Download citation
Download citation
link to html
In the title compound, C17H15NO2S, the seven-membered thia­zepine ring adopts a distorted twist-boat conformation. The dihedral angle between the mean planes of the benzothia­zepin ring system and the attached benzene ring is 47.7 (1)°. In the crystal, pairs of N—H...O hydrogen bonds link inversion-related mol­ecules into dimers, generating R22(8) ring motifs. These dimers are further connected into a chain along the a axis by C—H...O hydrogen bonds, resulting in R22(14) ring motifs. The crystal packing also features C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681202661X/hb6847sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681202661X/hb6847Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S160053681202661X/hb6847Isup3.cml
Supplementary material

CCDC reference: 889797

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.046
  • wR factor = 0.146
  • Data-to-parameter ratio = 21.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for C4 -- C5 .. 5.1 su PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 9 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 53
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT007_ALERT_5_G Note: Number of Unrefined D-H Atoms ............ 1 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). As part of our studies in this area, we now describe the crystal structure of the title compound, (I).

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The seven membered thiazepine ring (N1/S1/C1/C2/C7/C8/C9) adopts twist-boat conformation as indicated by puckering parameters (Cremer & Pople, 1975) QT = 1.0218 (14) Å, θ2 = 74.4 (1)°, φ2 = 178.1 (1)° and φ3 = 174.3 (4)°. The dihedral angle between the benzothiazepin ring system and the benzene ring is 47.7 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Sridevi et al., 2011, Sabari et al., 2011).

In the crystal, the molecules at x, y, z and -x, 1-y, -z are linked by N1—H1···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers (Bernstein et al., 1995). These dimers are further connected into chains along the a axis via C5—H5···O1 hydrogen bonds (Table 1), resulting in R22(14) ring motifs [Fig. 2; symmetry code as in Fig. 2].

The crystal packing also features two C—H···π interactions, the first one between a H3 atom and neighbouring benene ring (C11–C16), with a C3—H3···Cgiii seperation of 2.69 Å and the second one between methyl H17C atom and neighbouring benzene ring (C11–C16), with a C17—H17C···Cgiv seperation of 2.90 Å (Fig. 3 and Table 1; Cg is the centroid of the C11–C16 benzene ring, Symmetry code as in Fig.3).

Related literature top

For the pharmaceutical properties of thiazepin derivatives, see: Tomascovic et al. (2000). For related structures, see: Sridevi et al. (2011); Sabari et al. 2011). For ring-puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of (Z)-methyl 2-(bromomethyl)-3-(2-methoxyphenyl)acrylate 2 mmol) and o-aminothiophenol (2 mmol) in the presence of potassium tert-butoxide (4.8 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 x 20 ml). The organic layer was washed with brine (2 x 20 ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which successfully provide the crude final product ((Z)-3-(2-methoxybenzyl)benzo[b][1,4]thiazepin-4(5H)-one). The final product was purified by column chromatography on silica gel to afford the title compound in good yield (42%). Recrystallisation from ethyl acetate solution afforded colourless blocks.

Refinement top

H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). As part of our studies in this area, we now describe the crystal structure of the title compound, (I).

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The seven membered thiazepine ring (N1/S1/C1/C2/C7/C8/C9) adopts twist-boat conformation as indicated by puckering parameters (Cremer & Pople, 1975) QT = 1.0218 (14) Å, θ2 = 74.4 (1)°, φ2 = 178.1 (1)° and φ3 = 174.3 (4)°. The dihedral angle between the benzothiazepin ring system and the benzene ring is 47.7 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Sridevi et al., 2011, Sabari et al., 2011).

In the crystal, the molecules at x, y, z and -x, 1-y, -z are linked by N1—H1···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers (Bernstein et al., 1995). These dimers are further connected into chains along the a axis via C5—H5···O1 hydrogen bonds (Table 1), resulting in R22(14) ring motifs [Fig. 2; symmetry code as in Fig. 2].

The crystal packing also features two C—H···π interactions, the first one between a H3 atom and neighbouring benene ring (C11–C16), with a C3—H3···Cgiii seperation of 2.69 Å and the second one between methyl H17C atom and neighbouring benzene ring (C11–C16), with a C17—H17C···Cgiv seperation of 2.90 Å (Fig. 3 and Table 1; Cg is the centroid of the C11–C16 benzene ring, Symmetry code as in Fig.3).

For the pharmaceutical properties of thiazepin derivatives, see: Tomascovic et al. (2000). For related structures, see: Sridevi et al. (2011); Sabari et al. 2011). For ring-puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the chains along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. [Symmetry code: (i) -x, -y, -z; (v) -1 - x, 1 - y, z; (vi) -1 + x, y, z; (vii) -2 - x, 1 - y, -z; (viii) -2 + x, y, z].
[Figure 3] Fig. 3. A view of the C—H···π interactions, in the crystal structure of the title compound. Cg is the centroid of the (C11–C16) benzene ring. [Symmetry code: (iii) 1 - x, 2 - y, 1 - z; (iv) -x, 2 - y, -z.]
(Z)-3-(2-Methoxybenzyl)-1,5-benzothiazepin-4(5H)-one top
Crystal data top
C17H15NO2SZ = 2
Mr = 297.36F(000) = 312
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6665 (5) ÅCell parameters from 4197 reflections
b = 9.7612 (4) Åθ = 2.2–29.5°
c = 10.1328 (5) ŵ = 0.22 mm1
α = 108.181 (3)°T = 293 K
β = 101.561 (2)°Block, colourless
γ = 103.217 (3)°0.23 × 0.21 × 0.15 mm
V = 757.83 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4137 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.0 pixels mm-1θmax = 29.5°, θmin = 2.2°
ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.951, Tmax = 0.968l = 1314
16048 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.1349P]
where P = (Fo2 + 2Fc2)/3
4137 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H15NO2Sγ = 103.217 (3)°
Mr = 297.36V = 757.83 (7) Å3
Triclinic, P1Z = 2
a = 8.6665 (5) ÅMo Kα radiation
b = 9.7612 (4) ŵ = 0.22 mm1
c = 10.1328 (5) ÅT = 293 K
α = 108.181 (3)°0.23 × 0.21 × 0.15 mm
β = 101.561 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4137 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2797 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.968Rint = 0.041
16048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
4137 reflectionsΔρmin = 0.26 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1759 (2)0.7930 (2)0.46956 (18)0.0507 (4)
H1A0.18770.87400.55330.061*
C20.3850 (2)0.64173 (18)0.39653 (19)0.0488 (4)
C30.5478 (2)0.6617 (2)0.4686 (2)0.0608 (5)
H30.57760.67750.56680.073*
C40.6642 (2)0.6582 (2)0.3954 (3)0.0722 (6)
H40.77260.67020.44370.087*
C50.6218 (2)0.6371 (3)0.2510 (3)0.0750 (7)
H50.70160.63480.20180.090*
C60.4611 (2)0.6192 (2)0.1781 (2)0.0599 (5)
H60.43320.60570.08030.072*
C70.34186 (19)0.62133 (17)0.25091 (18)0.0451 (4)
C80.07211 (19)0.67234 (17)0.20182 (16)0.0411 (3)
C90.11639 (19)0.80262 (17)0.34308 (17)0.0424 (4)
C100.0753 (2)0.93974 (18)0.33034 (18)0.0486 (4)
H10A0.09441.01260.42710.058*
H10B0.04160.91000.27930.058*
C110.1745 (2)1.01587 (18)0.25198 (17)0.0470 (4)
C120.1171 (2)1.11473 (19)0.19637 (17)0.0513 (4)
C130.2044 (3)1.1847 (2)0.1219 (2)0.0668 (5)
H130.16471.24890.08310.080*
C140.3502 (3)1.1584 (3)0.1058 (2)0.0756 (6)
H140.40841.20510.05560.091*
C150.4107 (3)1.0648 (3)0.1623 (2)0.0704 (6)
H150.51021.04900.15210.085*
C160.3221 (2)0.9936 (2)0.2350 (2)0.0568 (5)
H160.36290.92940.27320.068*
C170.0912 (3)1.2357 (2)0.1686 (2)0.0704 (6)
H17A0.01291.33610.21240.106*
H17B0.19291.23780.19170.106*
H17C0.11211.20020.06500.106*
N10.17774 (16)0.59507 (15)0.17075 (14)0.0454 (3)
H10.14000.51800.08990.055*
O10.06363 (14)0.63859 (14)0.11211 (12)0.0530 (3)
O20.02545 (17)1.13659 (15)0.22258 (14)0.0595 (3)
S10.23445 (6)0.63866 (6)0.49135 (5)0.05956 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0560 (10)0.0537 (9)0.0413 (8)0.0174 (8)0.0217 (7)0.0116 (7)
C20.0453 (9)0.0419 (8)0.0522 (9)0.0133 (7)0.0104 (7)0.0113 (7)
C30.0508 (10)0.0505 (10)0.0644 (11)0.0137 (8)0.0004 (9)0.0117 (8)
C40.0417 (10)0.0606 (12)0.0915 (16)0.0142 (9)0.0038 (10)0.0098 (11)
C50.0451 (11)0.0719 (13)0.1002 (18)0.0195 (9)0.0327 (11)0.0139 (12)
C60.0474 (10)0.0650 (11)0.0615 (11)0.0185 (8)0.0232 (8)0.0108 (9)
C70.0377 (8)0.0405 (8)0.0489 (9)0.0114 (6)0.0122 (7)0.0070 (6)
C80.0380 (8)0.0453 (8)0.0398 (7)0.0105 (6)0.0167 (6)0.0141 (6)
C90.0404 (8)0.0444 (8)0.0435 (8)0.0125 (6)0.0207 (7)0.0130 (6)
C100.0539 (10)0.0462 (8)0.0507 (9)0.0177 (7)0.0272 (8)0.0158 (7)
C110.0503 (9)0.0412 (8)0.0405 (8)0.0065 (7)0.0170 (7)0.0069 (6)
C120.0579 (10)0.0475 (9)0.0393 (8)0.0071 (8)0.0151 (7)0.0103 (7)
C130.0782 (14)0.0627 (12)0.0582 (11)0.0106 (10)0.0229 (10)0.0274 (9)
C140.0785 (15)0.0759 (14)0.0739 (14)0.0068 (11)0.0413 (12)0.0306 (11)
C150.0611 (12)0.0689 (13)0.0770 (14)0.0082 (10)0.0382 (11)0.0193 (11)
C160.0556 (10)0.0518 (9)0.0580 (10)0.0113 (8)0.0238 (9)0.0134 (8)
C170.0779 (14)0.0669 (12)0.0699 (13)0.0253 (11)0.0168 (11)0.0314 (10)
N10.0398 (7)0.0468 (7)0.0403 (7)0.0128 (6)0.0114 (5)0.0047 (5)
O10.0427 (6)0.0618 (7)0.0467 (6)0.0197 (5)0.0108 (5)0.0092 (5)
O20.0643 (8)0.0612 (8)0.0620 (8)0.0232 (6)0.0230 (6)0.0295 (6)
S10.0660 (3)0.0692 (3)0.0533 (3)0.0255 (2)0.0227 (2)0.0295 (2)
Geometric parameters (Å, º) top
C1—C91.323 (2)C10—C111.507 (2)
C1—S11.7571 (19)C10—H10A0.9700
C1—H1A0.9300C10—H10B0.9700
C2—C71.385 (2)C11—C161.381 (3)
C2—C31.391 (3)C11—C121.394 (3)
C2—S11.7687 (18)C12—O21.364 (2)
C3—C41.367 (3)C12—C131.386 (3)
C3—H30.9300C13—C141.376 (3)
C4—C51.371 (3)C13—H130.9300
C4—H40.9300C14—C151.365 (4)
C5—C61.382 (3)C14—H140.9300
C5—H50.9300C15—C161.385 (3)
C6—C71.386 (2)C15—H150.9300
C6—H60.9300C16—H160.9300
C7—N11.410 (2)C17—O21.421 (2)
C8—O11.2353 (19)C17—H17A0.9600
C8—N11.338 (2)C17—H17B0.9600
C8—C91.495 (2)C17—H17C0.9600
C9—C101.497 (2)N1—H10.8600
C9—C1—S1124.92 (13)C11—C10—H10B108.8
C9—C1—H1A117.5H10A—C10—H10B107.7
S1—C1—H1A117.5C16—C11—C12118.41 (16)
C7—C2—C3119.73 (17)C16—C11—C10122.51 (17)
C7—C2—S1120.79 (13)C12—C11—C10119.07 (15)
C3—C2—S1119.47 (15)O2—C12—C13124.34 (18)
C4—C3—C2120.2 (2)O2—C12—C11115.28 (15)
C4—C3—H3119.9C13—C12—C11120.37 (18)
C2—C3—H3119.9C14—C13—C12119.5 (2)
C3—C4—C5120.27 (18)C14—C13—H13120.2
C3—C4—H4119.9C12—C13—H13120.2
C5—C4—H4119.9C15—C14—C13121.1 (2)
C4—C5—C6120.4 (2)C15—C14—H14119.4
C4—C5—H5119.8C13—C14—H14119.4
C6—C5—H5119.8C14—C15—C16119.2 (2)
C5—C6—C7119.9 (2)C14—C15—H15120.4
C5—C6—H6120.1C16—C15—H15120.4
C7—C6—H6120.1C11—C16—C15121.4 (2)
C2—C7—C6119.57 (16)C11—C16—H16119.3
C2—C7—N1122.33 (15)C15—C16—H16119.3
C6—C7—N1118.03 (15)O2—C17—H17A109.5
O1—C8—N1120.15 (13)O2—C17—H17B109.5
O1—C8—C9118.65 (14)H17A—C17—H17B109.5
N1—C8—C9121.18 (14)O2—C17—H17C109.5
C1—C9—C8122.35 (15)H17A—C17—H17C109.5
C1—C9—C10122.86 (14)H17B—C17—H17C109.5
C8—C9—C10114.62 (14)C8—N1—C7129.58 (13)
C9—C10—C11113.97 (14)C8—N1—H1115.2
C9—C10—H10A108.8C7—N1—H1115.2
C11—C10—H10A108.8C12—O2—C17118.25 (15)
C9—C10—H10B108.8C1—S1—C298.07 (8)
C7—C2—C3—C41.3 (3)C16—C11—C12—O2177.21 (14)
S1—C2—C3—C4177.35 (15)C10—C11—C12—O21.7 (2)
C2—C3—C4—C50.9 (3)C16—C11—C12—C132.0 (2)
C3—C4—C5—C60.0 (3)C10—C11—C12—C13179.04 (16)
C4—C5—C6—C70.5 (3)O2—C12—C13—C14177.81 (17)
C3—C2—C7—C60.8 (3)C11—C12—C13—C141.4 (3)
S1—C2—C7—C6177.84 (13)C12—C13—C14—C150.2 (3)
C3—C2—C7—N1177.65 (15)C13—C14—C15—C161.0 (3)
S1—C2—C7—N11.0 (2)C12—C11—C16—C151.2 (3)
C5—C6—C7—C20.1 (3)C10—C11—C16—C15179.90 (17)
C5—C6—C7—N1176.89 (17)C14—C15—C16—C110.3 (3)
S1—C1—C9—C87.8 (2)O1—C8—N1—C7174.44 (16)
S1—C1—C9—C10177.20 (12)C9—C8—N1—C74.2 (3)
O1—C8—C9—C1131.77 (18)C2—C7—N1—C850.9 (3)
N1—C8—C9—C149.6 (2)C6—C7—N1—C8132.22 (18)
O1—C8—C9—C1043.6 (2)C13—C12—O2—C171.0 (3)
N1—C8—C9—C10135.01 (16)C11—C12—O2—C17179.81 (15)
C1—C9—C10—C11118.63 (18)C9—C1—S1—C258.22 (17)
C8—C9—C10—C1166.03 (18)C7—C2—S1—C160.82 (15)
C9—C10—C11—C1619.6 (2)C3—C2—S1—C1120.55 (15)
C9—C10—C11—C12161.57 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.8545 (17)171
C5—H5···O1ii0.932.393.308 (2)171
C3—H3···Cgiii0.932.693.432 (2)138
C17—H17C···Cgiv0.962.903.664 (2)137
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H15NO2S
Mr297.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6665 (5), 9.7612 (4), 10.1328 (5)
α, β, γ (°)108.181 (3), 101.561 (2), 103.217 (3)
V3)757.83 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.23 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
16048, 4137, 2797
Rint0.041
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.146, 1.01
No. of reflections4137
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.8545 (17)171
C5—H5···O1ii0.932.393.308 (2)171
C3—H3···Cgiii0.932.693.432 (2)138
C17—H17C···Cgiv0.962.903.664 (2)137
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds