Download citation
Download citation
link to html
In the title solvate, C29H21ClN2O2·C3H6O, a prop-2-en-1-one bridge links two quinolinyl residues; the latter are almost perpendicular [dihedral angle = 78.27 (6)°]. The dihedral angle between the quinonyl ring system and its pendant phenyl group is 59.78 (8)°. A small twist in the bridging prop-2-en-1-one group is noted [O=C—C=C torsion angle = −10.6 (3)°]. In the crystal, a three-dimensional architecture arises as a result of C—H...O and π–π stacking [centroid–centroid distances = 3.5504 (12)–3.6623 (12) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813020217/hg5334sup1.cif
Contains datablocks general, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813020217/hg5334Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536813020217/hg5334Isup3.cml
Supplementary material

CCDC reference: 961838

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.058
  • wR factor = 0.167
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level C DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 1.471 Test value = 1.275
Author Response: The relatively high residual electron density peak is near the methoxy-O2 atom and is not in a chemically sensible position. The maximum and minimum residual electron density peaks of 1.47 and 0.46 e\%A^-3^, respectively, were located 0.85 \%A and 0.68 \%A from the O2 and Cl1 atoms, respectively.
DIFMX02_ALERT_1_C  The maximum difference density is > 0.1*ZMAX*0.75
            The relevant atom site should be identified.
PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low .......      0.976
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density ....       3.21
PLAT097_ALERT_2_C Large Reported Max.  (Positive) Residual Density       1.47 eA-3
PLAT230_ALERT_2_C Hirshfeld Test Diff for    O2     --  C21     ..        5.9 su
PLAT413_ALERT_2_C Short Inter XH3 .. XHn     H29A   ..  H29A    ..       2.11 Ang.
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L=  0.600         18
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF ....          1
PLAT975_ALERT_2_C Positive Residual Density at 1.07A from O3     .       0.48 eA-3

Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? Do ! PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 117
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 10 ALERT level C = Check. Ensure it is not caused by an omission or oversight 2 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The the title compound, (I), was investigated in connection with on-going studies of quinolinyl chalcones (Prasath et al., 2013a), motivated by their potential anti-bacterial, anti-fungal, anti-malarial and anti-cancer activity (Joshi et al., 2011).

The molecular structure of the quinolinyl derivative, (I), Fig. 1, comprises two quinolinyl residues connected by the ends of a prop-2-en-1-one bridge, in an almost perpendicular relationship; the dihedral angle between the quinolinyl residues is 78.27 (6)°. The phenyl ring is inclined with respect to the quinolinyl residue to which it is attached, forming a dihedral angle of 59.78 (8)°. The conformation about the ethylene bond [C18C19 = 1.336 (3) Å] is E. A small twist in the bridging prop-2-en-1-one group is manifested in the O1—C17—C18—C19 torsion angle of -10.6 (3)°. An distinct conformation was reported recently for a related structure, namely (2E)-3-(6-chloro-2-methoxyquinolin-3-yl)-1-(2,4-dimethylquinolin-3 - y)prop-2-en-1-one (Prasath et al., 2013b) where the nitrogen atoms are approximately syn as opposed to approximately anti in (I).

In the crystal packing, the quinolinyl and acetone molecules are connected by C—H···O interactions, Table 1. Additional C—H···O contacts and a number of ππ interactions, involving pyridyl, a quinolinyl-C6 ring and the phenyl group, connect molecules into a three-dimensional architecture [centroid···centroid distances = 3.5504 (12), 3.5747 (12) and 3.6623 (12) Å], Fig. 2.

Related literature top

For background details and the biological applications of quinolinyl derivatives, see: Joshi et al. (2011); Prasath et al. (2013a). For a related structure, see: Prasath et al. (2013b).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (260 mg, 0.001 M) and 2,6-dichloroquinoline-3-carbaldehyde (230 mg, 0.001 M) in methanol (20 ml) containing potassium hydroxide (0.2 g) was stirred at room temperature for 12 h. The reaction mixture was then neutralized with dilute acetic acid and the resultant solid was filtered, dried and purified by column chromatography using ethyl acetate - hexane (3:1) mixture to afford compound. Re-crystallization was by slow evaporation of an acetone solution of (I), which yielded blocks in 62% yield; M.pt: 366–368 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.47 and 0.46 e Å-3, respectively, were located 0.85 Å and 0.68 Å from the O2 and Cl1 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View in projection down the c axis of the unit-cell contents of (I). The ππ and C—H···O interactions are shown as purple and orange dashed lines, respectively.
