Download citation
Download citation
link to html
In the title 1:1 adduct, C6H7N·C7H7NO2, the carb­oxy­lic acid group is twisted at an angle of 4.32 (18)° with respect to the attached benzene ring. In the crystal, the carb­oxy­lic acid group is linked to the pyridine ring by an O—H...N hydrogen bond, forming a dimer. The dimers are linked by N—H...O hydrogen bonds, generating (010) sheets.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015000791/hb7348sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015000791/hb7348Isup2.hkl
Contains datablock I

CCDC reference: 1043592

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.038
  • wR factor = 0.108
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT031_ALERT_4_C Refined Extinction Parameter within Range ...... 3.250 Sigma PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0043 Ang. PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -0.668 Report PLAT915_ALERT_3_C Low Friedel Pair Coverage ...................... 63 %
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 2 Note PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 2 Report PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 Note C6 H7 N PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 3 Note PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 2 Report PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 5 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 10 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Chemical context top

Amino­pyridine and its derivatives play an important role in heterocyclic chemistry (Katritzky et al., 1996). Some pyridine derivatives possess nonlinear optical (NLO) properties (Tomaru et al., 1991) and possess anti­bacterial and anti­fungal activities (Akkurt et al., 2005). we herewith, report the synthesis and the crystal structure of (I) (Fig. 1).

Structural commentary top

The molecular structure of the title compound (I) is shown in (Fig. 1). It consists of two independent molecules in the assymetric unit. In the 4-amino­benzoic acid molecule, the carboxyl group is twisted at an angle of 4.32 (18)° with respect to the aromatic ring. In the 4-methyl­pyridine molecule, the pyridine ring (C8—C12/N2) is almost planar [maximum deviation 0.002 (3) Å]. The dihedral angle between the benzene ring (C1—C6) and pyridine ring (C8—C12/N2) is 57.11 (14)°.

Supra­molecular features top

In the crystal structure, 4-amino­benzoate and 4-methyl­pyridine molecules are linked by weak inter­molecular O—H···N hydrogen bonds and forms infinite one-dimensional chain along [0 0 1]. The adjacent 4-amino­benzoate molecules are connected by weak inter­molecular N—H···O hydrogen bonds, forming R22(12) ring motif in a two-dimensional network in the (010) plane (Table 2 & Fig. 2).

Database survey top

Several similar structures containing methyl­pyridinium and nitro­benzoate molecules have been reported earlier: i.e., 2-Amino-5-methyl­pyridinium 2-amino­benzoate (Thanigaimani et al., 2012); 2-Amino-5-chloro­pyridinium 4-amino­benzoate (Kannan et al., 2012); 2-Amino-4-methyl­pyridinium 2-nitro­benzoate (Muralidharan et al., 2013); 4-Methyl­pyridinium 2-carb­oxy-4,5-di­chloro­benzoate monohydrate [Smith & Wermuth, (2010)]; 2-Amino-4-methyl­pyridinium 2-hy­droxy­benzoate [Hemamalini & Fun (2010)].

Synthesis and crystallization top

Equimolar qu­antity of 4-methyl­pyridine and 4-amino­benzoic acid were dissolved in methanol-water mixed solvent and colourless blocks of the title adduct were grown by slow evaporation of the solvents.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(C or N) or 1.5 Ueq(C) The hydroxyl H atom was located in a difference Fourier map, and refined with Uiso(H) = 1.2 Ueq(O) and distance restraint O—H = 0.82 Å.

Related literature top

For background to pyridine derivatives, see: Tomaru et al. (1991). Katritzky et al. (1996); Akkurt et al. (2005). For related structures, see: Smith & Wermuth (2010); Hemamalini & Fun (2010); Kannan et al. (2012); Thanigaimani et al. (2012); Muralidharan et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
4-Aminobenzoic acid–4-methylpyridine (1/1) top
Crystal data top
C6H7N·C7H7NO2F(000) = 244
Mr = 230.26Dx = 1.232 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 2749 reflections
a = 7.5970 (7) Åθ = 3.4–21.8°
b = 11.6665 (12) ŵ = 0.09 mm1
c = 7.6754 (8) ÅT = 295 K
β = 114.200 (3)°Block, colourless
V = 620.49 (11) Å30.28 × 0.24 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2144 independent reflections
Radiation source: fine-focus sealed tube1458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 26.7°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.977, Tmax = 0.983k = 1414
10064 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0229P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2144 reflectionsΔρmax = 0.12 e Å3
159 parametersΔρmin = 0.13 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (4)
Crystal data top
C6H7N·C7H7NO2V = 620.49 (11) Å3
Mr = 230.26Z = 2
Monoclinic, PcMo Kα radiation
a = 7.5970 (7) ŵ = 0.09 mm1
b = 11.6665 (12) ÅT = 295 K
c = 7.6754 (8) Å0.28 × 0.24 × 0.20 mm
β = 114.200 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2144 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1458 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.030
10064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.12 e Å3
2144 reflectionsΔρmin = 0.13 e Å3
159 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3693 (4)0.1034 (2)0.7149 (4)0.0567 (6)
C20.4434 (4)0.2029 (2)0.6722 (4)0.0591 (7)
H20.36710.24710.56750.071*
C30.6273 (4)0.2362 (2)0.7829 (3)0.0558 (6)
H30.67370.30370.75290.067*
C40.7475 (4)0.1730 (2)0.9383 (4)0.0508 (6)
C50.6737 (4)0.0738 (2)0.9798 (4)0.0594 (7)
H50.75160.02941.08350.071*
C60.4892 (4)0.0392 (2)0.8724 (4)0.0629 (7)
H60.44290.02780.90430.076*
C70.9416 (4)0.2104 (2)1.0596 (4)0.0587 (7)
C80.4371 (5)0.4546 (2)1.3188 (5)0.0729 (8)
H80.35670.51481.31830.087*
C90.6306 (4)0.4655 (2)1.4263 (4)0.0693 (8)
H90.67910.53191.49670.083*
C100.7534 (4)0.3784 (2)1.4304 (4)0.0639 (7)
C110.6716 (4)0.2836 (2)1.3242 (4)0.0718 (8)
H110.74870.22201.32290.086*
C120.4767 (5)0.2790 (3)1.2196 (4)0.0766 (9)
H120.42490.21351.14790.092*
C130.9658 (5)0.3866 (3)1.5468 (6)0.0954 (11)
H13A1.03100.39411.46350.143*
H13B1.00990.31861.62290.143*
H13C0.99300.45241.62890.143*
N10.1840 (4)0.0710 (2)0.6087 (4)0.0827 (8)
H1A0.11130.11240.51370.099*
H1B0.13950.00920.63640.099*
N20.3582 (3)0.3627 (2)1.2152 (4)0.0722 (6)
O10.9921 (3)0.30989 (17)1.0123 (3)0.0808 (6)
H11.109 (2)0.324 (3)1.076 (5)0.121*
O21.0516 (3)0.15755 (17)1.1996 (3)0.0778 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0545 (16)0.0584 (15)0.0526 (15)0.0071 (14)0.0173 (13)0.0070 (14)
C20.0599 (17)0.0581 (15)0.0489 (15)0.0009 (12)0.0118 (13)0.0088 (12)
C30.0582 (16)0.0536 (13)0.0509 (15)0.0050 (13)0.0175 (13)0.0058 (12)
C40.0529 (14)0.0490 (12)0.0442 (13)0.0040 (12)0.0135 (12)0.0026 (12)
C50.0671 (18)0.0516 (14)0.0484 (16)0.0021 (13)0.0124 (14)0.0046 (12)
C60.077 (2)0.0518 (14)0.0590 (17)0.0076 (14)0.0273 (15)0.0048 (13)
C70.0563 (17)0.0532 (13)0.0583 (17)0.0045 (13)0.0150 (14)0.0003 (14)
C80.0630 (18)0.0626 (16)0.081 (2)0.0031 (15)0.0172 (16)0.0007 (16)
C90.068 (2)0.0617 (17)0.0665 (19)0.0085 (14)0.0150 (16)0.0042 (13)
C100.0579 (18)0.0740 (17)0.0585 (17)0.0045 (16)0.0225 (14)0.0063 (15)
C110.0680 (19)0.0723 (18)0.078 (2)0.0015 (15)0.0325 (18)0.0048 (16)
C120.077 (2)0.0747 (19)0.074 (2)0.0158 (17)0.0260 (17)0.0171 (16)
C130.0604 (19)0.105 (2)0.104 (3)0.0070 (17)0.0163 (18)0.002 (2)
N10.0655 (16)0.0852 (18)0.0809 (18)0.0163 (13)0.0132 (14)0.0063 (15)
N20.0567 (14)0.0719 (15)0.0766 (16)0.0059 (13)0.0157 (12)0.0023 (13)
O10.0588 (11)0.0691 (12)0.0883 (16)0.0105 (10)0.0035 (11)0.0130 (11)
O20.0678 (13)0.0726 (12)0.0665 (12)0.0068 (10)0.0006 (10)0.0090 (10)
Geometric parameters (Å, º) top
C1—N11.359 (4)C8—H80.9300
C1—C21.387 (3)C9—C101.371 (4)
C1—C61.397 (4)C9—H90.9300
C2—C31.361 (4)C10—C111.363 (4)
C2—H20.9300C10—C131.493 (5)
C3—C41.380 (3)C11—C121.366 (4)
C3—H30.9300C11—H110.9300
C4—C51.379 (3)C12—N21.319 (4)
C4—C71.452 (3)C12—H120.9300
C5—C61.364 (4)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C7—O21.224 (3)N1—H1A0.8600
C7—O11.319 (3)N1—H1B0.8600
C8—N21.323 (3)O1—H10.836 (10)
C8—C91.365 (4)
N1—C1—C2120.8 (2)C8—C9—C10119.9 (3)
N1—C1—C6121.2 (2)C8—C9—H9120.0
C2—C1—C6118.0 (2)C10—C9—H9120.0
C3—C2—C1120.2 (2)C11—C10—C9116.6 (3)
C3—C2—H2119.9C11—C10—C13121.7 (3)
C1—C2—H2119.9C9—C10—C13121.7 (3)
C2—C3—C4122.2 (2)C10—C11—C12120.2 (3)
C2—C3—H3118.9C10—C11—H11119.9
C4—C3—H3118.9C12—C11—H11119.9
C5—C4—C3117.4 (2)N2—C12—C11123.4 (3)
C5—C4—C7120.4 (2)N2—C12—H12118.3
C3—C4—C7122.1 (2)C11—C12—H12118.3
C6—C5—C4121.5 (2)C10—C13—H13A109.5
C6—C5—H5119.2C10—C13—H13B109.5
C4—C5—H5119.2H13A—C13—H13B109.5
C5—C6—C1120.6 (2)C10—C13—H13C109.5
C5—C6—H6119.7H13A—C13—H13C109.5
C1—C6—H6119.7H13B—C13—H13C109.5
O2—C7—O1120.9 (3)C1—N1—H1A120.0
O2—C7—C4124.1 (2)C1—N1—H1B120.0
O1—C7—C4115.0 (2)H1A—N1—H1B120.0
N2—C8—C9123.3 (3)C12—N2—C8116.6 (3)
N2—C8—H8118.4C7—O1—H1112 (3)
C9—C8—H8118.4
N1—C1—C2—C3178.1 (3)C3—C4—C7—O2179.2 (3)
C6—C1—C2—C30.5 (4)C5—C4—C7—O1176.1 (2)
C1—C2—C3—C40.9 (4)C3—C4—C7—O11.3 (3)
C2—C3—C4—C50.5 (4)N2—C8—C9—C100.0 (5)
C2—C3—C4—C7178.1 (2)C8—C9—C10—C110.2 (4)
C3—C4—C5—C60.2 (4)C8—C9—C10—C13179.7 (3)
C7—C4—C5—C6177.4 (2)C9—C10—C11—C120.4 (4)
C4—C5—C6—C10.5 (4)C13—C10—C11—C12179.9 (3)
N1—C1—C6—C5178.8 (3)C10—C11—C12—N20.4 (5)
C2—C1—C6—C50.2 (4)C11—C12—N2—C80.1 (5)
C5—C4—C7—O21.7 (4)C9—C8—N2—C120.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.84 (1)1.81 (1)2.644 (3)177 (4)
N1—H1A···O2ii0.862.323.049 (3)142
N1—H1B···O2iii0.862.173.031 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z1; (iii) x1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.836 (10)1.809 (11)2.644 (3)177 (4)
N1—H1A···O2ii0.862.323.049 (3)142
N1—H1B···O2iii0.862.173.031 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z1; (iii) x1, y, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds