



Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814017991/hb7267sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536814017991/hb72671sup2.hkl |
CCDC reference: 1017949
Key indicators
- Single-crystal X-ray study
- T = 100 K
- Mean
(C-C) = 0.004 Å
- R factor = 0.043
- wR factor = 0.123
- Data-to-parameter ratio = 16.5
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.156 Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 6 Report PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers .... 1 Check
Alert level G PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 15 Report PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High . 0.300 Report PLAT850_ALERT_4_G Check Flack Parameter Exact Value 0.00 and su .. 0.30 Check PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 90 Note PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 24 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
TEMPO, 2,2,6,6-tetramethylpiperidin-1-oxyl, and its derivatives have attracted significant interest in recent years as functional organic radicals with considerable chemical stability (Soegiarto et al., 2011). They are known to exhibit both ferromagnetism and antiferromagnetism at low temperatures (Togashi et al., 1996; Ishida et al., 1995), and the effect of intermolecular contacts on their magnetic properties has been examined (Iwasaki et al., 1999a,b). TEMPO and its derivatives have been utilized in applications as diverse as catalysis in organic synthesis (Zhao et al., 2005), pulsed electron–electron double-resonance (PELDOR) spectroscopy (Bode et al., 2007), and use as qubits (quantum bits) in quantum computing (Nakazawa et al., 2012).
Our interest in TEMPO derivatives is as reversible redox-active subunits in polymer-gel actuators (Goswami et al., 2013). In particular, the alkyne group present in the title compound, (1), allows us to utilize the versatile CuAAC `click' cycloaddition with organic azides (Hein & Fokin, 2010; Lewis et al., 2013) as a means to attach the TEMPO unit to the gel skeleton.
The structure of (1) and its atom numbering are shown in Fig. 1. The molecule comprises a standard TEMPO unit with a propynyloxy substituent at the 4-position. The N1/C2–C6 ring adopts a flattened chair conformation with the C4 atom 0.706 (4) Å from the best fit plane through the remaining four C atoms, while N1 lies only 0.384 (4) Å from the plane in the opposite direction. The propynyl C7–C9 unit points away from this plane in the same direction as C4, with C7—C8—C9 = 178.6 (3)°. The N—O bond is 1.289 (3) Å long, which compares favorably with the average value of 1.285 (18) Å for other TEMPO structures (Macrae et al., 2008).
In the crystal structure of (1), C9—H9···O1 hydrogen bonds link molecules into C(9) chains along b (Table 1). Additional C61—H61A···O1 contacts form R32(16) rings, resulting in double chains of molecules along b (Fig. 2). In an almost orthogonal direction, C7—H7B···O2 hydrogen bonds form C(3) chains along a. An interesting feature of these latter contacts is the support provided by C5—H5B···Cg interactions (Cg is the mid-point of the C8—C9 bond) involving the alkyne unit (Fig. 3). Such contacts are often overlooked, but they have been reported previously for both terminal and non-terminal alkyne systems (Banerjee et al., 2006; Thakur et al., 2010; McAdam et al., 2012). Overall, these contacts generate a three-dimensional network with molecules stacked in interconnected columns along the b axis (Fig. 4).
The Cambridge Structural Database (CSD; Version 5.35, November 2013 with 2 updates; Allen, 2002) reveals a total of 175 structures of TEMPO and its derivatives. However, structures of alkoxy-TEMPO derivatives are rare with only a single example, albeit in two separate papers in which Polovyanenko et al. (2008) and Soegiarto et al. (2011) report the structure of 4-(methoxy)-TEMPO, 4-(methoxy)-2,2,6,6-tetramethylpiperidin-1-oxyl. The first paper examines the TEMPO derivative as an inclusion complex of p-hexanoyl calix[4]arene (C6OH), and investigates the magnetism and orientation dependent motion of the encapsulated radical. In the second, the molecule is included in the cavities of two porous frameworks derived from guanidinium cations and two organodisulfonate anions; the magnetic behaviour of the radical guest is investigated. Aryloyloxy-TEMPO derivatives are more abundant with 19 entries in the CSD (see, for example, Pang et al., 2013; Nakazawa et al., 2012; Akutsu et al., 2005). Again, the focus is very much on the magnetic properties of the materials.
Synthesis and characterisation (IR and mass spectroscopy) are as previously described (Gheorghe et al., 2006; Kulis et al., 2009). Colourless blocks were obtained from diethyl ether solution at room temperature. Analysis calculated for C12H20NO2: C 68.54, H 9.59, N 6.66%; found: C 68.57, H 9.66, N 6.68%.
Crystal data, data collection and structure refinement details are summarized in Table 2. With no heavy atom in the non-centrosymmetric structure, the absolute structure could not be reliably determined. Friedel opposites were not, however, merged. All H atoms were refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the terminal alkyne H atom. Anisiotropic refinement of the non-H atoms was constrained using the ISOR command in SHELXL to prevent atoms becoming non-positive definite. 10 reflections with Fo >> Fc were omitted from the final refinement cycles.
Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).
C12H20NO2 | Dx = 1.167 Mg m−3 |
Mr = 210.29 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 4862 reflections |
a = 7.94506 (13) Å | θ = 5.3–74.2° |
b = 10.17919 (16) Å | µ = 0.63 mm−1 |
c = 14.8052 (3) Å | T = 100 K |
V = 1197.36 (4) Å3 | Block, colourless |
Z = 4 | 0.18 × 0.15 × 0.08 mm |
F(000) = 460 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2307 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2203 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.046 |
Detector resolution: 5.1725 pixels mm-1 | θmax = 74.3°, θmin = 5.3° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −12→12 |
Tmin = 0.522, Tmax = 1.000 | l = −18→13 |
6622 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0376P)2 + 1.029P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.123 | (Δ/σ)max < 0.001 |
S = 1.15 | Δρmax = 0.22 e Å−3 |
2307 reflections | Δρmin = −0.28 e Å−3 |
140 parameters | Absolute structure: Flack x determined using 858 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
90 restraints | Absolute structure parameter: 0.0 (3) |
C12H20NO2 | V = 1197.36 (4) Å3 |
Mr = 210.29 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 7.94506 (13) Å | µ = 0.63 mm−1 |
b = 10.17919 (16) Å | T = 100 K |
c = 14.8052 (3) Å | 0.18 × 0.15 × 0.08 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2307 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 2203 reflections with I > 2σ(I) |
Tmin = 0.522, Tmax = 1.000 | Rint = 0.046 |
6622 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.123 | Δρmax = 0.22 e Å−3 |
S = 1.15 | Δρmin = −0.28 e Å−3 |
2307 reflections | Absolute structure: Flack x determined using 858 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
140 parameters | Absolute structure parameter: 0.0 (3) |
90 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3936 (3) | 0.73046 (19) | 0.71556 (15) | 0.0174 (5) | |
N1 | 0.3444 (3) | 0.8315 (2) | 0.67027 (16) | 0.0107 (5) | |
C2 | 0.2036 (4) | 0.9093 (3) | 0.71116 (19) | 0.0116 (6) | |
C21 | 0.2698 (4) | 0.9827 (3) | 0.7945 (2) | 0.0169 (6) | |
H21A | 0.3310 | 0.9214 | 0.8335 | 0.025* | |
H21B | 0.1750 | 1.0205 | 0.8280 | 0.025* | |
H21C | 0.3457 | 1.0533 | 0.7753 | 0.025* | |
C22 | 0.0670 (4) | 0.8118 (3) | 0.7398 (2) | 0.0179 (7) | |
H22A | 0.0301 | 0.7611 | 0.6872 | 0.027* | |
H22B | −0.0289 | 0.8599 | 0.7651 | 0.027* | |
H22C | 0.1125 | 0.7520 | 0.7856 | 0.027* | |
C3 | 0.1325 (3) | 1.0046 (3) | 0.6408 (2) | 0.0119 (6) | |
H3A | 0.0654 | 0.9543 | 0.5964 | 0.014* | |
H3B | 0.0558 | 1.0671 | 0.6714 | 0.014* | |
C4 | 0.2663 (4) | 1.0812 (3) | 0.59126 (19) | 0.0099 (6) | |
H4 | 0.3331 | 1.1364 | 0.6341 | 0.012* | |
C5 | 0.3796 (4) | 0.9843 (3) | 0.54137 (19) | 0.0112 (6) | |
H5A | 0.4664 | 1.0342 | 0.5078 | 0.013* | |
H5B | 0.3110 | 0.9357 | 0.4966 | 0.013* | |
C6 | 0.4674 (4) | 0.8850 (3) | 0.6036 (2) | 0.0114 (6) | |
C61 | 0.6167 (4) | 0.9461 (3) | 0.6539 (2) | 0.0152 (6) | |
H61A | 0.5803 | 1.0270 | 0.6840 | 0.023* | |
H61B | 0.7065 | 0.9665 | 0.6108 | 0.023* | |
H61C | 0.6587 | 0.8839 | 0.6991 | 0.023* | |
C62 | 0.5300 (4) | 0.7698 (3) | 0.5464 (2) | 0.0168 (6) | |
H62A | 0.5934 | 0.7087 | 0.5846 | 0.025* | |
H62B | 0.6031 | 0.8028 | 0.4982 | 0.025* | |
H62C | 0.4335 | 0.7240 | 0.5197 | 0.025* | |
O2 | 0.1772 (3) | 1.16202 (19) | 0.52724 (14) | 0.0140 (5) | |
C7 | 0.2733 (4) | 1.2682 (3) | 0.4916 (2) | 0.0149 (6) | |
H7A | 0.2201 | 1.2992 | 0.4350 | 0.018* | |
H7B | 0.3877 | 1.2362 | 0.4765 | 0.018* | |
C8 | 0.2872 (4) | 1.3793 (3) | 0.5551 (2) | 0.0160 (6) | |
C9 | 0.2975 (4) | 1.4705 (3) | 0.6048 (2) | 0.0198 (7) | |
H9 | 0.3058 | 1.5435 | 0.6445 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0281 (11) | 0.0083 (9) | 0.0159 (11) | 0.0025 (9) | 0.0015 (10) | 0.0060 (8) |
N1 | 0.0172 (11) | 0.0066 (10) | 0.0085 (10) | 0.0001 (9) | 0.0007 (10) | 0.0011 (8) |
C2 | 0.0163 (13) | 0.0110 (12) | 0.0075 (12) | −0.0005 (11) | 0.0037 (12) | 0.0002 (10) |
C21 | 0.0245 (15) | 0.0169 (14) | 0.0092 (14) | −0.0002 (12) | −0.0002 (13) | −0.0026 (11) |
C22 | 0.0208 (15) | 0.0190 (15) | 0.0140 (15) | −0.0056 (12) | 0.0028 (13) | 0.0044 (12) |
C3 | 0.0145 (12) | 0.0110 (12) | 0.0101 (13) | 0.0020 (10) | 0.0011 (11) | −0.0008 (10) |
C4 | 0.0148 (13) | 0.0087 (12) | 0.0061 (12) | 0.0005 (10) | 0.0000 (11) | 0.0012 (9) |
C5 | 0.0160 (12) | 0.0092 (12) | 0.0084 (13) | −0.0001 (10) | 0.0009 (11) | 0.0009 (10) |
C6 | 0.0161 (12) | 0.0090 (12) | 0.0090 (13) | 0.0008 (10) | −0.0008 (11) | 0.0015 (10) |
C61 | 0.0165 (13) | 0.0132 (13) | 0.0160 (15) | −0.0004 (11) | −0.0003 (13) | 0.0025 (11) |
C62 | 0.0229 (14) | 0.0122 (13) | 0.0153 (16) | 0.0036 (11) | 0.0048 (13) | −0.0019 (11) |
O2 | 0.0178 (10) | 0.0102 (9) | 0.0140 (10) | 0.0000 (8) | −0.0032 (9) | 0.0041 (7) |
C7 | 0.0209 (14) | 0.0105 (12) | 0.0133 (14) | 0.0004 (11) | −0.0017 (12) | 0.0040 (10) |
C8 | 0.0178 (13) | 0.0139 (13) | 0.0161 (14) | −0.0007 (11) | −0.0008 (12) | 0.0057 (11) |
C9 | 0.0275 (15) | 0.0155 (15) | 0.0164 (15) | −0.0025 (12) | −0.0026 (14) | 0.0022 (12) |
O1—N1 | 1.289 (3) | C5—C6 | 1.535 (4) |
N1—C6 | 1.492 (4) | C5—H5A | 0.9900 |
N1—C2 | 1.498 (4) | C5—H5B | 0.9900 |
C2—C3 | 1.531 (4) | C6—C62 | 1.530 (4) |
C2—C22 | 1.531 (4) | C6—C61 | 1.532 (4) |
C2—C21 | 1.536 (4) | C61—H61A | 0.9800 |
C21—H21A | 0.9800 | C61—H61B | 0.9800 |
C21—H21B | 0.9800 | C61—H61C | 0.9800 |
C21—H21C | 0.9800 | C62—H62A | 0.9800 |
C22—H22A | 0.9800 | C62—H62B | 0.9800 |
C22—H22B | 0.9800 | C62—H62C | 0.9800 |
C22—H22C | 0.9800 | O2—C7 | 1.424 (3) |
C3—C4 | 1.509 (4) | C7—C8 | 1.475 (4) |
C3—H3A | 0.9900 | C7—H7A | 0.9900 |
C3—H3B | 0.9900 | C7—H7B | 0.9900 |
C4—O2 | 1.441 (3) | C8—C9 | 1.187 (5) |
C4—C5 | 1.526 (4) | C9—H9 | 0.9500 |
C4—H4 | 1.0000 | ||
O1—N1—C6 | 115.9 (2) | C4—C5—C6 | 113.8 (2) |
O1—N1—C2 | 116.0 (2) | C4—C5—H5A | 108.8 |
C6—N1—C2 | 124.3 (2) | C6—C5—H5A | 108.8 |
N1—C2—C3 | 109.6 (2) | C4—C5—H5B | 108.8 |
N1—C2—C22 | 107.3 (2) | C6—C5—H5B | 108.8 |
C3—C2—C22 | 109.7 (2) | H5A—C5—H5B | 107.7 |
N1—C2—C21 | 109.1 (2) | N1—C6—C62 | 107.4 (2) |
C3—C2—C21 | 111.4 (2) | N1—C6—C61 | 109.5 (2) |
C22—C2—C21 | 109.6 (2) | C62—C6—C61 | 109.2 (2) |
C2—C21—H21A | 109.5 | N1—C6—C5 | 109.9 (2) |
C2—C21—H21B | 109.5 | C62—C6—C5 | 108.7 (2) |
H21A—C21—H21B | 109.5 | C61—C6—C5 | 112.1 (2) |
C2—C21—H21C | 109.5 | C6—C61—H61A | 109.5 |
H21A—C21—H21C | 109.5 | C6—C61—H61B | 109.5 |
H21B—C21—H21C | 109.5 | H61A—C61—H61B | 109.5 |
C2—C22—H22A | 109.5 | C6—C61—H61C | 109.5 |
C2—C22—H22B | 109.5 | H61A—C61—H61C | 109.5 |
H22A—C22—H22B | 109.5 | H61B—C61—H61C | 109.5 |
C2—C22—H22C | 109.5 | C6—C62—H62A | 109.5 |
H22A—C22—H22C | 109.5 | C6—C62—H62B | 109.5 |
H22B—C22—H22C | 109.5 | H62A—C62—H62B | 109.5 |
C4—C3—C2 | 113.5 (2) | C6—C62—H62C | 109.5 |
C4—C3—H3A | 108.9 | H62A—C62—H62C | 109.5 |
C2—C3—H3A | 108.9 | H62B—C62—H62C | 109.5 |
C4—C3—H3B | 108.9 | C7—O2—C4 | 114.4 (2) |
C2—C3—H3B | 108.9 | O2—C7—C8 | 112.7 (2) |
H3A—C3—H3B | 107.7 | O2—C7—H7A | 109.1 |
O2—C4—C3 | 105.6 (2) | C8—C7—H7A | 109.1 |
O2—C4—C5 | 109.9 (2) | O2—C7—H7B | 109.1 |
C3—C4—C5 | 108.5 (2) | C8—C7—H7B | 109.1 |
O2—C4—H4 | 110.9 | H7A—C7—H7B | 107.8 |
C3—C4—H4 | 110.9 | C9—C8—C7 | 178.6 (3) |
C5—C4—H4 | 110.9 | C8—C9—H9 | 180.0 |
O1—N1—C2—C3 | −166.8 (2) | O1—N1—C6—C62 | 49.9 (3) |
C6—N1—C2—C3 | 36.2 (4) | C2—N1—C6—C62 | −153.1 (3) |
O1—N1—C2—C22 | −47.7 (3) | O1—N1—C6—C61 | −68.6 (3) |
C6—N1—C2—C22 | 155.3 (3) | C2—N1—C6—C61 | 88.4 (3) |
O1—N1—C2—C21 | 71.0 (3) | O1—N1—C6—C5 | 167.9 (2) |
C6—N1—C2—C21 | −86.0 (3) | C2—N1—C6—C5 | −35.1 (4) |
N1—C2—C3—C4 | −47.6 (3) | C4—C5—C6—N1 | 45.1 (3) |
C22—C2—C3—C4 | −165.2 (2) | C4—C5—C6—C62 | 162.3 (2) |
C21—C2—C3—C4 | 73.2 (3) | C4—C5—C6—C61 | −76.9 (3) |
C2—C3—C4—O2 | 178.6 (2) | C3—C4—O2—C7 | 163.0 (2) |
C2—C3—C4—C5 | 60.8 (3) | C5—C4—O2—C7 | −80.2 (3) |
O2—C4—C5—C6 | −174.6 (2) | C4—O2—C7—C8 | −77.8 (3) |
C3—C4—C5—C6 | −59.5 (3) |
Cg is the mid-point of the C8–C9 bond. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1i | 0.95 | 2.28 | 3.205 (4) | 163 |
C7—H7B···O2ii | 0.99 | 2.52 | 3.298 (4) | 135 |
C61—H61A···O1iii | 0.98 | 2.56 | 3.481 (4) | 157 |
C5—H5B···Cgiv | 0.99 | 2.93 | 3.885 (4) | 156 |
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, −y+5/2, −z+1; (iii) −x+1, y+1/2, −z+3/2; (iv) −x−1, y+5/2, −z+3/2. |
Cg is the mid-point of the C8–C9 bond. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1i | 0.95 | 2.28 | 3.205 (4) | 163 |
C7—H7B···O2ii | 0.99 | 2.52 | 3.298 (4) | 135 |
C61—H61A···O1iii | 0.98 | 2.56 | 3.481 (4) | 157 |
C5—H5B···Cgiv | 0.99 | 2.93 | 3.885 (4) | 156 |
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, −y+5/2, −z+1; (iii) −x+1, y+1/2, −z+3/2; (iv) −x−1, y+5/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C12H20NO2 |
Mr | 210.29 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 7.94506 (13), 10.17919 (16), 14.8052 (3) |
V (Å3) | 1197.36 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.63 |
Crystal size (mm) | 0.18 × 0.15 × 0.08 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2013) |
Tmin, Tmax | 0.522, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6622, 2307, 2203 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.123, 1.15 |
No. of reflections | 2307 |
No. of parameters | 140 |
No. of restraints | 90 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.28 |
Absolute structure | Flack x determined using 858 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
Absolute structure parameter | 0.0 (3) |
Computer programs: CrysAlis PRO (Agilent, 2013), SIR2011 (Burla et al., 2012), SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).