(2E)-3-(6-Chloro-2-methoxyquinolin-3-yl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one acetone monosolvate top
Crystal data top
C29H21ClN2O2·C3H6OF(000) = 1096
Mr = 523.01Dx = 1.321 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4229 reflections
a = 17.1714 (3) Åθ = 2.6–76.5°
b = 10.7099 (2) ŵ = 1.58 mm1
c = 14.5248 (2) ÅT = 100 K
β = 100.021 (2)°Prism, pale-yellow
V = 2630.42 (8) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5408 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4574 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 2.6°
ω scanh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 913
Tmin = 0.665, Tmax = 1.000l = 1811
11367 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0953P)2 + 1.726P]
where P = (Fo2 + 2Fc2)/3
5408 reflections(Δ/σ)max < 0.001
346 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C29H21ClN2O2·C3H6OV = 2630.42 (8) Å3
Mr = 523.01Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.1714 (3) ŵ = 1.58 mm1
b = 10.7099 (2) ÅT = 100 K
c = 14.5248 (2) Å0.30 × 0.25 × 0.20 mm
β = 100.021 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5408 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
4574 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 1.000Rint = 0.032
11367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.03Δρmax = 1.47 e Å3
5408 reflectionsΔρmin = 0.46 e Å3
346 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62921 (3)0.12909 (5)0.32316 (4)0.03232 (17)
O10.22537 (9)0.34889 (15)0.74016 (10)0.0264 (3)
O20.47465 (9)0.10414 (17)0.80988 (11)0.0324 (4)
N10.12879 (10)0.59002 (17)0.50819 (13)0.0258 (4)
N20.55712 (10)0.06750 (17)0.70334 (12)0.0245 (4)
C10.08058 (12)0.5228 (2)0.44105 (14)0.0235 (4)
C20.03155 (13)0.5910 (2)0.36971 (15)0.0295 (5)
H20.03320.67970.37020.035*
C30.01806 (14)0.5301 (2)0.30037 (15)0.0338 (5)
H30.05010.57670.25250.041*
C40.02195 (13)0.3989 (2)0.29950 (15)0.0314 (5)
H40.05670.35750.25100.038*
C50.02415 (12)0.3303 (2)0.36832 (14)0.0264 (4)
H50.02040.24180.36770.032*
C60.07738 (11)0.3911 (2)0.44037 (13)0.0216 (4)
C70.12817 (11)0.32582 (19)0.51344 (13)0.0201 (4)
C80.17507 (11)0.39553 (19)0.58093 (13)0.0210 (4)
C90.17372 (12)0.5289 (2)0.57624 (14)0.0241 (4)
C100.22557 (14)0.6057 (2)0.64860 (17)0.0332 (5)
H10A0.22290.69360.62930.050*
H10B0.28030.57630.65510.050*
H10C0.20740.59760.70870.050*
C110.12677 (11)0.18704 (19)0.51703 (13)0.0211 (4)
C120.14436 (12)0.1150 (2)0.44272 (14)0.0242 (4)
H120.15970.15500.39030.029*
C130.13946 (13)0.0141 (2)0.44520 (16)0.0293 (5)
H130.15170.06190.39460.035*
C140.11663 (13)0.0742 (2)0.52142 (17)0.0317 (5)
H140.11250.16270.52250.038*
C150.10015 (13)0.0036 (2)0.59537 (16)0.0305 (5)
H150.08520.04400.64790.037*
C160.10515 (12)0.1257 (2)0.59373 (14)0.0250 (4)
H160.09380.17290.64520.030*
C170.23238 (11)0.33553 (18)0.65850 (13)0.0208 (4)
C180.29959 (11)0.27093 (19)0.62832 (13)0.0217 (4)
H180.29650.25180.56390.026*
C190.36459 (11)0.23825 (19)0.68814 (14)0.0223 (4)
H190.36490.24910.75310.027*
C200.43552 (11)0.18660 (19)0.65883 (13)0.0218 (4)
C210.49258 (12)0.11715 (19)0.72277 (14)0.0231 (4)
C220.57217 (11)0.08240 (19)0.61423 (14)0.0221 (4)
C230.64121 (12)0.0285 (2)0.59056 (15)0.0266 (4)
H230.67620.01750.63600.032*
C240.65784 (12)0.0425 (2)0.50195 (16)0.0273 (4)
H240.70410.00590.48610.033*
C250.60641 (12)0.1109 (2)0.43496 (15)0.0244 (4)
C260.53820 (12)0.16319 (19)0.45448 (14)0.0229 (4)
H260.50350.20750.40760.027*
C270.52045 (11)0.15016 (18)0.54522 (14)0.0204 (4)
C280.45154 (11)0.20257 (19)0.57037 (14)0.0215 (4)
H280.41610.24910.52570.026*
C290.52882 (18)0.0347 (3)0.87429 (17)0.0424 (6)
H29A0.51010.03050.93420.064*
H29B0.58070.07530.88320.064*
H29C0.53320.05000.85010.064*
O30.33767 (14)0.4389 (2)0.45197 (14)0.0573 (6)
C300.23862 (15)0.4489 (3)0.31684 (17)0.0373 (6)
H30A0.23710.35790.32350.056*
H30B0.25510.47000.25740.056*
H30C0.18590.48350.31780.056*
C310.29599 (14)0.5025 (2)0.39548 (15)0.0331 (5)
C320.29821 (18)0.6428 (3)0.40126 (19)0.0450 (6)
H32A0.34670.66920.44270.068*
H32B0.25210.67280.42620.068*
H32C0.29730.67770.33870.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0329 (3)0.0336 (3)0.0345 (3)0.0039 (2)0.0173 (2)0.0023 (2)
O10.0261 (7)0.0297 (8)0.0242 (7)0.0027 (6)0.0063 (6)0.0013 (6)
O20.0278 (8)0.0422 (10)0.0265 (7)0.0063 (7)0.0026 (6)0.0116 (7)
N10.0244 (9)0.0217 (9)0.0326 (9)0.0024 (7)0.0087 (7)0.0035 (7)
N20.0223 (8)0.0263 (9)0.0231 (8)0.0029 (7)0.0008 (6)0.0031 (7)
C10.0213 (9)0.0268 (11)0.0245 (9)0.0063 (8)0.0098 (8)0.0045 (8)
C20.0300 (11)0.0297 (11)0.0310 (11)0.0103 (9)0.0111 (9)0.0089 (9)
C30.0296 (11)0.0444 (14)0.0279 (11)0.0145 (10)0.0063 (9)0.0108 (10)
C40.0242 (10)0.0431 (14)0.0261 (10)0.0082 (9)0.0015 (8)0.0005 (9)
C50.0235 (10)0.0299 (11)0.0261 (10)0.0042 (8)0.0054 (8)0.0003 (8)
C60.0179 (9)0.0264 (10)0.0219 (9)0.0040 (7)0.0077 (7)0.0031 (8)
C70.0148 (8)0.0252 (10)0.0216 (9)0.0019 (7)0.0064 (7)0.0016 (7)
C80.0174 (9)0.0247 (10)0.0223 (9)0.0019 (7)0.0076 (7)0.0015 (7)
C90.0201 (9)0.0241 (10)0.0294 (10)0.0019 (8)0.0077 (8)0.0000 (8)
C100.0317 (11)0.0225 (11)0.0431 (13)0.0013 (9)0.0003 (10)0.0022 (9)
C110.0166 (8)0.0224 (10)0.0236 (9)0.0024 (7)0.0014 (7)0.0009 (7)
C120.0195 (9)0.0292 (11)0.0229 (9)0.0028 (8)0.0008 (7)0.0024 (8)
C130.0229 (10)0.0287 (11)0.0330 (11)0.0050 (8)0.0046 (8)0.0090 (9)
C140.0270 (10)0.0205 (10)0.0433 (12)0.0009 (8)0.0062 (9)0.0008 (9)
C150.0251 (10)0.0287 (11)0.0358 (11)0.0027 (8)0.0005 (9)0.0065 (9)
C160.0218 (9)0.0275 (11)0.0250 (10)0.0002 (8)0.0025 (7)0.0014 (8)
C170.0184 (9)0.0201 (9)0.0238 (9)0.0013 (7)0.0035 (7)0.0010 (7)
C180.0199 (9)0.0231 (10)0.0227 (9)0.0012 (7)0.0052 (7)0.0035 (7)
C190.0209 (9)0.0242 (10)0.0217 (9)0.0002 (7)0.0034 (7)0.0025 (7)
C200.0178 (9)0.0225 (10)0.0242 (9)0.0005 (7)0.0011 (7)0.0042 (8)
C210.0247 (10)0.0232 (10)0.0202 (9)0.0008 (8)0.0009 (7)0.0032 (7)
C220.0185 (9)0.0192 (9)0.0276 (10)0.0018 (7)0.0007 (7)0.0035 (8)
C230.0177 (9)0.0264 (10)0.0341 (11)0.0010 (8)0.0001 (8)0.0045 (9)
C240.0174 (9)0.0273 (11)0.0371 (11)0.0012 (8)0.0047 (8)0.0076 (9)
C250.0218 (9)0.0240 (10)0.0294 (10)0.0055 (8)0.0097 (8)0.0040 (8)
C260.0219 (9)0.0199 (10)0.0268 (10)0.0022 (7)0.0039 (7)0.0002 (8)
C270.0169 (9)0.0179 (9)0.0261 (9)0.0012 (7)0.0028 (7)0.0021 (7)
C280.0175 (9)0.0208 (9)0.0255 (9)0.0006 (7)0.0019 (7)0.0015 (7)
C290.0550 (16)0.0437 (15)0.0290 (12)0.0158 (12)0.0087 (11)0.0058 (10)
O30.0579 (13)0.0665 (15)0.0453 (11)0.0049 (11)0.0028 (10)0.0181 (10)
C300.0363 (12)0.0427 (14)0.0359 (12)0.0130 (10)0.0146 (10)0.0117 (10)
C310.0324 (12)0.0415 (14)0.0269 (10)0.0060 (10)0.0098 (9)0.0035 (9)
C320.0560 (17)0.0404 (15)0.0407 (13)0.0156 (12)0.0142 (12)0.0066 (11)
Geometric parameters (Å, º) top
Cl1—C251.746 (2)C14—H140.9500
O1—C171.221 (2)C15—C161.388 (3)
O2—C211.360 (3)C15—H150.9500
O2—C291.411 (3)C16—H160.9500
N1—C91.317 (3)C17—C181.476 (3)
N1—C11.369 (3)C18—C191.336 (3)
N2—C211.304 (3)C18—H180.9500
N2—C221.373 (3)C19—C201.467 (3)
C1—C61.411 (3)C19—H190.9500
C1—C21.419 (3)C20—C281.371 (3)
C2—C31.366 (3)C20—C211.435 (3)
C2—H20.9500C22—C231.414 (3)
C3—C41.407 (4)C22—C271.418 (3)
C3—H30.9500C23—C241.374 (3)
C4—C51.375 (3)C23—H230.9500
C4—H40.9500C24—C251.401 (3)
C5—C61.422 (3)C24—H240.9500
C5—H50.9500C25—C261.372 (3)
C6—C71.433 (3)C26—C271.410 (3)
C7—C81.375 (3)C26—H260.9500
C7—C111.488 (3)C27—C281.414 (3)
C8—C91.431 (3)C28—H280.9500
C8—C171.505 (3)C29—H29A0.9800
C9—C101.499 (3)C29—H29B0.9800
C10—H10A0.9800C29—H29C0.9800
C10—H10B0.9800O3—C311.202 (3)
C10—H10C0.9800C30—C311.488 (3)
C11—C161.398 (3)C30—H30A0.9800
C11—C121.401 (3)C30—H30B0.9800
C12—C131.386 (3)C30—H30C0.9800
C12—H120.9500C31—C321.505 (4)
C13—C141.395 (3)C32—H32A0.9800
C13—H130.9500C32—H32B0.9800
C14—C151.383 (3)C32—H32C0.9800
C21—O2—C29116.16 (17)C18—C17—C8114.89 (16)
C9—N1—C1118.42 (19)C19—C18—C17122.50 (18)
C21—N2—C22117.61 (17)C19—C18—H18118.7
N1—C1—C6123.29 (18)C17—C18—H18118.7
N1—C1—C2117.2 (2)C18—C19—C20123.50 (18)
C6—C1—C2119.5 (2)C18—C19—H19118.3
C3—C2—C1120.5 (2)C20—C19—H19118.3
C3—C2—H2119.8C28—C20—C21116.46 (18)
C1—C2—H2119.8C28—C20—C19122.50 (18)
C2—C3—C4120.4 (2)C21—C20—C19121.03 (18)
C2—C3—H3119.8N2—C21—O2119.87 (18)
C4—C3—H3119.8N2—C21—C20125.56 (18)
C5—C4—C3120.5 (2)O2—C21—C20114.56 (18)
C5—C4—H4119.8N2—C22—C23119.04 (18)
C3—C4—H4119.8N2—C22—C27121.91 (18)
C4—C5—C6120.3 (2)C23—C22—C27119.06 (19)
C4—C5—H5119.8C24—C23—C22120.2 (2)
C6—C5—H5119.8C24—C23—H23119.9
C1—C6—C5118.83 (18)C22—C23—H23119.9
C1—C6—C7117.66 (18)C23—C24—C25119.92 (19)
C5—C6—C7123.51 (19)C23—C24—H24120.0
C8—C7—C6117.93 (19)C25—C24—H24120.0
C8—C7—C11121.90 (17)C26—C25—C24121.83 (19)
C6—C7—C11120.12 (17)C26—C25—Cl1118.97 (17)
C7—C8—C9120.37 (18)C24—C25—Cl1119.20 (16)
C7—C8—C17121.82 (18)C25—C26—C27118.94 (19)
C9—C8—C17117.72 (18)C25—C26—H26120.5
N1—C9—C8122.29 (19)C27—C26—H26120.5
N1—C9—C10116.9 (2)C26—C27—C28121.92 (18)
C8—C9—C10120.79 (19)C26—C27—C22120.04 (18)
C9—C10—H10A109.5C28—C27—C22118.04 (18)
C9—C10—H10B109.5C20—C28—C27120.41 (18)
H10A—C10—H10B109.5C20—C28—H28119.8
C9—C10—H10C109.5C27—C28—H28119.8
H10A—C10—H10C109.5O2—C29—H29A109.5
H10B—C10—H10C109.5O2—C29—H29B109.5
C16—C11—C12118.5 (2)H29A—C29—H29B109.5
C16—C11—C7120.37 (18)O2—C29—H29C109.5
C12—C11—C7121.04 (18)H29A—C29—H29C109.5
C13—C12—C11120.4 (2)H29B—C29—H29C109.5
C13—C12—H12119.8C31—C30—H30A109.5
C11—C12—H12119.8C31—C30—H30B109.5
C12—C13—C14120.5 (2)H30A—C30—H30B109.5
C12—C13—H13119.7C31—C30—H30C109.5
C14—C13—H13119.7H30A—C30—H30C109.5
C15—C14—C13119.2 (2)H30B—C30—H30C109.5
C15—C14—H14120.4O3—C31—C30122.8 (3)
C13—C14—H14120.4O3—C31—C32121.4 (2)
C14—C15—C16120.7 (2)C30—C31—C32115.8 (2)
C14—C15—H15119.6C31—C32—H32A109.5
C16—C15—H15119.6C31—C32—H32B109.5
C15—C16—C11120.6 (2)H32A—C32—H32B109.5
C15—C16—H16119.7C31—C32—H32C109.5
C11—C16—H16119.7H32A—C32—H32C109.5
O1—C17—C18123.90 (18)H32B—C32—H32C109.5
O1—C17—C8120.99 (18)
C9—N1—C1—C60.9 (3)C7—C11—C16—C15176.94 (18)
C9—N1—C1—C2178.66 (18)C7—C8—C17—O1117.8 (2)
N1—C1—C2—C3179.97 (19)C9—C8—C17—O165.6 (3)
C6—C1—C2—C30.5 (3)C7—C8—C17—C1867.3 (2)
C1—C2—C3—C40.8 (3)C9—C8—C17—C18109.3 (2)
C2—C3—C4—C50.1 (3)O1—C17—C18—C1910.6 (3)
C3—C4—C5—C61.1 (3)C8—C17—C18—C19164.11 (19)
N1—C1—C6—C5178.86 (18)C17—C18—C19—C20173.03 (19)
C2—C1—C6—C50.7 (3)C18—C19—C20—C2820.8 (3)
N1—C1—C6—C70.8 (3)C18—C19—C20—C21159.9 (2)
C2—C1—C6—C7179.69 (18)C22—N2—C21—O2179.46 (18)
C4—C5—C6—C11.5 (3)C22—N2—C21—C200.1 (3)
C4—C5—C6—C7178.94 (19)C29—O2—C21—N20.5 (3)
C1—C6—C7—C81.8 (3)C29—O2—C21—C20179.0 (2)
C5—C6—C7—C8177.81 (18)C28—C20—C21—N20.8 (3)
C1—C6—C7—C11179.30 (17)C19—C20—C21—N2179.8 (2)
C5—C6—C7—C110.3 (3)C28—C20—C21—O2179.62 (18)
C6—C7—C8—C91.3 (3)C19—C20—C21—O20.3 (3)
C11—C7—C8—C9178.73 (17)C21—N2—C22—C23179.30 (19)
C6—C7—C8—C17177.82 (17)C21—N2—C22—C270.6 (3)
C11—C7—C8—C174.7 (3)N2—C22—C23—C24179.71 (19)
C1—N1—C9—C81.5 (3)C27—C22—C23—C240.3 (3)
C1—N1—C9—C10179.85 (19)C22—C23—C24—C250.3 (3)
C7—C8—C9—N10.4 (3)C23—C24—C25—C261.3 (3)
C17—C8—C9—N1176.27 (18)C23—C24—C25—Cl1179.27 (16)
C7—C8—C9—C10179.01 (19)C24—C25—C26—C271.6 (3)
C17—C8—C9—C102.3 (3)Cl1—C25—C26—C27179.00 (15)
C8—C7—C11—C1659.1 (3)C25—C26—C27—C28179.44 (18)
C6—C7—C11—C16118.3 (2)C25—C26—C27—C220.9 (3)
C8—C7—C11—C12123.1 (2)N2—C22—C27—C26179.99 (18)
C6—C7—C11—C1259.5 (3)C23—C22—C27—C260.1 (3)
C16—C11—C12—C130.7 (3)N2—C22—C27—C280.3 (3)
C7—C11—C12—C13177.16 (18)C23—C22—C27—C28179.64 (18)
C11—C12—C13—C140.3 (3)C21—C20—C28—C271.1 (3)
C12—C13—C14—C151.0 (3)C19—C20—C28—C27179.53 (18)
C13—C14—C15—C160.8 (3)C26—C27—C28—C20179.06 (19)
C14—C15—C16—C110.2 (3)C22—C27—C28—C200.6 (3)
C12—C11—C16—C150.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.952.473.319 (3)149
C30—H30A···O1i0.982.523.373 (4)146
C28—H28···O30.952.573.467 (3)158
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.952.473.319 (3)149
C30—H30A···O1i0.982.523.373 (4)146
C28—H28···O30.952.573.467 (3)158
Symmetry code: (i) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds