Download citation
Download citation
link to html
In the title compound, C11H15N3O2S, the dihedral angle between the mean planes of the benzene ring and hydrazinecarbo­thio­amide group is 9.2 (1)°. An intra­molecular O—H...N hydrogen bond is observed, serving to maintain an approximately planar conformation for the molecule. In the crystal, inversion dimers linked by C—H...O inter­actions occur. Further C—H...O contacts link dimers into (010) chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813019831/hg5331sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813019831/hg5331Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536813019831/hg5331Isup3.cml
Supplementary material

CCDC reference: 961844

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.076
  • wR factor = 0.231
  • Data-to-parameter ratio = 26.0

checkCIF/PLATON results

No syntax errors found



Alert level C DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 1.212 Test value = 1.200 DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.61 PLAT097_ALERT_2_C Large Reported Max. (Positive) Residual Density 1.21 eA-3 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0041 Ang. PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 6.740 PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.370 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 2 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3 PLAT976_ALERT_2_C Negative Residual Density at 0.58A from O1 . -0.52 eA-3 PLAT976_ALERT_2_C Negative Residual Density at 1.06A from N3 . -0.46 eA-3
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? Do ! PLAT007_ALERT_5_G Note: Number of Unrefined Donor-H Atoms ........ 3 PLAT128_ALERT_4_G Note: Alternate Setting of Space-group P21/c . P21/n PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 360
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 11 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Thiosemicarbazones are a versatile class of ligands that can adopt multiple modes of binding to a metal (Lobana, et al., 2009) and the synthesis and structure determination of these metal complexes is an active area of research. (Lobana, et al., 2012) Palladium complexes with thiosemicarbazone ligands have been shown to have a variety of biological activity including anti-fungal and anti-tumor activity. (Chellan, et al., 2010). We have previously reported the structure of two analogous novel thiosemicarbazones (Anderson, et al., 2012; Anderson, et al., 2013). Here, we report the synthesis and crystal structure of a novel thiosemicarbazone ligand, (I), C11H15N3O2S .

In (I), the dihedral angle between the mean planes of the benzene ring and hydrazinecarbothioamide group (N1/N2/C8/S1/N3) is 9.2 (1)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, an intramolecular O—H···N hydrogen bond is observed serving to keep the molecule in a nearly planar conformation. Additional weak and C—H···O intermolecular interactions (Table 1) assist in linking the molecules into dimers along (010) and influence crystal packing (Fig. 2).

Related literature top

For the synthesis and structure of thiosemicarbazones as ligands that bind to metals, see: Lobana et al. (2009, 2012). For palladium complexes with thiosemicarbazone ligands, see: Chellan et al. (2010). For related structures, see: Anderson et al. (2012, 2013). For bond lengths, see: Allen et al. (1987).

Experimental top

A 50 mL round bottom flask was charged with 0.218 g (1.31 mmol) of 2'-hydroxy-4'-methoxyacetophenone, 0.138 g (1.31 mmol) of 4-methyl-3- thiosemicarbazide, dissolved in 20 mL of methanol. The resulting colorless solution was refluxed for 48 hours and then a drop of concentrated HCl was added and the solution was refluxed for an additional 48 hours. The resulting yellow solution was transferred to a 125 mL separatory funnel. Dichloromethane (10 mL) and water (10 mL) were added, and the organic layer was separated. The aqueous layer was extracted with an additional 10 mL of dichloromethane. The organic layers were combined, washed with brine (2 x 10 mL), dried with magnesium sulfate, and the solvent was removed in vacuo to give a yellow solid (Fig. 3). The solid was dissolved in hot acetonitrile, allowed to cool to room temperature and then stored at 273 K resulting in colorless crystals (58 mg, 18%) after 24 hours. M.p. 448-453 K.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93Å (CH), 0.96Å (CH3), 0.86Å (NH) or 0.82Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me refined as rotating group: C9(H9A,H9B,H9C), C10(H10A,H10B,H10C), C11(H11A,H11B,H11C). Idealised tetrahedral OH refined as rotating group: O1(H1).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) showing the atom labeling scheme and 30% probability displacement ellipsoids. Dashed lines indicate O1—H1···N1 intramolecular hydrogen bonds.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate O—H···N intramolecular hydrogen bonds and weak C—H···O intermolecular interactions linking the molecules into dimers along (010).
[Figure 3] Fig. 3. Synthesis of (I).
2-[1-(2-Hydroxy-4-methoxyphenyl)ethylidene]-N-methylhydrazinecarbothioamide top
Crystal data top
C11H15N3O2SF(000) = 536
Mr = 253.32Dx = 1.413 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 10.9881 (8) ÅCell parameters from 4367 reflections
b = 9.1468 (6) Åθ = 3.0–32.9°
c = 12.5575 (9) ŵ = 0.27 mm1
β = 109.400 (8)°T = 173 K
V = 1190.45 (15) Å3Irregular, colourless
Z = 40.42 × 0.38 × 0.14 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4104 independent reflections
Radiation source: Enhance (Mo) X-ray Source3320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.0416 pixels mm-1θmax = 33.0°, θmin = 3.0°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1213
Tmin = 0.728, Tmax = 1.000l = 1818
13894 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.0907P)2 + 2.429P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
4104 reflectionsΔρmax = 1.21 e Å3
158 parametersΔρmin = 0.46 e Å3
0 restraints
Crystal data top
C11H15N3O2SV = 1190.45 (15) Å3
Mr = 253.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9881 (8) ŵ = 0.27 mm1
b = 9.1468 (6) ÅT = 173 K
c = 12.5575 (9) Å0.42 × 0.38 × 0.14 mm
β = 109.400 (8)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4104 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3320 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 1.000Rint = 0.043
13894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.16Δρmax = 1.21 e Å3
4104 reflectionsΔρmin = 0.46 e Å3
158 parameters
Special details top

Experimental. 1H NMR [(CD3)2CO]: 11.7 (br s, 1H, NH) 9.52 (br s, 1H, OH) 7.73 (br s, 1H, NH) 7.5 (d, J = 8.6, 1H Ar) 6.47 (d, J = 8.6 1H Ar) 6.42 (d, 1H Ar) 3.80 (s, 3H, CH3) 3.13 (d, J = 4.7, 3H, CH3) 2.43 (s, 3H, CH3)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21259 (6)0.28834 (7)0.36426 (6)0.02286 (19)
O10.55069 (19)0.2003 (2)0.50127 (19)0.0280 (4)
H10.49360.25300.46080.042*
O20.9881 (2)0.0943 (3)0.60376 (19)0.0309 (5)
N10.4600 (2)0.4175 (3)0.36942 (19)0.0220 (4)
N20.3540 (2)0.5019 (3)0.31878 (19)0.0220 (4)
H20.36280.58690.29290.026*
N30.1393 (2)0.5407 (3)0.2551 (2)0.0240 (4)
H30.15950.62250.23170.029*
C10.5729 (2)0.4652 (3)0.3762 (2)0.0198 (4)
C20.6806 (2)0.3678 (3)0.4335 (2)0.0201 (5)
C30.6655 (2)0.2410 (3)0.4935 (2)0.0207 (5)
C40.7702 (3)0.1533 (3)0.5478 (2)0.0245 (5)
H40.75850.07030.58620.029*
C50.8923 (3)0.1875 (3)0.5459 (2)0.0232 (5)
C60.9109 (3)0.3099 (3)0.4871 (2)0.0260 (5)
H60.99230.33270.48440.031*
C70.8055 (3)0.3967 (3)0.4329 (2)0.0250 (5)
H70.81820.47860.39390.030*
C80.2350 (2)0.4514 (3)0.3095 (2)0.0192 (4)
C90.0037 (3)0.5110 (4)0.2322 (3)0.0299 (6)
H9A0.00700.45350.29240.045*
H9B0.02980.45820.16240.045*
H9C0.04220.60160.22640.045*
C100.5946 (3)0.6111 (3)0.3322 (3)0.0255 (5)
H10A0.55420.61330.25170.038*
H10B0.68560.62780.35080.038*
H10C0.55800.68600.36580.038*
C111.1161 (3)0.1303 (4)0.6095 (3)0.0349 (7)
H11A1.14200.21950.65100.052*
H11B1.11910.14250.53440.052*
H11C1.17360.05290.64670.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0232 (3)0.0190 (3)0.0279 (3)0.0010 (2)0.0104 (2)0.0013 (2)
O10.0214 (9)0.0276 (10)0.0383 (11)0.0008 (8)0.0143 (8)0.0071 (8)
O20.0216 (9)0.0354 (11)0.0358 (11)0.0056 (8)0.0094 (8)0.0128 (9)
N10.0192 (10)0.0224 (10)0.0245 (10)0.0012 (8)0.0072 (8)0.0009 (8)
N20.0172 (9)0.0207 (10)0.0287 (11)0.0001 (8)0.0083 (8)0.0027 (8)
N30.0197 (10)0.0212 (10)0.0320 (11)0.0019 (8)0.0099 (8)0.0049 (8)
C10.0193 (11)0.0200 (11)0.0199 (10)0.0012 (8)0.0063 (8)0.0006 (8)
C20.0193 (11)0.0198 (10)0.0212 (10)0.0014 (9)0.0068 (8)0.0001 (8)
C30.0203 (11)0.0217 (11)0.0221 (11)0.0022 (9)0.0098 (9)0.0007 (9)
C40.0262 (12)0.0228 (12)0.0266 (12)0.0002 (10)0.0115 (10)0.0047 (9)
C50.0209 (11)0.0251 (12)0.0239 (11)0.0009 (9)0.0076 (9)0.0021 (9)
C60.0197 (11)0.0277 (13)0.0314 (13)0.0024 (10)0.0096 (10)0.0042 (10)
C70.0205 (11)0.0247 (12)0.0308 (13)0.0024 (9)0.0101 (10)0.0044 (10)
C80.0200 (11)0.0191 (10)0.0200 (10)0.0002 (8)0.0086 (8)0.0020 (8)
C90.0203 (12)0.0316 (14)0.0383 (15)0.0048 (10)0.0103 (11)0.0067 (12)
C100.0200 (11)0.0207 (11)0.0348 (14)0.0013 (9)0.0080 (10)0.0026 (10)
C110.0204 (12)0.0417 (17)0.0424 (17)0.0044 (12)0.0104 (11)0.0084 (14)
Geometric parameters (Å, º) top
S1—C81.695 (3)C3—C41.383 (4)
O1—H10.8200C4—H40.9300
O1—C31.350 (3)C4—C51.386 (4)
O2—C51.362 (3)C5—C61.393 (4)
O2—C111.423 (4)C6—H60.9300
N1—N21.366 (3)C6—C71.383 (4)
N1—C11.290 (3)C7—H70.9300
N2—H20.8600C9—H9A0.9600
N2—C81.354 (3)C9—H9B0.9600
N3—H30.8600C9—H9C0.9600
N3—C81.328 (3)C10—H10A0.9600
N3—C91.446 (4)C10—H10B0.9600
C1—C21.465 (4)C10—H10C0.9600
C1—C101.494 (4)C11—H11A0.9600
C2—C31.422 (4)C11—H11B0.9600
C2—C71.400 (4)C11—H11C0.9600
C3—O1—H1109.5C7—C6—H6120.8
C5—O2—C11117.3 (2)C2—C7—H7118.3
C1—N1—N2119.4 (2)C6—C7—C2123.4 (2)
N1—N2—H2120.1C6—C7—H7118.3
C8—N2—N1119.8 (2)N2—C8—S1122.13 (19)
C8—N2—H2120.1N3—C8—S1123.55 (19)
C8—N3—H3117.4N3—C8—N2114.3 (2)
C8—N3—C9125.1 (2)N3—C9—H9A109.5
C9—N3—H3117.4N3—C9—H9B109.5
N1—C1—C2115.4 (2)N3—C9—H9C109.5
N1—C1—C10123.1 (2)H9A—C9—H9B109.5
C2—C1—C10121.5 (2)H9A—C9—H9C109.5
C3—C2—C1122.5 (2)H9B—C9—H9C109.5
C7—C2—C1121.1 (2)C1—C10—H10A109.5
C7—C2—C3116.4 (2)C1—C10—H10B109.5
O1—C3—C2122.7 (2)C1—C10—H10C109.5
O1—C3—C4116.6 (2)H10A—C10—H10B109.5
C4—C3—C2120.7 (2)H10A—C10—H10C109.5
C3—C4—H4119.6H10B—C10—H10C109.5
C3—C4—C5120.8 (2)O2—C11—H11A109.5
C5—C4—H4119.6O2—C11—H11B109.5
O2—C5—C4115.5 (2)O2—C11—H11C109.5
O2—C5—C6124.2 (2)H11A—C11—H11B109.5
C4—C5—C6120.3 (2)H11A—C11—H11C109.5
C5—C6—H6120.8H11B—C11—H11C109.5
C7—C6—C5118.5 (2)
O1—C3—C4—C5179.1 (3)C3—C2—C7—C60.4 (4)
O2—C5—C6—C7179.2 (3)C3—C4—C5—O2179.1 (2)
N1—N2—C8—S12.8 (3)C3—C4—C5—C61.2 (4)
N1—N2—C8—N3177.6 (2)C4—C5—C6—C71.0 (4)
N1—C1—C2—C39.8 (4)C5—C6—C7—C20.2 (4)
N1—C1—C2—C7171.0 (2)C7—C2—C3—O1179.8 (2)
N2—N1—C1—C2179.1 (2)C7—C2—C3—C40.3 (4)
N2—N1—C1—C100.7 (4)C9—N3—C8—S11.7 (4)
C1—N1—N2—C8178.8 (2)C9—N3—C8—N2178.7 (3)
C1—C2—C3—O10.6 (4)C10—C1—C2—C3168.6 (2)
C1—C2—C3—C4179.0 (2)C10—C1—C2—C710.6 (4)
C1—C2—C7—C6178.9 (3)C11—O2—C5—C4176.4 (3)
C2—C3—C4—C50.5 (4)C11—O2—C5—C63.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.566 (3)145
C10—H10A···O2i0.962.593.301 (4)132
C10—H10C···O1ii0.962.573.481 (4)158
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.566 (3)144.6
C10—H10A···O2i0.962.593.301 (4)131.5
C10—H10C···O1ii0.962.573.481 (4)157.8
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds