The crystal structure of a new polymorph of CdTe2O5, designated as the β-form, contains 2∞[Te2O5]2– (100) layers with an undulating shape.
Supporting information
CCDC reference: 2002758
Key indicators
- Single-crystal X-ray study
- T = 100 K
- Mean (Cd-O) = 0.003 Å
- R factor = 0.024
- wR factor = 0.045
- Data-to-parameter ratio = 25.0
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT975_ALERT_2_C Check Calcd Resid. Dens. 0.67A From O3 0.93 eA-3
PLAT975_ALERT_2_C Check Calcd Resid. Dens. 0.66A From O2 0.77 eA-3
PLAT976_ALERT_2_C Check Calcd Resid. Dens. 1.06A From O5 -0.75 eA-3
Alert level G
PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 3 Info
PLAT395_ALERT_2_G Deviating X-O-Y Angle From 120 for O5 103.5 Degree
PLAT432_ALERT_2_G Short Inter X...Y Contact Te2 ..O1 3.09 Ang.
x,3/2-y,-1/2+z = 4_575 Check
PLAT794_ALERT_5_G Tentative Bond Valency for Cd1 (II) . 2.19 Info
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 1 Note
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
5 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Cadmium pentaoxidoditellurate(IV)
top
Crystal data top
CdTe2O5 | F(000) = 768 |
Mr = 447.60 | Dx = 5.699 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4535 (5) Å | Cell parameters from 2645 reflections |
b = 5.5806 (3) Å | θ = 2.4–32.1° |
c = 10.8607 (5) Å | µ = 15.08 mm−1 |
β = 114.430 (1)° | T = 100 K |
V = 521.67 (5) Å3 | Block, colourless |
Z = 4 | 0.10 × 0.06 × 0.05 mm |
Data collection top
Bruker APEXII CCD diffractometer | 1462 reflections with I > 2σ(I) |
ω– and φ–scan | Rint = 0.045 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 32.1°, θmin = 3.8° |
Tmin = 0.600, Tmax = 0.746 | h = −14→14 |
9236 measured reflections | k = −8→8 |
1827 independent reflections | l = −15→16 |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: isomorphous structure methods |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0171P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.045 | (Δ/σ)max = 0.001 |
S = 1.00 | Δρmax = 1.20 e Å−3 |
1827 reflections | Δρmin = −1.03 e Å−3 |
73 parameters | |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Te1 | 0.25911 (3) | 0.32034 (5) | 0.72297 (3) | 0.01195 (7) | |
Te2 | 0.34935 (3) | 0.64780 (5) | 0.49078 (3) | 0.01181 (7) | |
Cd1 | 0.01900 (4) | 0.79762 (6) | 0.63620 (3) | 0.01416 (8) | |
O1 | 0.1293 (4) | 0.4948 (5) | 0.7821 (3) | 0.0141 (6) | |
O2 | 0.1216 (4) | 0.1359 (5) | 0.5843 (3) | 0.0188 (7) | |
O3 | 0.2239 (4) | 0.5960 (5) | 0.5973 (3) | 0.0163 (7) | |
O4 | 0.2081 (4) | 0.0287 (6) | 0.8466 (3) | 0.0162 (7) | |
O5 | 0.4791 (4) | 0.3979 (6) | 0.5962 (3) | 0.0176 (7) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Te1 | 0.00997 (13) | 0.01304 (14) | 0.01191 (13) | 0.00123 (10) | 0.00360 (10) | −0.00069 (10) |
Te2 | 0.01214 (13) | 0.01187 (13) | 0.01070 (13) | −0.00178 (10) | 0.00399 (10) | −0.00077 (10) |
Cd1 | 0.01824 (16) | 0.01311 (16) | 0.01254 (15) | 0.00370 (12) | 0.00778 (13) | 0.00255 (12) |
O1 | 0.0171 (16) | 0.0124 (15) | 0.0175 (15) | 0.0035 (12) | 0.0116 (13) | 0.0054 (12) |
O2 | 0.0256 (18) | 0.0146 (16) | 0.0109 (15) | −0.0055 (14) | 0.0023 (13) | −0.0008 (13) |
O3 | 0.0199 (17) | 0.0142 (15) | 0.0209 (16) | 0.0035 (13) | 0.0144 (14) | 0.0032 (13) |
O4 | 0.0162 (16) | 0.0142 (15) | 0.0159 (15) | 0.0016 (13) | 0.0044 (13) | 0.0068 (13) |
O5 | 0.0162 (16) | 0.0198 (16) | 0.0188 (16) | 0.0060 (13) | 0.0094 (13) | 0.0072 (13) |
Geometric parameters (Å, º) top
Te1—O2 | 1.843 (3) | Te2—Te2ii | 3.2253 (6) |
Te1—O1 | 1.875 (3) | Cd1—O1iii | 2.235 (3) |
Te1—O3 | 1.991 (3) | Cd1—O2iv | 2.238 (3) |
Te1—O4 | 2.285 (3) | Cd1—O2v | 2.296 (3) |
Te2—O4i | 1.864 (3) | Cd1—O1 | 2.255 (3) |
Te2—O5 | 1.897 (3) | Cd1—O3 | 2.424 (3) |
Te2—O3 | 1.990 (3) | Cd1—O4v | 2.589 (3) |
Te2—O5ii | 2.204 (3) | Cd1—O4iii | 2.688 (3) |
| | | |
O2—Te1—O1 | 103.25 (15) | O1iii—Cd1—O3 | 167.39 (11) |
O2—Te1—O3 | 90.59 (13) | O2iv—Cd1—O3 | 93.09 (12) |
O1—Te1—O3 | 83.46 (12) | O2v—Cd1—O3 | 83.66 (11) |
O2—Te1—O4 | 80.40 (12) | O1—Cd1—O3 | 66.67 (10) |
O1—Te1—O4 | 80.89 (12) | O1iii—Cd1—O4v | 73.85 (11) |
O3—Te1—O4 | 159.60 (12) | O2iv—Cd1—O4v | 138.57 (10) |
O4i—Te2—O5 | 100.25 (14) | O2v—Cd1—O4v | 66.40 (10) |
O4i—Te2—O3 | 91.11 (13) | O1—Cd1—O4v | 78.65 (10) |
O5—Te2—O3 | 86.24 (13) | O3—Cd1—O4v | 94.31 (10) |
O4i—Te2—O5ii | 88.71 (13) | Te1—O1—Cd1vi | 119.15 (14) |
O5—Te2—O5ii | 76.52 (13) | Te1—O1—Cd1 | 109.06 (13) |
O3—Te2—O5ii | 162.43 (12) | Cd1vi—O1—Cd1 | 117.64 (13) |
O4i—Te2—Te2ii | 95.12 (10) | Te1—O2—Cd1iv | 133.44 (16) |
O5—Te2—Te2ii | 41.63 (9) | Te1—O2—Cd1vii | 119.05 (14) |
O3—Te2—Te2ii | 127.79 (9) | Cd1iv—O2—Cd1vii | 105.95 (12) |
O5ii—Te2—Te2ii | 34.89 (8) | Te1—O3—Te2 | 122.67 (15) |
O1iii—Cd1—O2iv | 98.69 (12) | Te1—O3—Cd1 | 99.09 (12) |
O1iii—Cd1—O2v | 95.20 (12) | Te2—O3—Cd1 | 138.18 (14) |
O2iv—Cd1—O2v | 74.05 (13) | Te2viii—O4—Te1 | 128.18 (16) |
O1iii—Cd1—O1 | 105.89 (7) | Te2viii—O4—Cd1vii | 118.13 (14) |
O2iv—Cd1—O1 | 140.67 (11) | Te1—O4—Cd1vii | 94.15 (10) |
O2v—Cd1—O1 | 131.97 (12) | Te2—O5—Te2ii | 103.48 (13) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, y+1/2, −z+3/2; (iv) −x, −y+1, −z+1; (v) x, y+1, z; (vi) −x, y−1/2, −z+3/2; (vii) x, y−1, z; (viii) x, −y+1/2, z+1/2. |
Comparison of Te—O and M—O (M = Cd, Ca) bond lengths (Å) in
the
isotypic
β-CdTe2O5 and ε-CaTe2O5
structures top | β-CdTe2O5 | ε-CaTe2O5a |
Te1—O2 | 1.843 (3) | 1.832 (4) |
Te1—O1 | 1.875 (3) | 1.852 (4) |
Te1—O3 | 1.991 (3) | 1.980 (5) |
Te1—O4 | 2.285 (3) | 2.450 (5) |
Te2—O4i | 1.864 (3) | 1.854 (4) |
Te2—O5 | 1.897 (3) | 1.898 (4) |
Te2—O3 | 1.990 (3) | 2.009 (5) |
Te2—O5ii | 2.204 (5) | 2.178 (5) |
M1—O1iii | 2.235 (3) | 2.305 (4) |
M1—O2iv | 2.238 (3) | 2.326 (4) |
M1—O1 | 2.256 (3) | 2.360 (5) |
M1—O2v | 2.296 (3) | 2.358 (5) |
M1—O3 | 2.424 (3) | 2.476 (5) |
M1—O4v | 2.589 (3) | 2.554 (5) |
M1—O4iii | 2.688 (3) | 2.682 (5) |
(a) Lattice parameters: a = 9.382 (2), b =
5.7095 (14), c = 11.132 (3) Å, β = 115.109 (4)°, V =
539.95 Å3 (Weil & Stöger, 2008). [Symmetry codes: (i) x,
-y + 1/2, z - 1/2; (ii) -x + 1, -y + 1, -z
+ 1; (iii) -x, y + 1/2, -z + 1; (iv) -x, -y
+ 1, -z + 1; (v) x, y + 1, z.] |