Download citation
Download citation
link to html
The title di-substituted thio­urea has hy­droxy­lethyl and ethyl benzoate substituents bound to the same amine-N atom; overall the mol­ecule is twisted. Supra­molecular layers are formed in the crystal, with the mol­ecules connected by O—H...S and N—H...O(carbonyl, hydrox­yl) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989020006829/hb7918sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989020006829/hb7918Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989020006829/hb7918Isup3.cml
Supplementary material

CCDC reference: 2004940

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.027
  • wR factor = 0.072
  • Data-to-parameter ratio = 15.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for S1 --C1 . 7.8 s.u.
Author Response: This is a quite a sensitive alert. In this case, there is no question as to the chemical composition of the molecule.

Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 5 Note PLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal ..(Note) 0.002 Degree PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 2 Report PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 3 Note PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 24 Note PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 7 Info
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[Carbamothioyl(2-hydroxyethyl)amino]ethyl benzoate top
Crystal data top
C12H16N2O3SZ = 2
Mr = 268.33F(000) = 284
Triclinic, P1Dx = 1.420 Mg m3
a = 7.1608 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.8771 (2) ÅCell parameters from 11731 reflections
c = 10.0728 (2) Åθ = 5.0–76.3°
α = 96.815 (2)°µ = 2.33 mm1
β = 96.057 (2)°T = 100 K
γ = 95.990 (2)°Block, colourless
V = 627.78 (3) Å30.14 × 0.10 × 0.09 mm
Data collection top
XtaLAB Synergy, Dualflex, AtlasS2
diffractometer
2608 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2530 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 5.2558 pixels mm-1θmax = 76.6°, θmin = 4.5°
ω scansh = 89
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2018)
k = 1111
Tmin = 0.656, Tmax = 1.000l = 1211
15863 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.2837P]
where P = (Fo2 + 2Fc2)/3
2608 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37572 (4)0.27008 (3)1.03290 (3)0.01701 (9)
O10.95223 (11)0.15258 (9)1.06895 (9)0.02017 (19)
H1O1.0641 (15)0.1717 (19)1.0521 (17)0.030*
O20.70466 (11)0.26850 (9)0.61989 (8)0.01658 (17)
O30.60618 (13)0.20970 (10)0.39867 (8)0.02231 (19)
N10.35269 (14)0.03143 (11)0.84534 (10)0.0167 (2)
H1N0.396 (2)0.0360 (14)0.7896 (13)0.020*
H2N0.2480 (16)0.0025 (16)0.8779 (14)0.020*
N20.63866 (13)0.18528 (10)0.87909 (9)0.01420 (19)
C10.46322 (16)0.15473 (12)0.91223 (11)0.0146 (2)
C20.76658 (16)0.31983 (13)0.94513 (12)0.0169 (2)
H2A0.6929350.4073230.9607600.020*
H2B0.8616140.3472070.8847390.020*
C30.86760 (16)0.29131 (13)1.07870 (12)0.0183 (2)
H3A0.9668720.3777061.1117750.022*
H3B0.7758240.2877651.1455280.022*
C40.71451 (16)0.08514 (13)0.77635 (11)0.0158 (2)
H4A0.6763760.0226720.7874120.019*
H4B0.8543790.1031470.7904970.019*
C50.64657 (16)0.11088 (13)0.63421 (11)0.0170 (2)
H5A0.7021020.0420300.5684930.020*
H5B0.5071140.0889150.6170610.020*
C60.67210 (15)0.30367 (13)0.49377 (11)0.0162 (2)
C70.72974 (15)0.46730 (13)0.48446 (11)0.0158 (2)
C80.70318 (16)0.51705 (14)0.35804 (12)0.0180 (2)
H80.6413380.4488750.2826940.022*
C90.76728 (17)0.66610 (14)0.34284 (12)0.0214 (2)
H90.7520180.6995030.2565880.026*
C100.85375 (17)0.76653 (14)0.45357 (13)0.0218 (3)
H100.8990450.8682200.4425920.026*
C110.87453 (17)0.71919 (14)0.58064 (13)0.0212 (2)
H110.9307220.7891120.6565800.025*
C120.81286 (16)0.56950 (13)0.59597 (12)0.0182 (2)
H120.8272870.5366500.6824760.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01619 (15)0.01550 (15)0.01948 (15)0.00207 (10)0.00422 (10)0.00084 (10)
O10.0143 (4)0.0183 (4)0.0283 (5)0.0016 (3)0.0032 (3)0.0041 (3)
O20.0206 (4)0.0148 (4)0.0137 (4)0.0014 (3)0.0016 (3)0.0025 (3)
O30.0282 (5)0.0199 (4)0.0162 (4)0.0027 (3)0.0008 (3)0.0003 (3)
N10.0162 (5)0.0147 (5)0.0184 (5)0.0008 (4)0.0025 (4)0.0015 (4)
N20.0149 (4)0.0131 (4)0.0141 (4)0.0001 (3)0.0018 (3)0.0012 (3)
C10.0162 (5)0.0140 (5)0.0144 (5)0.0020 (4)0.0001 (4)0.0057 (4)
C20.0170 (5)0.0127 (5)0.0203 (5)0.0024 (4)0.0030 (4)0.0017 (4)
C30.0170 (5)0.0157 (5)0.0203 (6)0.0002 (4)0.0005 (4)0.0021 (4)
C40.0172 (5)0.0146 (5)0.0160 (5)0.0027 (4)0.0033 (4)0.0019 (4)
C50.0203 (5)0.0136 (5)0.0163 (5)0.0011 (4)0.0030 (4)0.0007 (4)
C60.0139 (5)0.0201 (6)0.0147 (5)0.0019 (4)0.0024 (4)0.0019 (4)
C70.0134 (5)0.0176 (6)0.0169 (5)0.0030 (4)0.0029 (4)0.0028 (4)
C80.0178 (5)0.0207 (6)0.0160 (5)0.0057 (4)0.0015 (4)0.0017 (4)
C90.0234 (6)0.0233 (6)0.0206 (6)0.0095 (5)0.0048 (5)0.0085 (5)
C100.0209 (6)0.0164 (5)0.0301 (6)0.0050 (4)0.0058 (5)0.0061 (5)
C110.0202 (6)0.0190 (6)0.0231 (6)0.0024 (4)0.0001 (5)0.0007 (5)
C120.0180 (5)0.0204 (6)0.0162 (5)0.0027 (4)0.0009 (4)0.0028 (4)
Geometric parameters (Å, º) top
S1—C11.7082 (11)C4—C51.5141 (15)
O1—C31.4259 (14)C4—H4A0.9900
O1—H1O0.840 (9)C4—H4B0.9900
O2—C61.3462 (14)C5—H5A0.9900
O2—C51.4460 (13)C5—H5B0.9900
O3—C61.2121 (14)C6—C71.4847 (16)
N1—C11.3454 (15)C7—C121.3941 (16)
N1—H1N0.874 (9)C7—C81.3974 (16)
N1—H2N0.876 (9)C8—C91.3859 (17)
N2—C11.3424 (15)C8—H80.9500
N2—C21.4706 (14)C9—C101.3876 (18)
N2—C41.4688 (14)C9—H90.9500
C2—C31.5203 (16)C10—C111.3919 (18)
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C11—C121.3876 (17)
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C12—H120.9500
C3—O1—H1O108.6 (12)H4A—C4—H4B107.8
C6—O2—C5114.66 (8)O2—C5—C4108.15 (9)
C1—N1—H1N122.3 (10)O2—C5—H5A110.1
C1—N1—H2N117.4 (10)C4—C5—H5A110.1
H1N—N1—H2N117.2 (14)O2—C5—H5B110.1
C1—N2—C2121.80 (9)C4—C5—H5B110.1
C1—N2—C4121.91 (9)H5A—C5—H5B108.4
C2—N2—C4116.29 (9)O3—C6—O2122.83 (10)
N2—C1—N1118.46 (10)O3—C6—C7124.38 (10)
N2—C1—S1121.95 (8)O2—C6—C7112.78 (9)
N1—C1—S1119.57 (9)C12—C7—C8119.92 (11)
N2—C2—C3112.00 (9)C12—C7—C6122.18 (10)
N2—C2—H2A109.2C8—C7—C6117.88 (10)
C3—C2—H2A109.2C9—C8—C7119.84 (11)
N2—C2—H2B109.2C9—C8—H8120.1
C3—C2—H2B109.2C7—C8—H8120.1
H2A—C2—H2B107.9C8—C9—C10120.01 (11)
O1—C3—C2112.86 (9)C8—C9—H9120.0
O1—C3—H3A109.0C10—C9—H9120.0
C2—C3—H3A109.0C11—C10—C9120.41 (11)
O1—C3—H3B109.0C11—C10—H10119.8
C2—C3—H3B109.0C9—C10—H10119.8
H3A—C3—H3B107.8C12—C11—C10119.75 (11)
N2—C4—C5112.81 (9)C12—C11—H11120.1
N2—C4—H4A109.0C10—C11—H11120.1
C5—C4—H4A109.0C11—C12—C7120.01 (11)
N2—C4—H4B109.0C11—C12—H12120.0
C5—C4—H4B109.0C7—C12—H12120.0
C2—N2—C1—N1178.51 (9)O3—C6—C7—C12177.03 (11)
C4—N2—C1—N12.38 (15)O2—C6—C7—C121.55 (15)
C2—N2—C1—S10.22 (15)O3—C6—C7—C81.20 (17)
C4—N2—C1—S1179.33 (8)O2—C6—C7—C8179.78 (9)
C1—N2—C2—C382.67 (13)C12—C7—C8—C92.89 (17)
C4—N2—C2—C396.49 (11)C6—C7—C8—C9175.38 (10)
N2—C2—C3—O149.39 (13)C7—C8—C9—C101.46 (17)
C1—N2—C4—C580.00 (13)C8—C9—C10—C110.84 (18)
C2—N2—C4—C5100.85 (11)C9—C10—C11—C121.71 (18)
C6—O2—C5—C4172.96 (9)C10—C11—C12—C70.26 (18)
N2—C4—C5—O259.09 (12)C8—C7—C12—C112.03 (17)
C5—O2—C6—O32.74 (15)C6—C7—C12—C11176.17 (10)
C5—O2—C6—C7178.64 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (C7–C12) ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···S1i0.84 (1)2.35 (1)3.1746 (9)169 (2)
N1—H2N···O1ii0.88 (1)2.04 (1)2.8582 (13)155 (1)
N1—H1N···O3iii0.88 (1)2.30 (1)3.1218 (13)158 (1)
C6—O3···Cg1iv1.21 (1)3.66 (1)3.5026 (12)73 (1)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
A summary of short interatomic contacts (Å) for (I)a top
ContactDistanceΣvdWΔ|(dnorm - ΣvdW)|Symmetry operation
H2N···O1b1.922.610.691 - x, - y, 2 - z
H1O···S1b2.212.890.681 + x, y, z
H1N···O3b2.172.610.441 - x, - y, 1 - z
H3B···H82.082.180.10x, y, 1 + z
H9···C12.602.790.191 - x, 1 - y, 1 - z
C5···O33.173.220.051 - x, - y, 1 - z
H2A···S12.872.890.021 - x, 1 - y, 2 - z
H9···S12.892.890.001 - x, 1 - y, 1 - z
Notes: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values; (b) these interactions correspond to conventional hydrogen bonds.
Electrostatic potential charge (VESP) for each hydrogen atom donor and acceptor in (I) participating in a close contact identified through Hirshfeld surface analysis top
ContactElectrostatic potential, VESP (a.u.)Δ|VESP|
H-donorH-acceptor
H2N···O10.1446-0.06540.2100
H1O···S10.1488-0.06070.2095
H1N···O30.1248-0.06010.1849
H9···C10.0441-0.01190.0560
H3B···H80.00660.02290.0163
C5···O30.0581-0.05620.1143
H2A···S10.0239-0.05890.0828
H9···S10.0219-0.04580.0677
A summary of interaction energies (kJ mol-1) calculated for (I) top
ContactEeleEpolEdisErepEtotsymmetry operation
{N1—H2N···O1}2-91.6-13.5-39.559.1-85.61 - x, - y, 2 - z
{N1—H1N···O3}2 + {C5···O3}2-56.9-10.1-26.527.4-66.11 - x, - y, 1 - z
C6···π(benzene) +
{C9—H9···S1}2 +
{C9—H9···C1}2-21.6-3.0-57.133.2-48.31 - x, 1 - y, 1 - z
O1—H1O···S1-47.2-7.5-10.636.5-28.81 + x, y, z
π(benzene)–π(benzene)-0.4-1.6-43.217.0-28.32 - x, 1 - y, 1 - z
{C2—H2A···S1}2-14.6-5.1-14.711.3-23.11 - x, 1 - y, 2 - z
C3—H3B···H81.1-1.8-12.79.1-4.3x, y, 1 + z
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds