Download citation
Download citation
link to html
The title compound, C17H16O5, is an important inter­mediate for the synthesis of side-chain ligands for polymeric liquid crystals. The prop­oxy and benzoic acid groups subtend dihedral angles of 4.36 (6) and 55.35 (6)°, respectively, with the central benzo­yloxy unit. The crystal structure is stabilized by an inter­molecular O—H...O hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808016942/hg2407sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808016942/hg2407Isup2.hkl
Contains datablock I

CCDC reference: 696525

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.085
  • wR factor = 0.147
  • Data-to-parameter ratio = 16.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT432_ALERT_2_C Short Inter X...Y Contact C9 .. C9 .. 3.18 Ang. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Differently substituted aromatic carboxylic acids having benzene rings either joined directly through a covalent bond (Wu & Hsu 2007) or through some functional group, mostly an ester (Cady et al., 2002; Wu & Lin 2007) or an olefin (Nazir et al., 2008a; 2008b), have been investigated for their liquid crystal properties. Such acids have been used in the synthesis of intermediates for side-chain liquid crystal polymers (Kong & Tang 1998) as well as for main-chain liquid crystal polymers (Aranzazu et al., 2006). In addition, the carboxylic acids, in general, have been used as intermediates in the synthesis of a large number of organic compounds (Hussain et al., 2005; 2003; Shafiq et al., 2005; 2003; Ahmad et al., 2003). The pharmaceutical industry has also benefited from this class of compounds (Ribeiro et al., 2008; Hameed & Rama, 2004). The title compound (I) was synthesized in our lab as an intermediate in the synthesis of side-chain liquid crystal polymers, by treating 4-hydroxybenzaldehyde with 4-propyloxybenzoylchloride followed by KMnO4 oxidation. In this report, the crystal structure of (I) is presented. Bond lengths and angles are within the normal ranges as given for benzoyloxybenzoic acids (Hartung et al., 1997). The C(14)—O(4), C(14)—O(3),C(7)—O(1) and C(7)—O(2) bond lengths are 1.237 (3), 1.300 (3), 1.204 (3) and 1.367 (3) respectively, clearly indicating the partial double bond character of the carboxylate groups. The benzoic acid groups subtend dihedral angles [55.35 (6)°] with the central benzoyloxy moiety C(1)/C(2)/C(3)/C(4)/C(5)/C(6)/C(7)/O(1)/O(2). Two molecules related by an inversion center form a dimer via two hydrogen bonds composed of two carboxyl groups as shown in Fig. 2.

Related literature top

For related literature, see: Ahmad et al. (2003); Aranzazu et al. (2006); Cady et al. (2002); Hameed & Rama (2004); Hartung et al. (1997); Hussain et al. (2003, 2005); Kong & Tang (1998); Nazir et al. (2008a,b); Ribeiro et al. (2008); Shafiq et al. (2003, 2005); Wu & Hsu (2007); Wu & Lin (2007).

Experimental top

To a solution of 4-hydroxybenzaldehyde (0.032 moles) in 50 ml of triethylamine (TEA) was added an equivalent amount of 4-propoxybenzoylchloride with stirring and the mixture heated at 333 K for 1 hour. The excess TEA was removed in vacuo and the product, after recrystallization from hot ethanol, was subjected to KMnO4 oxidation. The 4-(4-propoxybenzoyloxy)benzaldehyde (0.025 moles) was dissolved in acetone (100 ml) and aqueous KMnO4 (0.025 moles) was added dropwise at room temperature with stirring. The stirring was continued for three hours when the reaction mixture was filtered and the filtrate acidified using 6M HCl. The product was purified by recrystallization from acetone. Yield: 93% (from 4-(4-propoxybenzoyloxy)benzaldehyde); m.p: 478-480.5K; IR (νmax, KBr, cm-1): 3100-2400, 1731, 1685, 1603, 1512, 1425, 1300, 1260, 1206, 1163, 1061, 1009, 758; 1H-NMR (300 MHz,DMSO-d6): δ 0.99 (3H, t, J = 7.2 Hz), 1.77 (2H, sex, J = 6.9 Hz), 4.05 (2H, t, J = 6.6 Hz),7.12 (2H, d, J = 8.7 Hz), 7.4 (2H, d, J = 8.7 Hz), 8.03 (2H, d, J = 8.7 Hz),8.08 (2H, d, J = 8.7 Hz), 13.02 (1H, bs); 13C-NMR (75 MHz, DMSO-d6): 10.75, 22.33, 69.91, 115.16, 120.85, 122.70, 128.79, 131.35, 132.60, 154.65, 163.82, 164.29, 167.12.

Refinement top

The O-bound H atom was refined isotropically. All the other H atoms were placed in idealized positions and treated as riding atoms, with C—H distance in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Showing hydrogen bonded molecules through N—H···O.
4-(4-Propoxybenzoyloxy)benzoic acid top
Crystal data top
C17H16O5F(000) = 1264
Mr = 300.30Dx = 1.379 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 3169 reflections
a = 21.063 (15) Åθ = 3.4–27.5°
b = 5.703 (4) ŵ = 0.10 mm1
c = 24.437 (18) ÅT = 123 K
β = 99.790 (9)°Rod, colorless
V = 2893 (3) Å30.30 × 0.19 × 0.15 mm
Z = 8
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3297 independent reflections
Radiation source: fine-focus sealed tube2824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: empirical (using intensity measurements)
(NUMABS; Higashi, 1999)
h = 2327
Tmin = 0.970, Tmax = 0.985k = 75
11426 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.026P)2 + 6.5341P]
where P = (Fo2 + 2Fc2)/3
3297 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H16O5V = 2893 (3) Å3
Mr = 300.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.063 (15) ŵ = 0.10 mm1
b = 5.703 (4) ÅT = 123 K
c = 24.437 (18) Å0.30 × 0.19 × 0.15 mm
β = 99.790 (9)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3297 independent reflections
Absorption correction: empirical (using intensity measurements)
(NUMABS; Higashi, 1999)
2824 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.985Rint = 0.051
11426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.26Δρmax = 0.29 e Å3
3297 reflectionsΔρmin = 0.28 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12026 (11)0.2626 (4)0.39828 (9)0.0171 (5)
C20.15716 (12)0.4515 (4)0.42065 (10)0.0223 (5)
H20.16860.56990.39680.027*
C30.17771 (13)0.4698 (4)0.47766 (10)0.0229 (5)
H30.20300.60000.49260.027*
C40.16099 (12)0.2958 (4)0.51274 (10)0.0198 (5)
C50.12360 (12)0.1058 (4)0.49037 (10)0.0229 (5)
H50.11200.01240.51420.027*
C60.10351 (12)0.0891 (4)0.43378 (10)0.0212 (5)
H60.07810.04080.41880.025*
C70.09682 (11)0.2342 (4)0.33803 (10)0.0176 (5)
O10.06221 (9)0.0793 (3)0.31697 (7)0.0250 (4)
O20.11946 (8)0.4078 (3)0.30793 (7)0.0216 (4)
C80.09736 (11)0.4149 (4)0.25035 (9)0.0181 (5)
C90.06788 (11)0.6204 (4)0.22986 (10)0.0192 (5)
H90.06240.74600.25420.023*
C100.04640 (11)0.6402 (4)0.17308 (10)0.0177 (5)
H100.02540.77940.15830.021*
C110.05562 (11)0.4570 (4)0.13782 (10)0.0169 (5)
C120.08634 (11)0.2523 (4)0.15939 (10)0.0188 (5)
H120.09280.12740.13520.023*
C130.10753 (12)0.2303 (4)0.21606 (10)0.0202 (5)
H130.12860.09150.23100.024*
C140.03310 (11)0.4762 (4)0.07712 (10)0.0177 (5)
O30.00181 (9)0.6673 (3)0.06089 (7)0.0272 (4)
H3O0.01020.66300.02630.041*
O40.04427 (9)0.3198 (3)0.04501 (7)0.0244 (4)
O50.17781 (9)0.2955 (3)0.56890 (7)0.0238 (4)
C150.21608 (12)0.4869 (4)0.59482 (10)0.0202 (5)
H15A0.19230.63650.58750.024*
H15B0.25680.49880.57990.024*
C160.22997 (12)0.4371 (4)0.65666 (10)0.0207 (5)
H16A0.25600.29220.66360.025*
H16B0.18890.41170.67040.025*
C170.26641 (13)0.6408 (5)0.68816 (11)0.0277 (6)
H17A0.30980.65050.67880.042*
H17B0.26960.61530.72820.042*
H17C0.24330.78750.67770.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0169 (12)0.0177 (11)0.0174 (12)0.0001 (9)0.0053 (9)0.0012 (9)
C20.0269 (13)0.0199 (12)0.0207 (13)0.0054 (10)0.0062 (10)0.0038 (10)
C30.0262 (13)0.0212 (12)0.0214 (13)0.0056 (10)0.0042 (10)0.0002 (10)
C40.0189 (12)0.0255 (13)0.0156 (12)0.0005 (10)0.0044 (10)0.0003 (10)
C50.0275 (14)0.0237 (12)0.0184 (13)0.0057 (10)0.0061 (10)0.0025 (10)
C60.0220 (13)0.0210 (12)0.0213 (13)0.0045 (10)0.0051 (10)0.0004 (10)
C70.0181 (12)0.0163 (11)0.0192 (12)0.0005 (9)0.0058 (10)0.0002 (9)
O10.0298 (10)0.0258 (9)0.0203 (9)0.0100 (8)0.0067 (8)0.0043 (7)
O20.0274 (10)0.0236 (9)0.0134 (8)0.0069 (7)0.0024 (7)0.0006 (7)
C80.0174 (12)0.0232 (12)0.0138 (12)0.0057 (9)0.0031 (9)0.0022 (9)
C90.0193 (12)0.0188 (11)0.0203 (12)0.0009 (9)0.0063 (10)0.0032 (9)
C100.0175 (12)0.0176 (11)0.0184 (12)0.0006 (9)0.0045 (9)0.0013 (9)
C110.0136 (11)0.0193 (11)0.0181 (12)0.0008 (9)0.0040 (9)0.0014 (9)
C120.0204 (12)0.0173 (11)0.0198 (12)0.0009 (9)0.0072 (10)0.0012 (9)
C130.0208 (12)0.0199 (12)0.0200 (12)0.0007 (9)0.0036 (10)0.0021 (9)
C140.0153 (11)0.0190 (11)0.0196 (12)0.0013 (9)0.0055 (9)0.0009 (9)
O30.0382 (11)0.0267 (10)0.0155 (9)0.0145 (8)0.0012 (8)0.0001 (7)
O40.0296 (10)0.0244 (9)0.0193 (9)0.0073 (8)0.0043 (7)0.0031 (7)
O50.0281 (10)0.0259 (9)0.0168 (9)0.0071 (8)0.0024 (7)0.0004 (7)
C150.0200 (12)0.0220 (12)0.0184 (12)0.0036 (10)0.0029 (10)0.0007 (10)
C160.0181 (12)0.0269 (13)0.0174 (12)0.0002 (10)0.0035 (10)0.0009 (10)
C170.0284 (14)0.0338 (15)0.0200 (13)0.0014 (11)0.0012 (11)0.0000 (11)
Geometric parameters (Å, º) top
C1—C21.385 (3)C10—H100.9500
C1—C61.400 (3)C11—C121.394 (3)
C1—C71.480 (3)C11—C141.482 (3)
C2—C31.391 (4)C12—C131.387 (3)
C2—H20.9500C12—H120.9500
C3—C41.395 (3)C13—H130.9500
C3—H30.9500C14—O41.237 (3)
C4—O51.358 (3)C14—O31.300 (3)
C4—C51.395 (3)O3—H3O0.8400
C5—C61.379 (3)O5—C151.438 (3)
C5—H50.9500C15—C161.516 (3)
C6—H60.9500C15—H15A0.9900
C7—O11.204 (3)C15—H15B0.9900
C7—O21.367 (3)C16—C171.527 (4)
O2—C81.406 (3)C16—H16A0.9900
C8—C91.380 (3)C16—H16B0.9900
C8—C131.385 (3)C17—H17A0.9800
C9—C101.389 (3)C17—H17B0.9800
C9—H90.9500C17—H17C0.9800
C10—C111.389 (3)
C2—C1—C6119.3 (2)C10—C11—C14120.7 (2)
C2—C1—C7123.2 (2)C12—C11—C14119.3 (2)
C6—C1—C7117.6 (2)C13—C12—C11120.2 (2)
C1—C2—C3120.8 (2)C13—C12—H12119.9
C1—C2—H2119.6C11—C12—H12119.9
C3—C2—H2119.6C8—C13—C12118.6 (2)
C2—C3—C4119.6 (2)C8—C13—H13120.7
C2—C3—H3120.2C12—C13—H13120.7
C4—C3—H3120.2O4—C14—O3123.5 (2)
O5—C4—C3124.9 (2)O4—C14—C11121.2 (2)
O5—C4—C5115.3 (2)O3—C14—C11115.3 (2)
C3—C4—C5119.7 (2)C14—O3—H3O109.5
C6—C5—C4120.2 (2)C4—O5—C15118.32 (19)
C6—C5—H5119.9O5—C15—C16107.18 (19)
C4—C5—H5119.9O5—C15—H15A110.3
C5—C6—C1120.4 (2)C16—C15—H15A110.3
C5—C6—H6119.8O5—C15—H15B110.3
C1—C6—H6119.8C16—C15—H15B110.3
O1—C7—O2122.9 (2)H15A—C15—H15B108.5
O1—C7—C1125.5 (2)C15—C16—C17110.8 (2)
O2—C7—C1111.61 (19)C15—C16—H16A109.5
C7—O2—C8118.23 (18)C17—C16—H16A109.5
C9—C8—C13122.2 (2)C15—C16—H16B109.5
C9—C8—O2116.1 (2)C17—C16—H16B109.5
C13—C8—O2121.7 (2)H16A—C16—H16B108.1
C8—C9—C10118.8 (2)C16—C17—H17A109.5
C8—C9—H9120.6C16—C17—H17B109.5
C10—C9—H9120.6H17A—C17—H17B109.5
C11—C10—C9120.2 (2)C16—C17—H17C109.5
C11—C10—H10119.9H17A—C17—H17C109.5
C9—C10—H10119.9H17B—C17—H17C109.5
C10—C11—C12120.0 (2)
C6—C1—C2—C30.2 (4)C13—C8—C9—C101.5 (4)
C7—C1—C2—C3179.7 (2)O2—C8—C9—C10178.5 (2)
C1—C2—C3—C40.0 (4)C8—C9—C10—C111.1 (3)
C2—C3—C4—O5179.5 (2)C9—C10—C11—C120.2 (3)
C2—C3—C4—C50.3 (4)C9—C10—C11—C14179.8 (2)
O5—C4—C5—C6179.7 (2)C10—C11—C12—C130.3 (3)
C3—C4—C5—C60.3 (4)C14—C11—C12—C13179.7 (2)
C4—C5—C6—C10.1 (4)C9—C8—C13—C121.1 (4)
C2—C1—C6—C50.1 (4)O2—C8—C13—C12177.8 (2)
C7—C1—C6—C5179.7 (2)C11—C12—C13—C80.2 (4)
C2—C1—C7—O1176.3 (2)C10—C11—C14—O4175.9 (2)
C6—C1—C7—O13.3 (4)C12—C11—C14—O44.1 (3)
C2—C1—C7—O23.8 (3)C10—C11—C14—O33.7 (3)
C6—C1—C7—O2176.6 (2)C12—C11—C14—O3176.3 (2)
O1—C7—O2—C84.9 (3)C3—C4—O5—C150.4 (4)
C1—C7—O2—C8175.2 (2)C5—C4—O5—C15179.7 (2)
C7—O2—C8—C9122.6 (2)C4—O5—C15—C16177.7 (2)
C7—O2—C8—C1360.5 (3)O5—C15—C16—C17175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.841.772.606 (3)172
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H16O5
Mr300.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)21.063 (15), 5.703 (4), 24.437 (18)
β (°) 99.790 (9)
V3)2893 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.19 × 0.15
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(NUMABS; Higashi, 1999)
Tmin, Tmax0.970, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11426, 3297, 2824
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.146, 1.26
No. of reflections3297
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.841.772.606 (3)172.1
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds