—Zn3—Zn2xiii | 117.564 (7) |
Zn2ix—La1—Zn2x | 86.486 (17) | Zn2xviii—Zn3—Zn2xxi | 117.564 (7) |
Zn2i—La1—Zn2xi | 44.84 (2) | Zn2xix—Zn3—Zn2xxi | 67.74 (3) |
Zn2ii—La1—Zn2xi | 42.496 (13) | Zn2xx—Zn3—Zn2xxi | 62.436 (7) |
Zn2—La1—Zn2xi | 78.388 (9) | Zn2—Zn3—Zn2xxi | 117.564 (7) |
Zn2iii—La1—Zn2xi | 119.133 (3) | Zn2i—Zn3—Zn2xxi | 62.436 (7) |
Zn2iv—La1—Zn2xi | 106.477 (13) | Zn2ii—Zn3—Zn2xxi | 112.26 (3) |
Zn2v—La1—Zn2xi | 151.31 (2) | Zn2xiii—Zn3—Zn2xxi | 117.564 (7) |
Zn2vi—La1—Zn2xi | 77.04 (2) | Zn2xviii—Zn3—Zn2xxii | 62.436 (7) |
Zn2vii—La1—Zn2xi | 146.29 (2) | Zn2xix—Zn3—Zn2xxii | 117.564 (7) |
Zn2viii—La1—Zn2xi | 121.00 (2) | Zn2xx—Zn3—Zn2xxii | 67.74 (3) |
Zn2ix—La1—Zn2xi | 86.486 (17) | Zn2—Zn3—Zn2xxii | 112.26 (3) |
Zn2x—La1—Zn2xi | 86.486 (17) | Zn2i—Zn3—Zn2xxii | 117.564 (7) |
Zn2xii—Zn2—Zn2x | 90.0 | Zn2ii—Zn3—Zn2xxii | 62.436 (7) |
Zn2xii—Zn2—Zn3 | 162.22 (4) | Zn2xiii—Zn3—Zn2xxii | 117.564 (7) |
Zn2x—Zn2—Zn3 | 107.78 (4) | Zn2xxi—Zn3—Zn2xxii | 117.564 (7) |
Zn2xii—Zn2—Zn2xiii | 113.70 (3) | Zn2xviii—Zn3—Zn2xxiii | 112.26 (3) |
Zn2x—Zn2—Zn2xiii | 116.33 (3) | Zn2xix—Zn3—Zn2xxiii | 117.564 (7) |
Zn3—Zn2—Zn2xiii | 58.782 (3) | Zn2xx—Zn3—Zn2xxiii | 62.436 (7) |
Zn2xii—Zn2—Zn2xiv | 134.159 (17) | Zn2—Zn3—Zn2xxiii | 117.564 (7) |
Zn2x—Zn2—Zn2xiv | 61.64 (4) | Zn2i—Zn3—Zn2xxiii | 67.74 (3) |
Zn3—Zn2—Zn2xiv | 58.782 (3) | Zn2ii—Zn3—Zn2xxiii | 62.436 (7) |
Zn2xiii—Zn2—Zn2xiv | 60.0 | Zn2xiii—Zn3—Zn2xxiii | 180.0 |
Zn2xii—Zn2—Zn2ii | 134.159 (17) | Zn2xxi—Zn3—Zn2xxiii | 62.436 (7) |
Zn2x—Zn2—Zn2ii | 61.64 (4) | Zn2xxii—Zn3—Zn2xxiii | 62.436 (7) |
Zn3—Zn2—Zn2ii | 58.782 (3) | Zn2xviii—Zn3—Zn2xvi | 117.564 (7) |
Zn2xiii—Zn2—Zn2ii | 111.18 (2) | Zn2xix—Zn3—Zn2xvi | 62.436 (7) |
Zn2xiv—Zn2—Zn2ii | 65.05 (4) | Zn2xx—Zn3—Zn2xvi | 112.26 (3) |
Zn2xii—Zn2—Zn2i | 113.70 (3) | Zn2—Zn3—Zn2xvi | 67.74 (3) |
Zn2x—Zn2—Zn2i | 116.33 (3) | Zn2i—Zn3—Zn2xvi | 62.436 (7) |
Zn3—Zn2—Zn2i | 58.782 (3) | Zn2ii—Zn3—Zn2xvi | 117.564 (7) |
Zn2xiii—Zn2—Zn2i | 106.450 (14) | Zn2xiii—Zn3—Zn2xvi | 62.436 (7) |
Zn2xiv—Zn2—Zn2i | 111.18 (2) | Zn2xxi—Zn3—Zn2xvi | 62.436 (7) |
Zn2ii—Zn2—Zn2i | 60.0 | Zn2xxii—Zn3—Zn2xvi | 180.0 |
Zn2xii—Zn2—Zn2ix | 61.62 (4) | Zn2xxiii—Zn3—Zn2xvi | 117.564 (7) |
Zn2x—Zn2—Zn2ix | 134.15 (2) | Zn2xviii—Zn3—Zn2xiv | 62.436 (7) |
Zn3—Zn2—Zn2ix | 103.88 (3) | Zn2xix—Zn3—Zn2xiv | 112.26 (3) |
Zn2xiii—Zn2—Zn2ix | 108.22 (3) | Zn2xx—Zn3—Zn2xiv | 117.564 (7) |
Zn2xiv—Zn2—Zn2ix | 161.98 (3) | Zn2—Zn3—Zn2xiv | 62.436 (7) |
Zn2ii—Zn2—Zn2ix | 111.90 (3) | Zn2i—Zn3—Zn2xiv | 117.564 (7) |
Zn2i—Zn2—Zn2ix | 56.74 (3) | Zn2ii—Zn3—Zn2xiv | 67.74 (3) |
Zn2xii—Zn2—Zn2xv | 61.62 (4) | Zn2xiii—Zn3—Zn2xiv | 62.436 (7) |
Zn2x—Zn2—Zn2xv | 134.15 (2) | Zn2xxi—Zn3—Zn2xiv | 180.00 (3) |
Zn3—Zn2—Zn2xv | 103.88 (3) | Zn2xxii—Zn3—Zn2xiv | 62.436 (7) |
Zn2xiii—Zn2—Zn2xv | 56.74 (3) | Zn2xxiii—Zn3—Zn2xiv | 117.564 (7) |
Zn2xiv—Zn2—Zn2xv | 111.90 (3) | Zn2xvi—Zn3—Zn2xiv | 117.564 (7) |
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) −z+1/2, −y+1/2, x+1/2; (iv) x+1/2, −z+1/2, −y+1/2; (v) −y+1/2, −x+1/2, −z+1/2; (vi) x+1/2, y, −z+1/2; (vii) y, −z+1/2, x+1/2; (viii) −z+1/2, x+1/2, y; (ix) z, −y+1/2, x; (x) x, z, −y+1/2; (xi) −y+1/2, −x, z; (xii) −x, −z+1/2, y; (xiii) −y, z, −x; (xiv) −z, x, y; (xv) −z, −y+1/2, x; (xvi) x, y, −z; (xvii) −x, −y+1/2, −z+1/2; (xviii) −y, −z, −x; (xix) −z, −x, −y; (xx) −x, −y, −z; (xxi) z, −x, −y; (xxii) −x, −y, z; (xxiii) y, −z, x. |
Experimental details
Crystal data | |
Chemical formula | LaZn12.37 |
Mr | 947.00 |
Crystal system, space group | Cubic, Fm3c |
Temperature (K) | 293 |
a (Å) | 12.0940 (9) |
V (Å3) | 1768.9 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 37.49 |
Crystal size (mm) | 0.05 × 0.03 × 0.01 |
Data collection | |
Diffractometer | Agilent Gemini Ultra diffractometer with Eos CCD detector |
Absorption correction | Multi-scan CrysAlis PRO (Agilent, 2011) |
Tmin, Tmax | 0.368, 1.0 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1543, 110, 108 |
Rint | 0.122 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.052, 1.22 |
No. of reflections | 110 |
No. of parameters | 12 |
Δρmax, Δρmin (e Å−3) | 0.81, −1.08 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006)and VESTA (Momma & Izumi, 2008), publCIF (Westrip, 2010).
The results presented in this paper are the part of systematic investigation of ternary rare earth–Zn–Sn systems (see Pavlyuk et al., (2009) and Oshchapovsky et al., (2010)). The corresponding binary La—Zn system is not completely explored yet (Berche et al., 2009).
LaZn12.37 (1) is the only nonstoichiometric compound in the binary La—Zn system. It was found by Rolla et al.(Rolla & Iandelli,1941) for the first time. Later Kuz'ma et al., (1966), Veleckis et al.,(1967) and Iandelli & Palenzona, (1967) determined the cell parameters of LaZn12.37 (1). These parameters vary a little so Veleckis et al. supposed that LaZn12.37 (1) was nonstoichiometric. However, according to Berche et al. (2009) the homogeneity range was not determined accurately. Until now there were no single-crystal data indicating positions with partial occupation. In this article we will try to fill this gap. Unit cell projection of the LaZn12.37 (1) compound together with coordination polyhedra of atoms are given in Figure 1. La1 atoms are surrounded by 24 fully occupied positions of zinc atoms forming pseudo-Frank-Kasper polyhedra [LaZn24] (CN = 24). Coordination polyhedron of the Zn2 atom is distorted icosahedron [ZnLa2Zn10] (CN = 12) made of two lanthanum atoms and ten or nine zinc atoms (one position is partially occupied). Zn3 atom in partially occupied position is surrounded by twelve zinc atoms forming isosahedron [ZnZn12].
Electronic structure of LaZn12.37 (1) was calculated using TB-LMTO-ASA (Andersen et al., 1986) program package. According to the results of calculations by TB-LMTO-ASA package this compound has metallic bonding (see Fig.2). In this compound the formation of bonds is close to those in Zintl phases, however they have different coordination polyhedra. Lanthanum atoms donate their electrons to zinc atoms. So positive charge density can be observed around lanthanum atoms and negative charge density is around zinc atoms. This indicates that besides of metallic bonding which is dominate in this compound the weak covalent interaction also exists. ELF which indicates bond formation is mostly located at zinc atoms (see Fig. 3 a, b, c). Thus zinc - zinc bonding is much stronger than lanthanum - zinc bonding. So this compound can be treated as insertion of lanthanum atoms into framework made of zinc atoms.